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SUMMARY

We investigate diagnostic measures for assessing the influence of observations and model mis-
specification on the Cox regression model when there are missing covariate data. Our diagnos-
tics include case-deletion measures, conditional martingale residuals, and score residuals. The
Q-distance is introduced to examine the effects of deleting individual observations on the esti-
mates of finite- and infinite-dimensional parameters. Conditional martingale residuals are used
to construct goodness-of-fit statistics for testing misspecification of the model assumptions. A
resampling method is developed to approximate the p-values of the goodness-of-fit statistics.
We conduct simulation studies to evaluate our methods, and analyse a real dataset to illustrate
their use.

Some key words: Case-deletion measure; Conditional martingale residual; Goodness-of-fit statistic; Model
misspecification.

1. INTRODUCTION

In surveys, clinical trials and longitudinal studies, complete data are often not available for
every subject. There is a very large literature on statistical methods for missing data. These meth-
ods, however, depend strongly on the missing-data mechanism and on other distributional and
modelling assumptions, and can be very sensitive to them. For this reason, analyses are carried
out to check the sensitivity of the parameter estimates to assumptions. See, for example, Verbeke
et al. (2001), Jansen et al. (2003), Troxel et al. (2004), Copas & Eguchi (2005) and Daniels &
Hogan (2008).

Diagnostic measures such as martingale residuals and Cook’s distance have been widely used
to identify influential observations and to test for model misspecification in survival models
(Storer & Crowley, 1985; Pettitt & Daud, 1989; Therneau et al., 1990; Escobar & Meeker, 1992;
Henderson & Oman, 1993; Lin et al., 1993; Barlow, 1997; Marzec & Marzec, 1997; Klein &
Moeschberger, 2003; Martinussen & Scheike, 2006). For instance, Pettitt & Daud (1989) applied
the local influence method of Cook (1986) to the proportional hazards model and derived sev-
eral useful diagnostics. Martingale residuals have been widely used to construct goodness-of-fit
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statistics to examine the functional form of a covariate and the proportional hazards assumption
(Barlow & Prentice, 1988; Therneau et al., 1990; Lin et al., 1993). However, to the best of our
knowledge, almost no work exists on developing diagnostic measures in the Cox regression
model (Cox, 1972, 1975) with missing covariate data, except for Scheike et al. (2010).

2. COX REGRESSION WITH MISSING COVARIATES

2·1. Model set-up

Consider n observations (x1, z1, r1, y1, δ1), . . . , (xn, zn, rn, yn, δn) which are independent
realizations of (X, Z , R, Y,�), where Y = T ∧ C is the minimum of the censoring time C and
the survival time T , �= 1(T � Y ), which equals 1 if the observed event is a failure and 0 oth-
erwise, and each X is a p1 × 1 vector of completely observed covariates; each Z = (Zm, Zo)

is a p2 × 1 vector of partially observed covariates, where Zm and Zo denote the missing and
observed components of Z , respectively. Here R is a p2 × 1 random vector whose kth compo-
nent, Rk , equals 1 if Zk is observed and 0 if Zk is missing, where Zk denotes the kth component
of Z . Under a general missing-data mechanism, it is common to specify the joint density of
(X, Z , R, Y,�) as a product of three conditional densities as follows:

p(X, Z , R, Y,�)= p(Y,� | X, Z) p(X, Z) p(R | X, Z , Y,�). (1)

The conditional density of (Y,�)= (yi , δi ) given vi = (xi , zi ) is assumed to be

p(yi , δi | vi )∝ λt (yi | vi )
δi St (yi | vi )λc(yi | vi )

1−δi Sc(yi | vi ) (i = 1, . . . , n), (2)

where λt (·) and St (·) are the hazard and survivor functions of the failure time and λc(·) and Sc(·)
are the hazard and survivor functions of the censoring time. We also assume the Cox model for
the failure time,

λt (yi | vi )= h0(yi ) exp(vT
i β), St (yi | vi )= exp{− exp(vT

i β)H0(yi )}, (3)

where h0(y) is a baseline hazard function and H0(y)=
∫ y

0 h0(u) du.
We need to specify a joint distribution for the covariate vector V = (X, Z). It is assumed that

p(vi ;α)∝ p(zi | xi ;α) p(xi ), where α contains all the unknown parameters in p(vi ;α). Since
the xi are fully observed, it is not necessary to specify a distribution for X . We follow Lipsitz &
Ibrahim (1996) to model p(zi | xi ;α) as the product of one-dimensional conditional distributions.
We need to consider different ways of modelling the missing-data mechanism p(ri | vi , yi , δi ; ξ)
(Ibrahim et al., 1999), where ξ contains all the unknown parameters. It is common to use logistic
regression models for the binary variables in ri .

