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Abstract

Six novel 3″-substituted (R)-N-(phenoxybenzyl) 2-N-acetamido-3-methoxypropionamides were 

prepared and then assessed using whole-cell, patch-clamp electrophysiology for their 

anticonvulsant activities in animal seizure models and for their sodium channel activities. We 

found compounds with various substituents at the terminal aromatic ring that had excellent 

anticonvulsant activity. Of these compounds, (R)-N-4′-((3″-chloro)phenoxy)benzyl 2-N-

acetamido-3-methoxypropionamide ((R)-5) and (R)-N-4′-((3″-trifluoromethoxy)phenoxy)benzyl 

2-N-acetamido-3-methoxypropionamide ((R)-9) exhibited high protective indices (PI = TD50/

ED50) comparable with many antiseizure drugs when tested in the maximal electroshock seizure 

test to mice (intraperitoneally) and rats (intraperitoneally, orally). Most compounds potently 

transitioned sodium channels to the slow-inactivated state when evaluated in rat embryonic 
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cortical neurons. Treating HEK293 recombinant cells that expressed hNav1.1, rNav1.3, hNav1.5, 

or hNav1.7 with (R)-9 recapitulated the high levels of sodium channel slow inactivation.

Keywords

Chimeric agents; functionalized amino acids; α-aminoamides; antiseizure agents; Na+ current 
inhibition

1. Introduction

The epilepsies are serious, neurological disorders that affect up to 1% of the world’s 

population.1 Although more than 40 drugs have been used to treat these disorders,2 

significant health needs remain unmet. First, current antiseizure drugs (ASDs) are 

ineffective for about one-third of patients, even when multiple drugs are prescribed.3 

Second, ASD use is associated with untoward side effects in more than 40% of patients, 

ranging from common cosmetic (e.g., gingival hyperplasia, weight gain) and quality of life 

(e.g., sedation, learning, cognitive dysfunction) to rare, life-threatening (e.g., hepatotoxicity, 

aplastic anemia) ones.4,5 Third, some epilepsies, such as Lenox-Gestault and mesial 

temporal lobe epilepsy, worsen over time, and for these disorders, there is a need for a 

disease-modifying drug.6 Finally, most seizure medications do not address associated 

comorbidities (e.g., cognitive dysfunction7). Thus, the need still remains for ASDs that have 

novel mechanism(s) of action with safe profiles.

We have reported on a novel series of chimeric compounds, (R)-A,8–10 derived from the 

merger of key structural units (Fig. 1B, C) present in the functionalized amino acid (FAA), 

lacosamide11 ((R)-N-benzyl 2-N-acetamido-3-methoxypropionamide, (R)-1) and the α-

aminoamide (AAA), safinamide12,13 ((S)-2-(4′-((3″-

fluoro)benzyloxy)benzyl)aminopropionamide, (S)-2). Lacosamide is a first-in-class ASD 

that is extensively used for the treatment of partial-onset seizures in adults.14 Safinamide, 

another anticonvulsant,15 has been advanced for the treatment of Parkinson’s disease.16 

Studies have shown that safinamide inhibits monoamine oxidase type B,17 thus likely 

preventing dopamine bioactivation in patients suffering from Parkinson’s disease. We 

demonstrated that select (R)-A compounds displayed potent anticonvulsant activities in the 

maximal electroshock18 (MES) and the 6-Hz psychomotor19 seizure assays in rodents.8–10 

The anticonvulsant activities of (R)-A have been attributed, in part, to their actions on 

voltage-gated sodium channel (VGSC) properties.9,10,20 Chimeric compounds (R)-A 
potently transitioned VGSCs to the slow-inactivated state and in some cases, affected fast 

inactivation processes and inhibited Na+ currents in a frequency (use)-dependent fashion. 

The experimental findings for slow inactivation by (R)-A were also consistent with a 

mechanism in which the chimeric compounds block fast-inactivated channels with very slow 

kinetics.21,22

An initial structure-activity relationship (SAR) study of (R)-A showed excellent 

anticonvulsant activities for compounds in which the two aryl units were in spatial 

proximity.8 Thus, we further investigated the activities of (R)-A compounds wherein the 

linker (L) was either a single bond9 or an oxymethylene (OCH2)10 group and found that the 
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X-substituent in the terminal aromatic ring influenced the cellular and whole animal 

pharmacological activities. Here, we explore the (R)-A series that contain an oxy (O)-linker 

to give (R)-D. We demonstrate in seizure models that most X-substituents in (R)-D yielded 

compounds with excellent anticonvulsant activities and minimal neurotoxicities, comparable 

with many ASDs. Electrophysiology studies showed that (R)-D displayed sodium channel 

properties consistent with other members of this general class of compounds.9,10,20

2. Results

2.1. Selection of compounds

We prepared compounds (R)-3 and (R)-5 – (R)-9 where an oxygen was the linker (L) 

between the two aromatic rings. Our initial SAR study documented that (R)-4, the 3″-

fluorine (R)-D derivative, exhibited pronounced anticonvulsant activity in rodents.8 

Accordingly, we restricted the site of substitution on the terminal aromatic ring to the 3″-

position. The X-substituent ranged from electron-withrawing to electron-donating groups.

2.2. Synthesis

Compounds (R)-3 and (R)-5 – (R)-9 were prepared by a similar route (Scheme 1), using the 

mixed anhydride coupling (MAC) method.23 Commercially available (R)-N-tert-

butoxycarbonyl-D-serine ((R)-27) was coupled with the 4-(phenoxy)phenylmethamines 21 – 
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26 using the MAC reagents isobutylchloroformate (IBCF) and N-methylmorpholine (NMM) 

to give amides (R)-28 – (R)-33, respectively, without racemization of the C(2) chiral center. 

The substituted 4-phenoxybenzylamines were prepared by treating 4-fluorobenzonitrile (10) 

with the appropriate aryl phenol (11 – 15) using either K2CO3 or Cs2CO3 in DMF to give 

the corresponding nitriles.24–27 Subsequent reduction of the nitrile group in 16 – 20 with 

LiAIH4 afforded the amines 22 – 26. The corresponding unsubstituted 4-

phenoxybenzylamine (21) was commercially available. Methylation (CH3I, Ag2O) of the 

serine hydroxyl group in (R)-28 – (R)-33 provided ethers (R)-34 – (R)-39, respectively. 

Deprotection of the tert-butoxycarbonyl group in (R)-34 – (R)-39 with acid (HCI/dioxane) 

followed by acetylation (AcCI, Et3N) gave the desired products (R)-3 and (R)-5 – (R)-9, 

respectively. The enantiomeric purities of (R)-3 and (R)-5 – (R)-9 were assessed by the 

detection of a single acetyl methyl peak and a single O-methyl peak in the 1H NMR 

spectrum for each compound when a saturated solution of (R)-(−)-mandelic acid was 

added.28

We report, in the Experimental Section, the details (synthetic procedure, characterization) of 

the final step for all compounds evaluated in the seizure and cellular electrophysiology 

studies. In the Supporting Information, we provide the experimental procedures and the 

physical and full spectroscopic properties for all the synthetic compounds prepared in this 

study.