We calculate the conditional distribution of Zm = zm,i given Do = do,i as

p(zm,i | do,i )

= λt (yi | vi )
δi St (yi | vi )λc(yi | vi )

1−δi Sc(yi | vi )p(zi | xi ;α) p(ri | vi , yi , δi ; ξ)∫
λt (yi | vi )δi St (yi | vi )λc(yi | vi )1−δi Sc(yi | vi )p(zi | xi ;α) p(ri | vi , yi , δi ; ξ) dzm,i

,

where do,i = (xi , zo,i , ri , yi , δi ). If the censoring time does not depend on the missing data and
all the unknown parameters, then we can drop the hazard and survivor functions of the censoring
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times from the model. Moreover, if the missing data are missing at random, then

p(zm,i | do,i )= λt (yi | vi )
δi St (yi | vi )p(zi | xi ;α)∫

λt (yi | vi )δi St (yi | vi )(zi | xi ;α) dzm,i
.

The expectation-maximization algorithm is a popular technique for obtaining the maxi-
mum likelihood estimates of η= {h0(·), γ }, denoted by η̂= {ĥ0(·), γ̂ }, in the Cox regression
model with missing covariate data (Chen & Little, 1999; Herring & Ibrahim, 2001), where
γ = (βT, αT, ξ T)T. Let Dc and Do denote the complete and observed data, respectively. We
calculate the nonparametric maximum likelihood estimator of H0(·), which is a step func-
tion with jumps only at the yi such that δi = 1 (i = 1, . . . , n). Without loss of generality,
we assume that y1, . . . , yd are d distinct failure times. At the sth step of the expectation-
maximization algorithm, given η(s), the expectation step involves evaluating the Q-function
Q(η | η(s))= E{Lc(η | Dc) | Do, η

(s)}, which has the form

Q(η | η(s))=
n∑

i=1

∫
log
[

p{yi , δi | xi , zi ;β, h0(·)}
]

p(zm,i | xi , zo,i , ri , yi , δi ; η(s)) dzm,i

+
n∑

i=1

∫
log{p(xi , zi ;α)} p(zm,i | xi , zo,i , ri , yi , δi ; η(s)) dzm,i

+
n∑

i=1

∫
log{p(ri | xi , zi , yi , δi ; ξ)} p(zm,i | xi , zo,i , ri , yi , δi ; η(s)) dzm,i

= Q1{β, h0(·) | η(s)} + Q2(α | η(s))+ Q3(ξ | η(s)), (4)

where Lc(η | Dc)= log p(Dc; η) is the complete-data loglikelihood function. The maximization
step consists of maximizing Q1{β, h0(·) | η(s)}, Q2(α | η(s)) and Q3(ξ | η(s)) separately (Chen
& Little, 1999; Herring & Ibrahim, 2001).

Our main interest is in making valid inferences about β and H0(y), and this requires the correct
specification of all three levels of the assumptions in (1); otherwise there may be serious bias in
estimating β and H0(·). Therefore, it is crucial to assess the potential misspecification of all the
assumptions in (1).

2·2. Assumptions

The following assumptions are needed to facilitate the development of our methods, although
they may not be the weakest possible conditions.

Assumption 1. The Ci and Ti given V = vi are independent, and the hazard and survivor
functions of Ci do not depend on zm,i and η.

Assumption 2. The true value (α∗, β∗, ξ∗) of (α, β, ξ) is an interior point of the compact
parameter space of (α, β, ξ).

Assumption 3. The functions log p(v;α) and log p(r | x, z, y, δ; ξ) are twice continuously
differentiable in γ , and the absolute values of their first- and second-order derivatives are dom-
inated by a function B(d). For each i , B(di ) is integrable such that supη E{B(di )

2 | Do; η} =
Op(1). Moreover, v is bounded, p(v;α) is uniformly bounded and identifiable, and var(v) and∫ {−∂2

α log p(v;α∗)}p(v;α∗) dv are positive definite.
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Assumption 4. Let τ be a finite time-point at which any individual still under study is cen-
sored. Assume that pr(Y � τ) > 0. The function H0(t)=

∫ t
0 h0(s) ds is an absolutely continuous

nondecreasing function such that H0(0)= 0 and H0(τ ) <∞. Moreover, h0(s)� 0 is twice con-
tinuously differentiable.

Assumption 5. The missing covariate data are missing at random, i.e., pr(r | x, z, y, δ)=
pr(r | x, zo, y, δ). In addition, the fully observed complete covariates can be observed for all pos-
sible covariate values; that is, pr(r = 1p2 | x, z, y, δ) > 0 holds for almost all (x, z) and almost
all y ∈ [t1, t2] such that H0(t1) |= H0(t2), where 1p2 is a p2 × 1 vector of ones.

Assumption 6. The probability function Fϕ(dt) dϕ is absolutely continuous with respect to
the Lebesgue measure on = {ϕ ∈ R

p1 : ϕTϕ = 1} × [−∞,∞].

Assumption 7. As n → ∞, for any sequences {(ϕn, un, tn)} and {(ϕn,1, un,1, tn,1)},
ρn(ϕn, un, tn;ϕn,1, un,1, tn,1) converges to zero when ρ(ϕn, un, tn;ϕn,1, un,1, tn,1)→ 0.
Moreover, ρ(ϕ, u, t;ϕ1, u1, t1) is the limit of ρn(ϕn, un, tn;ϕn,1, un,1, tn,1), which is defined as(

n−1
n∑

i=1

E
[{

Ri (tn)1(ϕ
T
nxi � un)− Ri (tn,1)1(ϕ

T
n,1xi � un,1)

}2
])1/2

,

where Ri (t) is a conditional martingale residual to be introduced later.

Assumption 8. For any small a0 > 0,

sup
(α,ϕ,t)∈A×

pr
[−δ < {vi (α)

Tϕ − t}/Vi (xi , zo,i ) < δ
]
� C0 δ

c1,

where C0 and c1 are two positive scalars, A= {α : ‖α − α∗‖ � a0}, and Vi (xi , zo,i )
2 =

supα∈A ‖∂αvi (α)‖2 + supα∈A ‖vi (α)‖2 + 1. Moreover,

vi (α̂)

= {xi , ri1zi1 + (1 − ri1)E(zi1 | xi , zo,i ; α̂), . . . , rip2 zip2 + (1 − rip2)E(zip2 | xi , zo,i ; α̂)
}T
.

Assumption 9. Let λmin(·) be the smallest eigenvalue of a matrix. For a fixed ε0 > 0,

n−1

[
Q{γ̂ , ĥ0(·) | η̂} − sup

‖γ−γ̂ ‖=ε0

Q{γ, ĥ0(·) | η̂}
]

= C0 + op(1),

sup
‖γ−γ̂ ‖�ε0

∥∥n−1∂2
γ Q{γ, ĥ0(·) | η̂} − A(γ )

∥∥= op(1),

where min‖γ−γ̂ ‖�ε0 λmin{A(γ )2}> 0 and C0 is a positive scalar.

Assumptions 1–5 have been used to establish consistency and asymptotic normality of the
nonparametric maximum likelihood estimator in a proportional hazards regression model with
covariates missing at random (Chen & Little, 1999). Assumption 6 is required to establish the
asymptotic distributions of the Cramer–von Mises test statistics introduced below. Assumption 7
is needed in order to invoke the central limit theory for sums of independent but not identi-
cally distributed stochastic processes (Pollard, 1990; van der Vaart & Wellner, 1996; Kosorok,
2007). Assumption 8 is required to invoke Ossiander’s entropy conditions (Ossiander, 1987;
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Andrews, 1994). Assumption 9 is needed to establish the asymptotic accuracy of approximat-
ing case-deletion measures introduced below.