2.3. Pharmacological evaluation

2.3.1. Whole animal pharmacological activity—Compounds (R)-3 and (R)-5 – (R)-9 
were tested for anticonvulsant activity at the Anticonvulsant Screening Program (ASP) of 

the National Institute of Neurological Disorders and Stroke (NINDS), U.S. National 

Institutes of Health, using the procedures described by Stables and Kupferberg.29 The 

anticonvulsant data from the MES model18 (mice, intraperitoneally (ip); rat, ip; rat, orally 

(po)), and the psychomotor 6 Hz (32 mA) seizure test for therapy-resistant limbic seizures19 

(mice, ip) are summarized in Table 1 along with similar results (where available) obtained 

for (R)-1,11,30 (S)-2,15 and (R)-4,8 and the ASDs phenytoin,31,32 phenobarbital,31 and 

valproate.31 For compounds that showed significant activity, we report the 50% effective 

dose (ED50) values from quantitative screening evaluations. We also include the median 

doses for 50% neurological impairment (TD50) in mice, using the rotorod test,33 and the 

behavioral toxicity effects observed in rats.34 The protective index (PI = TD50/ED50) for the 

test compounds is listed, where possible. Compounds (R)-4 – (R)-6, (R)-8 and (R)-9 were 

evaluated in the subcutaneous Metrazol (scMet) seizure model,35 and no activity was 

observed below 40 mg/kg (data not shown). Similarly, we found no activity in the scMet 

model for (R)-111 and structurally related compounds.8–10,36

Compounds (R)-3 – (R)-9 displayed excellent activities in the MES model in mice when 

administered ip and in rats when administered either ip or po. For most compounds, we 

observed in mice (ip) ED50 values that ranged from 5.5 – 14 mg/kg, values that were 

comparable with the ASDs (R)-111 and phenytoin31,32 (ED50 (mg/kg): (R)-3, >10, <30; 

(R)-4, 5.5; (R)-5, 9.4; (R)-6, 14; (R)-7, ~10; (R)-8, 13; (R)-9; 6.5; (R)-1, 4.5; phenytoin, 9.5). 

Furthermore, we found that many of the compounds exhibited low neurotoxicities in the 
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rotorod test in mice (ip), thus affording high PI values similar to (R)-111 and phenytoin31,32 

(PI: (R)-4, 4.2; (R)-5, 5.0; (R)-6, 4.6; (R)-8, 6.5; (R)-9, 6.2; (R)-1, 6.0; phenytoin, 6.9). In rats 

(po), excellent activities were observed for (R)-5 and (R)-9 (ED50 (mg/kg): (R)-5, 12; (R)-9, 

8.3). The PI values for these compounds were high but were lower than (R)-1 and phenytoin 

(PI: (R)-5, 18; (R)-9, 29; (R)-1, >130; phenytoin, >36). In rats (ip), (R)-5, (R)-6, (R)-8, and 

(R)-9 displayed potent activities (ED50 values: 5.7 – 15 mg/kg) and low neurotoxicities 

(TD50 values: 49 – 140 mg/kg) giving PI values that ranged from 8.0–12, values higher than 

phenytoin32 (PI: (R)-5, 8.3; (R)-6,12; (R)-8, 8.0; (R)-9, 9.5; phenytoin, 6.3). Finally, we 

evaluated (R)-3 – (R)-9 in the 6 Hz (32 mA) psychomotor seizure test and found that (R)-4, 

(R)-5, and (R)-9 were the most active compounds (ED50 (mg/kg): (R)-4, ~10; (R)-5, 20; 

(R)-9, 15). By comparison, the 6 Hz ED50 value for (R)-1 was 10 mg/kg.30

2.3.2. Whole-cell, patch-clamp electrophysiological activity—The well-described 

mechanisms of action by lacosamide and safinamide, parents of (R)-D series compounds, 

both involve inhibition of VGSCs.14,15,37,38 Promising anticonvulsant activities of (R)-3 – 

(R)-9 therefore prompted our examination of the VGSC activities in rat embryonic cortical 

neurons9,10,39 by whole-cell, patch-clamp electrophysiology. These neurons typically 

express central nervous system (CNS) sodium channel isoforms Nav1.1, Nav1.2, Nav1.3, 

and Nav1.6.40 Kinetic properties of slow inactivation, frequency (use)-dependence, and 

steady-state activation and fast inactivation of Na+ currents were measured in the presence 

of (R)-3 – (R)-9. The cortical neurons were grown for 7–10 days in vitro and then examined 

using protocols described earlier.9,10,39 Compounds (R)-3 – (R)-9 were tested only at 10 μM 

due to constraints of cortical neuron viability during the course of the patch-clamp 

experiments. Here, we did not separate the exact contribution of the four Nav isoforms in the 

presence of (R)-3 – (R)-9 because of the lack of subtype-specific blockers of these Nav 

isoforms, and the possible interactions between said blockers of various Nav channels and 

the (R)-D compounds themselves. Thus, we assumed contributions from all four CNS Nav 

isoforms. The excellent anticonvulsant activity observed for (R)-9 led us to examine this 

compound further in both catecholamine A–differentiated (CAD) cells41 that express 

predominantly Nav1.7 and in recombinant HEK293 cells that express hNav1.1, rNav1.3, 

hNav1.5, or hNav1.7 channels.9

2.3.2.1. Rat embryonic cortical neurons: First, we tested the ability of 10 μM (R)-3 – (R)-9 
to modulate the transition of VGSCs to a slow-inactivated state. Cortical cells were 

conditioned to potentials ranging from −100 mV to +20 mV (in +10 mV increments) for 5 

s.9,39,42 Channels that underwent fast inactivation during this conditioning pulse were then 

allowed to recover during a 1 second pulse to −70 mV before the extent of slow inactivation 

was examined by a test pulse to −10 mV, for 20 ms (Fig. 2A, left). Representative traces 

illustrating the extent of slow inactivation observed at −50 mV compared to the prepulse at 

−100 mV in the absence (control) or presence of (R)-5 and (R)-8 are shown in Figure 2A 

(right), with the full slow inactivation curve (normalized peak versus prepulse potential) of 

(R)-5 shown in Figure 2B. At 10 μM, (R)-5 facilitated the transition of a majority of sodium 

channels into the slow-inactivated state compared with control (0.1% DMSO)-treated 

neurons. Slow inactivation at −50 mV was chosen as a point of comparison between 

compounds due to the physiological relevance of this voltage near the resting membrane 
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potential and action potential firing threshold of neruons. At this voltage, VGSC activation 

and inactivation kinetics mediate channel availability that determines if sustained firing, 

akin to that during an epileptic event, is possible.43–47 At −50 mV, a small fraction (i.e., 0.16 

± 0.05 n=5; calculated as 1 minus the normalized INa) of the channels had entered a slow-

inactivated conformational state(s) in control-treated cells (Fig. 2B, C). Compared with the 

control, (R)-3 – (R)-9 caused a significant decrease in the maximal fraction of current that is 

available by depolarization, with maximal induction observed in the presence of (R)-3 (0.82 

± 0.03, n=5) (p <0.01, Mann-Whitney U test).

We next interrogated if (R)-3 – (R)-9 could enhance steady-state fast inactivation. For these 

studies we used a similar protocol (Fig. 3, top left) designed to induce a fast-inactivated 

state.9 Cells were subjected to inactivating prepulse potentials ranging from −100 to −10 mV 

(in 10-mV increments) for 500 ms prior to a 0 mV test pulse for 20 ms to estimate the extent 

of fast inactivation. The 500 ms conditioning pulse allows for examination of the linear 

range of fast inactivation curves for endogenous channels at assayed potentials. Steady-state, 

fast inactivation curves of Na+ currents from control (0.1% DMSO)- and (R)-3 – (R)-9–

treated cortical neurons were well fitted with a single Boltzmann function (R2 > 0.963 for all 

conditions). The value of voltage of half-maximal inactivation (V1/2) for 0.1% DMSO–

treated cells was −53.4 ± 1.5 mV (n=4), which was not significantly different from that 

observed for (R)-3 – (R)-9 (p>0.05 vs. control; Student’s t-test; Fig. 3).