3. DIAGNOSTIC MEASURES

3·1. Case-deletion influence measures

To quantify the effects of deleting the i th observation on the maximum likelihood
estimate η̂ of η, it is common to compute the maximum likelihood estimate of η for
a subsample Dc[i], obtained upon deleting the i th observation di = (yi , δi , vi , ri ) from
Dc = {Do, Dm} = {(y j , δ j , c j , r j ) : j = 1, . . . , n}, where Do and Dm denote the observed
and missing data, respectively. However, it is computationally intensive to directly maxi-
mize the likelihood function based on the subsample Dc[i] for each i . Instead, we define
Q[i](η | η̂) as Q[i](η | η̂)= E{Lc(η | Dc[i]) | Do; η̂}, where Lc(η | Dc[i]) denotes the complete-
data loglikelihood function for Dc[i] and the expectation is taken with respect to p(Dm |
Do; η̂). Similar to (4), Q[i](η | η̂) equals the sum of Q1[i]{β, h0(·) | η̂} =∑ j |= i E(log[p{y j , δ j |
x j , z j ;β, h0(·)}] | Do; η̂), Q2[i](α | η̂)=∑ j |= i E[log{p(x j , z j ;α)} | Do; η̂] and Q3[i](ξ | η̂)=∑

j |= i E[log{p(r j | x j , z j , y j , δ j ; ξ)} | Do; η̂].
Let ω= (ω1, . . . , ωn)

T with ωk � 0 for all k. We define Q1{ω, β, h0(·) | η̂} to be

n∑
k=1

ωkδk{log h0(yk)+ E(cT
kβ | Do; η̂)} −

n∑
k=1

ωk H0(yk)E{exp(cT
kβ) | Do; η̂}. (5)

First, by substituting ĥ0(·) into (5), we can obtain Q1{ω, β, ĥ0(·)} as

n∑
k=1

δkωk E(cT
kβ | Do; η̂)−

n∑
k=1

ωk Ĥ0(yk)E{exp(cT
kβ) | Do; η̂}.

We calculate β̂(ω)= arg maxβ Q1{ω, β, ĥ0(·)} and then maximize Q1{ω, β̂(ω), h0(·)} with
respect to h0(·), leading to

ĥ0(yk | β, ω)= δkωk∑
j∈Rk

ω j E{exp(cT
jβ) | Do; η̂} ,

where Rk = { j : y j � yk}. If ω= 1n is an n × 1 vector of ones, then β̂(1n)= β̂ and ĥ0(yk)=
ĥ0(yk | β̂, 1n). Furthermore, if ω= 1n − ei , then we define β̂[i] = β̂(1n − ei ) and ĥ0[i](yk)=
ĥ0(yk | β̂[i], 1n − ei ). Similarly, we define α̂[i] and ξ̂[i] as the maximizers of Q2[i](α | η̂) and
Q3[i](ξ | η̂), respectively. Now we can calculate a one-step approximation η̂1

[i] = {ĥ1
0[i](·),

β̂1
[i], α̂

1
[i], ξ̂

1
[i]} of η̂[i] = {ĥ0[i](·), β̂[i], α̂[i], ξ̂[i]} as below. We obtain the following theorem, whose

proof is given in the Supplementary Material.

THEOREM 1. Under Assumptions 3 and 9,

β̂1
[i] = β̂ − [−∂2

βQ1{1n, β̂, ĥ0(·)}]−1∂2
βωi

Q1{1n, β̂, ĥ0(·)} = β̂[i] + op(n
−1),

α̂1
[i] = α̂ − {−∂2

αQ2(α̂ | η̂)}−1 E{∂α log p(vi ; α̂) | Do; η̂} = α̂[i] + op(n
−1),

ξ̂1
[i] = ξ̂ − {−∂2

ξ Q3(ξ̂ | η̂)}−1 E{∂ξ log p(ri | do,i ; ξ̂ ) | Do; η̂} = ξ̂[i] + op(n
−1),

ĥ1
0[i](yk)= ĥ0(yk | β̂1

[i], 1n − ei )= ĥ0[i](yk)+ op(n
−1).