Next, we tested whether (R)-3 – (R)-9 could alter the voltage-dependence of activation for 

cortical neuron VGSCs. Activation changes for cortical neurons treated with compounds 

were measured by whole-cell ionic conductances in response to changes in command 

voltage (Fig. 3, top right) and analyzed by comparing Boltzmann properties of half maximal 

activation (V1/2) and slope factors (k).9,39 Boltzmann fits for 0.1% DMSO (control) and 

(R)-3 – (R)-9 are shown in Figure 3. The V1/2 value for steady-state activation for 0.1% 

DMSO–treated (control) neurons was −27.1 ± 1.3 mV (n=5), which was significantly 

different from that of (R)-7 (−35.6 ± 4.1 mV; n=5) and (R)-8 (−36.8 ± 1.0 mV; n=6) (p<0.05 

vs. control; Student’s t-test; Fig. 3) but not for (R)-3 – (R)-6 and (R)-9.

Finally, we tested if (R)-3 – (R)-9 could elicit frequency (use)-dependent blockage of Na+ 

currents. The ability to block Na+ currents in an activity- or use-dependent manner is a 

useful property for ASDs since it allows for preferential decreases in sodium channel 

availability during high- (i.e., seizures) but not low-frequency firing.48 Thirty, identical test 

pulses were applied at 10 Hz (Fig. 4A).9,39 The difference in available current was 

calculated by dividing the peak current at any given pulse (pulseN) by the peak current in 

response to the initial pulse (pulse1). Representative currents for this protocol are shown for 

control and 10 μM (R)-7–treated cells (Fig. 4B). None of the tested compounds exhibited 

statistically relevant frequency (use)-dependent inhibition of Na+ currents (Fig. 4C).

The anticonvulsant activity for (R)-9 led us to further explore the electrophysiological 

properties of this compound in CAD and HEK293 recombinant cells, which express a 

distinct population of Nav channels.
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2.3.2.2. CAD cells: CAD cells express endogenous tetrodotoxin-sensitive Na+ currents that 

display rapid activation and inactivation kinetics upon membrane depolarization39 and are 

likely composed mostly of Nav1.7 channels with minor contributions by Nav1.1, Nav1.3, 

and Nav1.9 channels.9,42,49 We showed that the sodium channel properties of (R)-1 in CAD 

cells49 are similar to those in cultured neurons and in mouse N1E-115 neuroblastoma 

cells.50 CAD cells were easily recorded from and cultured thus allowing us to conveniently 

determine (R)-9 sodium channel slow inactivation, frequency (use)-dependence, and steady-

state activation and fast inactivation properties over a range of concentrations. These 

properties were quantitatively compared with other (R)-A compounds, (R)-1, and (S)-2. 

Compound (R)-9 promoted VGSC transition to a slow-inactivated state in a concentration-

dependent manner; almost complete slow inactivation was observed at the highest 

concentration (Fig. 5A). To determine the comparative level to which (R)-9 induced slow 

inactivation, we calculated concentration response curves for slow inactivation induction at 

−50 mV as well as at +20 mV; the IC50 inactivation values are shown in Figure 5A (boxes). 

Compared with our recently reported IC50 values of 85 and 13 μM for slow inactivation 

induced by (R)-19,20 and (S)-2,10 the IC50 value for (R)-9 (0.70 μM) was ~121-fold and ~19-

fold lower, respectively, at −50 mV. Similar differences in the IC50 values were measured at 

+20 mV. Next, we tested for the effects of (R)-9 on fast inactivation. We used a protocol 

tailored to induce a fast-inactivated state, as previously described.9,10,20 Cells were 

subjected to prepulse potentials ranging from −120 to −10 mV in 10 mV increments for 500 

ms. A 0 mV test pulse for 20 ms measures the available current. The 500 ms conditioning 

pulse allows for examination of the linear range of fast inactivation curves for endogenous 

channels at assayed potentials. As illustrated in Figure 5B, steady-state, fast inactivation 

curves of Na+ currents from control (0.1% DMSO) and CAD neurons treated with various 

concentrations of (R)-9 were well fitted with a single Boltzmann function (R2 > 0.979 for all 

conditions). The V1/2 value for inactivation for 0.1% DMSO (control)–treated cells was 

−69.1 ± 3.6 mV (n=7), which was significantly different from that of (R)-9 (10 μM)–treated 

cells (−84.6 ± 1.6 mV; n=6; p<0.05; Student’s t-test; Fig. 5B). Because changes in Na+ 

current amplitudes could be due to alterations in channel gating,51 we tested if (R)-9 altered 

the voltage-dependent activation properties of Na+ currents. Activation changes for CAD 

cells treated with (R)-9 were measured by whole-cell ionic conductances in response to 

changes in command voltage and analyzed by comparing Boltzmann properties of midpoints 

(V1/2) and slope factors (k). We found that VGSC steady-state activation properties were no 

different between 0.1% DMSO (control; V1/2 for activation = −19.5 ± 2.8 mV (n=8)) and 

any concentration tested for (R)-9 (Fig. 5B). Finally, we tested if (R)-9 could confer 

frequency (use)-dependent Na+ current block. Thirty, identical test pulses were applied at 10 

Hz as described previously.9,10,20 The available current in control cells (0.1% DMSO) and 

treated cells (various concentrations of (R)-9) was calculated by dividing the peak current at 

any given pulse (pulseN) by the peak current in response to the initial pulse (pulse1). 

Compound (R)-9 exhibited frequency (use)-dependent inhibition of Na+ currents (Fig. 5C), 

and by the last pulse, compared with control (0.1% DMSO), the peak current was ~39% 

lower in the presence of 10 μM (R)-9. When we tested 30 μM (R)-10 in a similar protocol, 

we observed ~44% inhibition in Na+ currents (data not shown).
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2.3.2.3. HEK293 Recombinant cells: In order to test if (R)-9 had effects on various sodium 

channel isoforms, we examined the effects of 10 μM (R)-9 on slow inactivation, fast 

inactivation, steady-state activation, and frequency (use)-dependence in HEK293 cells that 

stably expressed CNS (hNav1.1, rNav1.3), peripheral nervous system (hNav1.7), and cardiac 

(hNav1.5) channels using voltage protocols9 illustrated in Figure 6A, K. The results of these 

experiments are summarized in Table 2. Notably, (R)-9 exhibited similar, though not 

identical, effects on these biophysical properties irrespective of sodium channels, indicating 

that this compound exhibited little isoform specificity. We observed that (R)-9 robustly 

transitioned the four sodium channel subtypes to the slow-inactivated state; that (R)-9 
shifted the V1/2 of fast inactivation for Nav1.7 by ~20.2 mV in the hyperpolarizing directon 

without affecting V1/2 values for any of the other channel isoforms; and that (R)-9 had no 

effect on steady-state activation or on frequency (use)-inhibition of Na+ currents carried by 

any of the Nav1.x channels.

2.3.3. Additional studies—Among the (R)-D compounds, (R)-9 exhibited the most 

attractive anticonvulsant profile and potently inhibited sodium channel function. 

Accordingly, we conducted additional tests on this chimeric compound. The observed 

anticonvulsant activity for (R)-9 was further supported by its activities in the psychomotor 6 

Hz test (44 mA) for therapy-resistant limbic seizures19 (mouse, ip; ED50 = 44 mg/kg at 0.5 

h), the corneal kindled seizure model52 (mouse, ip; ED50 = 41 mg/kg at 0.25 h), and the rat 

hippocampal kindled seizure test for partial complex seizures or temporal lobe seizures53,54 

(rat, ip; ED50 = 22 mg/kg). Significantly, the 6 Hz (44 mA) test is a model for 

pharmacoresistant seizures,19,55 and the mouse corneal kindling and the rat hippocampal 

tests are considered to be predicative models for partial-onset and partial complex 

seizures.52

Next, we evauated (R)-9 (10 μM) against a panel of seven human CYP450 enzymes and 

observed little or no direct inhibition for CYP1A2, CYP2B6, CYP2C8, CYP2C9, 

CYP2C19, CYP2D6 and CYP3A4/5 (data not shown). We found little or no time-dependent 

inhibition of these enzymes other than for CYP2C8 by (R)-9, for which there was an ~16% 

inhibition increase after a 30-min preincubation period. We also determined the 

pharmacokinetic properties for (R)-9 in Sprague-Dawley rats (iv, po). Using a single iv dose 

of 5 mg/kg and an oral dose of 20 mg/kg, (R)-9 showed excellent bioavailability (92%) and 

where the t1/2 (iv) value was 1.75 h, the t1/2 (po) value was 4.63 h, and the brain:plasma 

ratio was 1.2:1 at 6.0 h.

Compound (R)-9 was evaluated at UNC’s NIMH Psychoactive Drug Screening Program 

(PDSP)56 against a battery of 43 receptors known to adversely impact drug effectiveness. 

No significant binding was observed at 10 μM. Moreover, (R)-9 did not affect hERG K+ 

channel activity (Patch Express) at 30 μM (data not shown). Finally, we conducted a non-

GLP 7-day repeated dose toxicity study for (R)-9 in Sprague-Dawley female rats upon oral 

(gavage) administration at 20, 60, and 180 mg/kg/day dose levels. The no observed adverse 

effect level (NOAEL) for (R)-9 was 60 mg/kg/day, providing a NOAEL/MES ED50 value of 

~10. At higher dose levels, effects were observed in the ability to bear weight, coordination 
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in gait, respiratory rate, relative organ weight (e.g., increase in liver, decrease in spleen and 

thymus), clinical chemistry parameters, and gross pathology (data not shown).

3. Discussion

Many of the (R)-D chimeric compounds exhibited excellent anticonvulsant activities in the 

MES model (mice, ip), comparable with the parent compounds (R)-111,30 and (S)-215 (ED50 

(mg/kg): (R)-3, >10, <30; (R)-4, 5.5; (R)-5, 9.4; (R)-6, 14; (R)-7, ~10; (R)-8, 13; (R)-9, 6.5; 

(R)-1, 4.5; (S)-2, 4.1). Furthermore, we observed only modest differences in seizure 

protection when the X-substitutent in (R)-D was varied from electron-withdrawing to 

electron-donating. Earlier studies on (R)-A compounds where the linker (L) was either a 

single bond9 ((R)-E) or an oxymethylene group10 ((R)-F) showed that the electron-

withdrawing, trifluoromethoxy (OCF3) group provided the greatest protection in the seizure 

models. For (R)-D, we found the most active compounds to be the 3″-F ((R)-4) and the 3″-

OCF3 ((R)-9) derivatives (MES ED50 (mice, ip, mg/kg): (R)-4, 5.5; (R)-9, 6.5; MES ED50 

(rat, po, mg/kg): (R)-4, <10; (R)-9, 8.3); however, the differences in their activities from the 

other compounds in the series were not great.

For the (R)-E and (R)-F chimeric compounds, we determined their slow inactivation IC50 

values in CAD cells.9,10 Accordingly, we measured the IC50 value for (R)-9 in CAD cells to 

gauge the relative potency of this series with the two earlier sets of compounds. We found 

the (R)-9 slow inactivation IC50 (−50 mV) value to be 0.70 μM (Fig. 5), which is 

comparable to the values for the corresponding (R)-E and (R)-F derivatives, (R)-40 and 

(R)-41, respectively (IC50 (μM): (R)-9, 0.70; (R)-40, 0.85;9 (R)-41, 0.2410). Similarly, we 

found that (R)-9 in CAD cells, like (R)-409 and (R)-41,10 inhibited Na+ currents in a 

frequency (use)-dependent manner, but unlike these two, we observed that (R)-9 affected 

fast inactivation at the highest concentration (10 μM) tested (Fig. 5). These overall results 

suggest that the composition and size of the different linkers in (R)-D – (R)-F did not 

appreciably affect the interaction of the chimeric compounds with the VGSCs.

Our finding that (R)-9 promoted sodium channel slow inactivation in rat embryonic cortical 

neurons that express Nav1.1, Nav1.2, Nav1.3, and Nav1.6 channels36 and in CAD cells that 

largely express Nav1.7 channels9,42,49 suggested that this compound showed little Nav 

channel subtype selectivity. We explored this by testing (R)-9 in HEK293 recombinant 

cells9 that expressed hNav1.1, rNav1.3, hNav1.5, or hNav1.7 (Fig. 6). In agreement with this 
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notion, (R)-9 (10 μM) potently transitioned the sodium channels to the slow-inactivated state 

regardless of the Nav channel isoform. In the recombinant cells, we observed that the effect 

of (R)-9 was different on sodium channel fast inactivation and frequency (use)-dependent 

inhibition. A similar result was previously reported for a (R)-E compound where X = Cl.9

The anticonvulsant activities for the (R)-D compounds are attributed, in part, to their ability 

to modulate VGSC activities. Using rat embryonic cortical neurons that express Nav1.1, 

Nav1.2, Nav1.3, and Nav1.6 channels,40 we learned that the (R)-D compounds uniformly 

promoted slow inactivation (Fig. 2). At 10 μM, the 3″-unsubstituted derivative (R)-3 was the 

most potent, followed by the 3″-electron-withdrawing derivatives (R)-4, (R)-5, (R)-9, (R)-7, 

and then the two 3″-electron-donating derivatives (R)-6 and (R)-8 (Fig. 2C). Interestingly, 

the relative level of slow inactivation for the (R)-D compounds did not parallel their 

corresponding anticonvulsant activities. For example, (R)-3 showed the greatest level of 

slow inactivation (Fig. 2C), but it was the least potent in the MES seizure model in mice (ip) 

(Table 1). When we compared the slow inactivation IC50 (−50 mV) values for (R)-9 and 

(R)-1 in CAD cells, we found that the IC50 value for (R)-9 was 0.70 μM, which was ~120-

fold lower than the value reported for (R)-1 (85 μM). Despite (R)-9’s increased potency, we 

did not find a comparable increased protection for (R)-9 versus (R)-1 in the MES seizure 

model in mice (ip) (ED50 (mg/kg): (R)-9, 6.5; (R)-1, 4.5). A similar lack of correspondence 

for the CAD slow inactivation IC50 values and their in vivo seizure protection activities in 

the MES test (mice, ip) were observed for the (R)-E and the (R)-F compounds with (R)-1 
(CAD cells slow inactivation IC50 (−50 mV, μM): (R)-40, 0.85 μM; (R)-41, 0.24 μM; (R)-1, 

85; ED50 (mg/kg): (R)-40, 4.7; (R)-41, 12; (R)-1, 4.5).9,10 We tentatively attribute this 

finding to the multiple factors that contribute to whole animal pharmacological activity, the 

sodium channel composition in CAD cells versus those in the CNS, the possibility that 

additional, unidentified pathways exist for seizure control, and the recognition that patch-

clamp electrophysiology studies do not recapitulate conditions created in the seizure models.

4. Conclusion

Many of the chimeric (R)-D compounds displayed potent anticonvulsant activities and high 

PI values, which were similar to ASDs, in the MES test when administered to rodents. The 

chimeric compounds’ anticonvulsant activities likely stemmed, at least in part, from their 

ability to promote sodium channel slow inactivation. VGSCs are responsible for the 

initiation of and the sustained activity of neuronal signaling during seizure events. The well 

described mechanism of action for both (R)-D parent compounds, lacosamide and 

safinamide, involve inhibition of these channels.14,15,37,38 Phenytoin, lamotrigine, and 

carbamazepine are among other ASDs that have primary activity on VGSCs to restrict 

neuronal firing during seizures.57 As evident by perturbation of VGSC slow inactivation 

(Fig. 2), the class (R)-D compounds potently shifted VGSC availability, which readily 

explains anticonvulsant activity. The type of channel block produced by these compounds is 

also a desirable characteristic for ASDs. By selectively affecting sodium channel slow 

inactivation or frequency (use)-dependent block, these compounds can promote channel 

inhibition in response to sustained use (i.e., epileptic activity).
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5. Experimental

5.1. General methods

Melting points were determined in open capillary tubes using a Thomas-Hoover melting 

point apparatus and are uncorrected. Optical rotations were obtained on a Jasco P-1030 

polarimeter at the sodium D line (589 nm) using a 1 dm path length cell. NMR spectra were 

obtained at 400 MHz (1H) and 100 MHz (13C) using TMS as an internal standard. Chemical 

shifts (δ) are reported in parts per million (ppm) from tetramethylsilane. Low-resolution 

mass spectra were obtained with a BioToF-II-Bruker Daltonics spectrometer by Dr. S. 

Habibi at the University of North Carolina Department of Chemistry. The high-resolution 

mass spectrum was performed on a Bruker Apex-Q 12 Telsa FTICR spectrometer by Dr. S. 

Habibi. Microanalyses were performed by Atlantic Microlab, Inc. (Norcross, GA). 

Reactions were monitored by analytical thin-layer chromatography (TLC) plates (Aldrich, 

Cat # Z12272-6) and analyzed with 254 nm UV light. The reactions were purified by flash 

column chromatography using silica gel (Dynamic Adsorbents Inc., Cat # 02826-25). All 

chemicals and solvents were reagent grade and used as obtained from commercial sources 

without further purification. Yields reported are for purified products and were not 

optimized. Compounds were checked by TLC, 1H and 13C NMR, MS, and elemental 

analyses. The analytical results are within ±0.40% of the theoretical value. The TLC, NMR 

and the analytical data confirmed the purity of the products was ≥95%.

5.1.1. General procedure for the deprotection and acetylation of (R)-N-benzyl 
2-N-(tert-butoxycarbonyl)amino-3-methoxypropionamide derivatives (R)-34 – 
(R)-39 to give (R)-3 and (R)-5 – (R)-9 (Method 1)—A CH2Cl2 solution (0.1–0.3 M) of 

the tert-butoxycarbonyl-compound ((R)-34 – (R)-39) was treated with 4 M HCl in dioxane 

(3–4 equiv) at room temperature (2–12 h). The reaction mixture was evaporated in vacuo. 

The resulting residue was dissolved in CH2Cl2 (0.1–0.3 M) and then triethylamine (2–3 

equiv) and acetyl chloride (1.0–1.2 equiv) were carefully added at 0 °C and the resulting 

solution was stirred at room temperature (2–16 h). The solution was washed with an aqueous 

10% citric acid solution followed by a saturated aqueous NaHCO3 solution. The organic 

layer was dried (Na2SO4) and concentrated in vacuo. The residue was purified by column 

chromatography on SiO2 and/or recrystallized with EtOAc/hexanes.

5.1.2. (R)-N-4′-Phenoxybenzyl 2-N-Acetamido-3-methoxypropionamide ((R)-3)
—Using Method 1, (R)-34 (1.27 g, 3.17 mmol), 4 M HCl (5.6 mL), Et3N (962 mg, 9.51 

mmol), and AcCl (298 mg, 3.80 mmol) gave the desired compound (R)-3 as a white solid 

(981 mg, 90%): Rf = 0.27 (20:1 CH2Cl2/MeOH); mp 147–148 °C; [α]D
24 –16.1° (c 1.0, 

CHCl3); 1H NMR (CDCl3) δ 2.03 (s, CH3C(O)), 3.39 (s, OCH3), 3.46 (dd, J = 4.3, 9.3 Hz, 

CHH′OCH3), 3.81 (dd, J = 4.3, 9.3 Hz, CHH′OCH3), 4.40–4.48 (m, NHCH2), 4.58 (dt, J = 

4.3, 7.0 Hz, CHCH2), 6.49 (d, J = 7.0 Hz, NH), 6.83–6.93 (m, 2 ArH, NH), 6.93–6.97 (m, 

ArH), 7.00 (d, J = 8.2 Hz, 2 ArH), 7.27 (d, J = 8.2 Hz, 2 ArH), 7.32 (m, 2 ArH), addition of 

excess (R)-(−)-mandelic acid to a CDCl3 solution of (R)-3 gave only one signal for the 

acetyl methyl and one signal for the methoxy protons; 13C NMR (CDCl3) δ 23.2 

(C(O)CH3), 43.0 (NHCH2), 52.4 (CHCH2), 59.1 (OCH3), 71.6 (CHCH2), 118.9, 119.0, 

123.3, 128.9, 132.7, 156.7 (ArC), 169.9, 170.3 (2 C(O)), the remaining two aromatic peaks 
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were not detected and are believed to overlap with nearby signals; LRMS (ESI+) 365.1 [M

+Na]+ (calcd for C19H22N2O4Na+ 365.1); HRMS (ESI+) 365.1478 [M+Na]+ (calcd for 

C19H22N2O4Na+ 365.1478); Anal. Calcd. for C19H22N2O4: C, 66.65; H, 6.48; N, 8.18. 

Found: C, 66.41; H, 6.36; N, 8.14.

5.1.3. (R)-N-4′-((3″-Chloro)phenoxy)benzyl 2-N-Acetamido-3-
methoxypropionamide ((R)-5)—Using Method 1, (R)-35 (1.30 g, 2.99 mmol), 4 M HCl 

(4.5 mL), Et3N (908 mg, 8.97 mmol), and AcCl (282 mg, 3.59 mmol) gave the desired 

compound (R)-5 as a white solid (786 mg, 70%): Rf = 0.29 (20:1 CH2Cl2/MeOH); mp 129–

130 °C; [α]D
24 –19.9° (c 1.0, CHCl3); 1H NMR (CDCl3) δ 2.04 (s, CH3C(O)), 3.39 (s, 

OCH3), 3.41–3.49 (m, CHH′OCH3), 3.75–3.86 (m, CHH′OCH3), 4.41–4.52 (m, NHCH2), 

4.52–4.60 (m, CHCH2), 6.46 (d, J = 7.0 Hz, NH), 6.76–6.85 (m, ArH), 6.85–6.91 (m, NH), 

6.94–7.03 (m, 3 ArH), 7.05–7.15 (m, ArH), 7.20–7.26 (m, 2 ArH), 7.30–7.37 (m, ArH), 

addition of excess (R)-(−)-mandelic acid to a CDCl3 solution of (R)-5 gave only one signal 

for the acetyl methyl and one signal for the methoxy protons; 13C NMR (CDCl3) δ 23.1 

(C(O)CH3), 42.9 (NHCH2), 52.5 (CHCH2), 59.1 (OCH3), 71.8 (CHCH2), 116.6, 118.9, 

119.5, 123.3, 129.0, 130.5, 132.7, 133.6, 155.6, 158.2 (ArC), 170.0, 170.3 (C(O)); LRMS 

(ESI+) 377.1 [M+H]+ (calcd for C19H21ClN2O4H+ 377.1); HRMS (ESI+) 377.1269 [M+H]+ 

(calcd for C19H21ClN2O4H+ 377.1268); Anal. Calcd. for C19H21ClN2O4: C, 60.56; H, 5.62; 

Cl, 9.41; N, 7.43. Found: C, 60.69; H, 5.60; Cl, 9.14; N, 7.32.

5.1.4. (R)-N-4′-((3″-Methyl)phenoxy)benzyl 2-N-Acetamido-3-
methoxypropionamide ((R)-6)—Using Method 1, (R)-36 (2.10 g, 5.07 mmol), 4 M HCl 

(7.6 mL), Et3N (1.54 g, 15.2 mmol), and AcCl (447 mg, 6.08 mmol) gave the desired 

compound (R)-6 as a white solid (1.25 g, 69%): Rf = 0.27 (20:1 CH2Cl2/MeOH); mp 110–

111 °C; [α]D
24 –19.2° (c 1.0, CHCl3); 1H NMR (CDCl3) δ 2.05 (s, CH3C(O)), 2.34 (s, 

CH3), 3.39 (s, OCH3), 3.42–3.48 (m, CHH′OCH3), 3.83 (dd, J = 4.3, 9.3 Hz, CHH′OCH3), 

4.40–4.52 (m, NHCH2), 4.54–4.57 (m, CHCH2), 6.42 (d, J = 7.0 Hz, NH), 6.68–6.77 (m, 

ArH), 6.77–6.85 (m, ArH, NH), 6.90–7.00 (m, 3 ArH), 7.18–7.26 (m, 3 ArH), addition of 

excess (R)-(−)-mandelic acid to a CDCl3 solution of (R)-6 gave only one signal for the 

acetyl methyl and one signal for the methoxy protons; 13C NMR (CDCl3) δ 21.3 (ArCH3), 

23.1 (C(O)CH3), 42.9 (NHCH2), 52.4 (CHCH2), 59.0 (OCH3), 71.8 (CHCH2), 115.9, 

118.9, 119.5, 124.1, 128.8, 129.4, 132.5, 139.9, 156.7, 157.0 (ArC), 169.9, 170.3 (C(O)); 

LRMS (ESI+) 357.1 [M+H]+ (calcd for C20H24N2O4H+ 357.1); HRMS (ESI+) 357.1814 [M

+H]+ (calcd for C20H24N2O5H+ 357.1814); Anal. Calcd. for C20H24N2O4: C, 67.40; H, 

6.79; N, 7.86. Found: C, 67.34; H, 6.79; N, 7.85.

5.1.5. (R)-N-4′-((3″-Trifluoromethyl)phenoxy)benzyl2-N-Acetamido-3-
methoxypropionamide ((R)-7)—Using Method 1, (R)-37 (1.65 g, 3.5 mmol), 4 M HCl 

(4.0 mL), Et3N (1.07 mg, 10.6 mmol), AcCl (414 mg, 5.3 mmol) gave the desired 

compound (R)-7 as a white solid (1.23 mg, 85%): Rf = 0.32 (20:1 CH2Cl2/MeOH); mp 115–

117 °C; [α]D
24 –11.1° (c 1.0, CHCl3); 1H NMR (CDCl3) δ 2.05 (s, CH3C(O)), 3.39 (s, 

OCH3), 3.45 (dd, J = 4.3, 9.1 Hz, CHH′OCH3), 3.83 (dd, J = 4.3, 9.1 Hz, CHH′OCH3), 

4.41–4.52 (m, NHCH2), 4.56 (dt, J = 4.3, 6.8 Hz, CHCH2), 6.38–6.50 (m, NH), 6.73–6.85 

(m, NH), 6.95–7.04 (m, 2 ArH), 7.06–7.18 (m, 2 ArH), 7.21–7.26 (m, ArH), 7.29 (s, ArH), 
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7.32–7.48 (m, 2 ArH), addition of excess (R)-(−)-mandelic acid to a CDCl3 solution of (R)-7 
gave only one signal for the acetyl methyl and one signal for the methoxy protons; 13C 

NMR (CDCl3) δ 23.2 (C(O)CH3), 42.9 (NHCH2), 52.4 (CHCH2), 59.1 (OCH3), 71.6 

(CHCH2), 110.0 (ArC), 115.2 (q, J = 4.0 Hz, ArC), 119.5, 119.6 (ArC), 120.2 (q, J = 4.0 

Hz, ArC), 120.7, 121.6, 129.1 (ArC), 131.9 (q, J = 272.0 Hz, CF3), 133.6 (q, J = 32.0 Hz, 

ArC), 155.8 (ArC), 170.0, 170.3 (C(O)); LRMS (ESI+) 411.2 [M+H]+ (calcd for 

C20H21F3N2O4H+ 411.2); HRMS (ESI+) 411.1531 [M+H]+ (calcd for C20H21F3N2O4H+ 

411.1527); Anal. Calcd. for C20H21F3N2O4 • 0.15 H2O: C, 58.53; H, 5.16; F, 13.89; N, 

6.83. Found: C, 58.15; H, 5.20; F, 13.80; N, 6.78.

5.1.6. (R)-N-4′-((3″-Methoxy)phenoxy)benzyl 2-N-Acetamido-3-
methoxypropionamide ((R)-8)—Using Method 1, (R)-38 (1.00 g, 2.32 mmol), 4 M HCl 

(3.5 mL), Et3N (704 mg, 6.96 mmol), and AcCl (218 mg, 2.78 mmol) gave the desired 

compound (R)-8 as a white solid (742 mg, 86%): Rf = 0.27 (20:1 CH2Cl2/MeOH); mp 123–

124 °C; [α]D
24 –18.8° (c 1.0, CHCl3); 1H NMR (CDCl3) δ 2.04 (s, CH3C(O)), 3.39 (s, 

OCH3), 3.45 (t, J = 9.3 Hz, CHH′OCH3), 3.78 (s, OCH3), 3.82 (dd, J = 4.3, 9.3 Hz, CHH
′OCH3), 4.39–4.51 (m, NHCH2), 4.52–4.59 (m, CHCH2), 6.45 (d, J = 7.0 Hz, NH), 6.54–

6.60 (m, 2 ArH), 6.63–6.69 (m, ArH), 6.78 (br s, NH), 6.95–7.01 (m, 2 ArH), 7.19–7.26 (m, 

3 ArH), addition of excess (R)-(−)-mandelic acid to a CDCl3 solution of (R)-8 gave only one 

signal for the acetyl methyl and one signal for the methoxy protons; 13C NMR (CDCl3) δ 

23.2 (C(O)CH3), 43.0 (NHCH2), 52.4 (CHCH2), 55.3 (ArOCH3), 59.1 (OCH3), 71.7 

(CHCH2), 104.9, 108.9, 110.9, 119.2, 128.9, 130.1, 132.8, 156.4, 158.3, 161.0 (ArC), 169.9, 

170.3 (C(O)); LRMS (ESI+) 373.2 [M+H]+ (calcd for C20H24N2O5H+ 373.2); HRMS 

(ESI+) 373.1764 [M+H]+ (calcd for C20H24N2O5H+ 373.1763); Anal. Calcd. for 

C20H24N2O5: C, 64.50; H, 6.50; N, 7.52. Found: C, 64.51; H, 6.43; N, 7.42.

5.1.7. (R)-N-4′-((3″-Trifluoromethoxy)phenoxy)benzyl2-N-Acetamido-3-
methoxypropionamide ((R)-9)—Using Method 1, (R)-39 (1.80 g, 3.72 mmol), 4 M HCl 

(6.0 mL), Et3N (1.13 g, 11.2 mmol), AcCl (350 mg, 4.46 mmol) gave the desired compound 

(R)-9 as a white solid (1.03 g, 65%): Rf = 0.27 (20:1 CH2Cl2/MeOH); mp 108–109 °C; 

[α]D
24 –15.1° (c 1.0, CHCl3); 1H NMR (CDCl3) δ 2.04 (s, (CH3C(O)), 3.39 (s, OCH3), 3.45 

(dd, J = 4.3, 9.3 Hz, CHH′OCH3), 3.82 (dd, J = 4.1, 9.3 Hz, CHH′OCH3), 4.39–4.51 (m, 

NHCH2), 4.53–4.57 (m, CHCH2), 6.43 (d, J = 7.0 Hz, NH), 6.70–6.80 (m, ArH), 6.98 (d, J 

= 8.2 Hz, 2 ArH), 7.08–7.15 (m, ArH), 7.23 (d, J = 8.2 Hz, 2 ArH), 7.30–7.38 (m, 2 ArH), 

addition of excess (R)-(−)-mandelic acid to a CDCl3 solution of (R)-9 gave only one signal 

for the acetyl methyl and one signal for the methoxy protons; 13C NMR (CDCl3) δ 23.2 

(C(O)CH3), 42.9 (NHCH2), 52.5 (CHCH2), 59.1 (OCH3), 71.7 (CHCH2), 111.3, 115.2, 

116.4, 119.6 (ArC), 120.3 (q, J = 257.0 Hz, CF3), 129.1, 130.5, 133.8, 150.1, 155.5, 158.5 

(ArC), 170.0, 170.3 (C(O)); LRMS (ESI+) 427.1 [M+H]+ (calcd for C20H21F3N2O5H+ 

427.1); HRMS (ESI+) 427.1486 [M+H]+ (calcd for C20H21F3N2O5H+427.1481).

5.2. Pharmacology

Compounds were screened under the auspices of the National Institutes of Health’s ASP. 

Experiments were performed in male rodents (albino Carworth Farms No. 1 mice (ip), 

albino Sprague-Dawley rats (ip, po)). Housing, handling, and feeding were in accordance 
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with recommendations contained in the Guide for the Care and Use of Laboratory Animals. 

Anticonvulsant activity was established using the MES test,18 6 Hz,19 and the scMet test,35 

according to previously reported methods.8,11

5.3. Catecholamine A–differentiated (CAD) cells

CAD cells were grown at 37 °C and in 5% CO2 (Sarstedt, Newton, NC) in Ham’s F12/

DMEM (GIBCO, Grand Island, NY), supplemented with 10% fetal bovine serum (Sigma, 

St. Louis, MO) and 1% penicillin/streptomycin (100% stocks, 10,000 U/mL penicillin G 

sodium and 10,000 μg/mL streptomycin sulfate).49 Cells were passaged every 3–5 days at a 

1:5 dilution.

5.4. Cortical neurons

Rat cortical neuron cultures were prepared from cortices dissected from embryonic day 19 

cortices exactly as described.58,59

5.5. Culturing HEK293 cells expressing Nav1.1, Nav1.3, Nav1.5, and Nav1.7

Nav1.1, Nav1.3, Nav1.5, and Nav1.7 stable cells were grown under standard tissue culture 

conditions (5% CO2 at 37 °C) in Dulbecco’s modified Eagle’s medium supplemented with 

10% fetal bovine serum and 1% penicillin/streptomycin (100% stocks, 10,000 U/mL 

penicillin G sodium and 10,000 μg/mL streptomycin sulfate) as described before.9

5.6. Electrophysiology

Whole-cell voltage clamp recordings were performed at room temperature on cortical 

neurons, CAD cells, and HEK293 cells expressing Nav1.x isoforms using an EPC 10 

Amplifier (HEKA Electronics, Lambrecht/Pfalz Germany) as described previously.9,10,20 

Electrodes were fabricated from thin-walled borosilicate glass capillaries (Warner 

Instruments, Hamden, CT) with a P-97 electrode puller (Sutter Instrument, Novato, CA) 

such that final electrode resistances were 1–2 MΩ when filled with internal solutions. The 

internal solution for recording Na+ currents contained (in mM): 110 CsCl, 5 MgSO4, 10 

EGTA, 4 ATP Na2-ATP, 25 HEPES (pH 7.2, 290–310 mOsm/L). The external solution 

contained (in mM): 100 NaCl, 10 tetraethylammonium chloride (TEA-Cl), 1 CaCl2, 1 

CdCl2, 1 MgCl2, 10 D-glucose, 4 4-AP, 0.1 NiCl2, 10 HEPES (pH 7.3, 310–315 mOsm/L). 

Whole-cell capacitance and series resistance were compensated with the amplifier. Series 

resistance error was always compensated to be less than ± 3 mV. Cells were considered for 

analysis only when the access resistance was less than 3 MΩ. Linear leak currents were 

digitally subtracted by −P/4 leak subtraction.

5.7. Data acquisition and analysis

Signals were filtered at 10 kHz and digitized at 10–20 kHz. Analysis was performed using 

Fitmaster and origin8.1 (OriginLab Corporation, MA, USA). For activation curves, 

conductance (G) through sodium channels was calculated using the equation G = I/(Vm − 

Vrev), where Vrev is the reversal potential, Vm is the membrane potential at which the current 

was recorded and I is the peak current. Activation and inactivation curves were fitted to a 

single-phase Boltzmann function G/Gmax = 1/{1+exp[(V−V50)/k]}, where G is the peak 
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conductance, Gmax is the fitted maximal G, V50 is the half-activation voltage, and k is the 

slope factor. Additional details of specific pulse protocols are described in the results text or 

figure legends.

5.8. Statistical analyses

Differences between means were compared by either paired or unpaired, two-tailed 

Student’s t-tests or an analysis of variance (ANOVA), when comparing multiple groups 

(repeated measures whenever possible). If a significant difference was determined by 

ANOVA, then a Dunnett’s or Tukey’s post-hoc test was performed. Data are expressed as 

mean ± SEM, with p<0.05 considered as the level of significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AAA α-aminoamide

ASD antiseizure drug

ASP Anticonvulsant Screening Program

CAD catecholamine A-differentiated

CNS central nervous system

ED50 effective dose (50%)

FAA functionalized amino acid

IBCF isobutyl chloroformate

IC50 concentration at which half of the channels have transitioned to a slow-

inactivated state

ip intraperitoneally

MAC mixed anhydride coupling

MES maximal electroshock seizure
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NINDS National Institutes of Neurological Disorders and Stroke

NMM N-methylmorpholine

NOAEL no observed adverse effect level

OCF3 trifluoromethoxy

PI protective index

po orally

RMP resting membrane potential

SAR structure activity relationship

scMet scMetrazol

TD50 neurological impairment (toxicity, 50%)

TEA-Cl tetraethylammonium chloride

V1/2 voltage of half-maximal (in)activation

VGSC voltage-gated sodium channel
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Figure 1. Generation of chimeric class (R)-A from (R)-l and (S)-2
Box B represents lacosamide ((R)-1) and Box C represents safinamide ((S)-2) derived 

component.
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Figure 2. Effects of (R)-3 - (R)-9 on steady-state slow inactivation state of Na+ currents in 
embryonic cortical neurons
A. Voltage protocol for slow inactivation. Currents were evoked by 5 s prepulses between 

−100 mV and +20 mV (in 10 mV increments), and then fast-inactivated channels were 

allowed to recover for 1000 ms at a hyperpolarized pulse to −70 mV before testing for the 

fraction of available channels for 20 ms at −10 mV. The fraction of channels available at 

−10 mV was analyzed. Representative current traces from cortical neurons in the absence 

(control, 0.1% DMSO) or presence of 10 μM (R)-5 or (R)-8 are illustrated. The black and 

dashed traces represent the currents evoked at −100 and −50 mV, respectively (also 

highlighted in the voltage protocol as a dashed line). B. Summary of steady-state slow 

activation curves for neurons treated with DMSO (control) or 10 μM (R)-5. Significant drug-

induced slow inactivation was evident at voltages more depolarizing that -80 mV in neurons 

treated with (R)-5. C. Summary of the fraction of current available at −50 mV for neurons 

treated with 0.1% DMSO (control) or 10 μM of the indicated compounds. Asterisks (*) 

indicate statistically significant differences in fraction of current available between control 

and the indicated compounds (p < 0. 05, Student’s t-test). Data are from 5–8 cells per 

condition.
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Figure 3. Effects of (R)-3 - (R)-9 on fast inactivation and steady-state activation states of Na+ 

currents in embryonic cortical neurons
Voltage protocol for fast inactivation (top left) and activation (top right). Representative 

Boltzmann fits for steady-state fast inactivation and activation for cortical neurons treated 

with 0.1% DMSO (control, bolded curves) and the indicated compounds are shown. Values 

for V1/2, the voltage of half-maximal inactivation and activation and the slope factors (k) 

were derived from Boltzmann distribution fits to the individual recordings and averaged to 

determine the mean (± SEM) voltage dependence of steady-state inactivation and activation, 

respectively. No significant differences were observed between control and fast inactivation 

or activation other than for (R)-7 and (R)-8 for any of the conditions tested (p > 0.05, one-

way ANOVA). Data are from 5–7 cells per condition.
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Figure 4. Effects of (R)-3 - (R)-9 on frequency (use)-dependent block of Na+ currents in 
embryonic cortical neurons
A. The frequency (use)-dependence of block was examined by holding cells at the 

hyperpolarized potential of −80 mV and evoking currents at 10 Hz by 20 ms test pulses to 

−10 mV. B. Representative overlaid traces are illustrated by pulses 1 and 30 for control 

(0.1% DMSO) and in the presence of (R)-7 (10 μM). C. Summary of the maximal decrement 

in current amplitude observed at the end of the 30-pulse train for control or 10 μM of the 

indicated compounds. None of the compounds exhibited any degree of frequency (use)-

dependence (p > 0.05, one-way ANOVA with Dunnett’s post-hoc test). Data are from 4–6 

cells per condition.
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Figure 5. Effects of (R)-9 on electrophysiological properties of Na+ currents in CAD cells
A. Summary of steady-state slow activation curves for CAD cells treated with 0.1% DMSO 

(control) or the indicated concentrations of (R)-9. Significant (R)-9-induced slow 

inactivation was evident; the starting voltages at which the extent of slow inactivation was 

significantly different from control are indicated by asterisks (*, p< 0.05, Student’s t-test 

versus control). B. Representative Boltzmann fits for steady-state fast inactivation and 

activation for CAD cells treated with 0.1% DMSO (control) and various concentrations of 

(R)-9 are shown. Values for V1/2, the voltage of half-maximal inactivation and activation 

and the slope factors (k) were derived from Boltzmann distribution fits to the individual 

recordings and averaged to determine the mean (± SEM) voltage dependence of steady-state 

inactivation and activation, respectively. Statistically significant differences between control 

and fast inactivation for 10 μM (R)-9 are indicated by the asterisk (*, p < 0.05, one-way 

ANOVA). C. Summary of the maximal decrement in current amplitude observed at the end 

of the 30-pulse train for control or 1,10, or 30 μM of (R)-9. The two highest concentrations 

of (R)-9 induced significant frequency (use)-dependence compared to control (p > 0.05, one-

way ANOVA with Dunnett’s post-hoc test). Data are from 4–10 cells per condition as 

indicated.
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Figure 6. Analysis of (R)-9 on electrophysiological properties of Nav1.1, Nav1.3, Nav1.7, and 
Nav1.5 currents in HEK293 cells
A, K. Voltage protocols for examining slow inactivation, fast inactivation, steady-state 

activation and frequency (use)-dependent block. Nav1.5 uses hyperpolarized protocols due 

to differences in the hyperpolarized activation typical for this isoform. B, E, H, L. Summary 

of steady-state slow activation curves for HEK293 cells treated with 0.1% DMSO (control) 

or 10 μM (R)-9. Insets illustrate representative current traces from HEK293 cells in the 

absence (control, 0.1% DMSO) or presence of 10 μM (R)-9. Traces represent the currents 

evoked at −120 (black or green) and −50 mV (red, purple, orange, or cyan). C, F, I, M. 
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Representative Boltzmann fits for steady-state fast inactivation and activation for HEK293 

cells treated with 0.1% DMSO (control) or 10 μM of (R)-9. Values for V1/2, the voltage of 

half-maximal inactivation and activation, and the slope factors (k) were derived from 

Boltzmann distribution fits to the individual recordings and were averaged to determine the 

mean (± SEM) voltage dependence of steady-state inactivation and activation, respectively. 

(R)-9 significantly shifted the V1/2 of fast inactivation for Nav1.7 by ~20.2 mV in the 

hyperpolarizing direction (*, p< 0.05, Student’s t-test versus control) while the V1/2s for 

Nav1.1, Nav1.3, and Nav1.5 were not affected. D, G, J, N. Summary of average frequency 

(use)-dependent decrease in current amplitude over time (± SEM) produced by control 

(0.1% DMSO) or 10 μM (R)-9. Data are from 5–6 cells per condition.
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Scheme 1. 
Synthesis of (R)-3 and (R)-5 - (R)-9
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