(6)
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Theorem 1 gives the one-step approximation η̂1
[i] of η̂[i] for each major component of η. It is

straightforward to compute η̂1
[i] using (6).

We introduce a Q-distance for the finite-dimensional parameter γ in the presence of an
infinite-dimensional parameter h0(·) to quantify the distance between the maximum likelihood
estimates of γ with and without the i th observation having been deleted from the full sample
(Cook & Weisberg, 1982; Zhu et al., 2001). The Q-distance for the i th subject is defined as

QDi (M)= (γ̂ 1
[i] − γ̂ )T M(γ̂ 1

[i] − γ̂ ),

where M is a positive-definite matrix. According to (4), we assume that −M =
diag[∂2

βQ1{1n, β̂, ĥ0(·)}, ∂2
αQ2(α̂ | η̂), ∂2

ξ Q3(ξ̂ | η̂)]. Thus, QDi can be decomposed into a sum
of three diagnostic measures based on (1)–(3); that is, QDi = QDi,1 + QDi,2 + QDi,3 where

QDi,1 = [∂2
ωiβ

Q1{1n, β̂, ĥ0(·)}]T[−∂2
βQ1{1n, β̂, ĥ0(·)}]−1∂2

βωi
Q1{1n, β̂, ĥ0(·)},

QDi,2 = E{∂α log p(vi ; α̂) | Do; η̂}T{−∂2
αQ2(α̂ | η̂)}−1 E{∂α log p(vi ; α̂) | Do; η̂},

QDi,3 = E{∂ξ log p(ri | do,i ; ξ̂ ) | Do; η̂}T{−∂2
ξ Q3(ξ̂ | η̂)}−1 E{∂ξ log p(ri | do,i ; ξ̂ ) | Do; η̂}.

Intuitively, QDi,1, QDi,2 and QDi,3 are associated with the effects of removing the i th observation
on the assumptions of p{yi , δi | ci ;β, h0(·)}, p(vi ;α) and p(ri | vi , yi , δi ; ξ). If QDi is large, then
the i th observation is influential. Similarly, we can quantify the effects of deleting two or more
observations on η̂ (Cook & Weisberg, 1982), but for simplicity we omit those details here.

We also define a distance function of ĥ0(·) and ĥ1
0[i](·) to quantify the effect of deleting the

i th observation on the infinite-dimensional parameter h0(·). Let ‖·‖∞ denote the sup-norm for
functions. Specifically, we define

QDi,h0(·) = max
1� j�n

∣∣∣∣∣
n∑

k=1

Yk(y j )
{

ĥ0(yk)− ĥ1
0[i](yk)

}∣∣∣∣∣= ∥∥Ĥ0 − Ĥ1
0[i]

∥∥∞,

where Yk(u)= 1(yk � u), Ĥ0(y)=
∑

y j �y ĥ0(y j ) and Ĥ1
0[i](y)=

∑
y j �y ĥ1

0[i](y j ).
A challenging problem is the quantification of the magnitude of these case-deletion measures

for detecting influential observations. A common approach is to sort these measures for all obser-
vations and then classify observations with larger measures as influential. However, this method
may not identify truly influential observations, and it does not reveal why an observation is influ-
ential. To address this issue, we introduce a detection probability of being influential for each
observation and for any case-deletion measure. The key idea is to measure the standardized influ-
ential level of each observation for a case-deletion measure under the assumption that (1) is the
true data generator. We compute the detection probabilities of all observations based on the fitted
model p(di ; η̂) as follows. First, we use a semi-bootstrap method, described in the Supplemen-
tary Material, to generate multiple bootstrapped datasets. Then, for each bootstrapped dataset,
we calculate all of the case-deletion diagnostic measures across all observations. For each obser-
vation, the detection probability is calculated as the proportion of the bootstrapped case-deletion
diagnostic measures that are smaller than the corresponding observed case-deletion diagnostic
measure. Observations with large detection probabilities, say 0·95 or greater, can be regarded as
influential.
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3·2. Residuals

We consider two types of residuals: conditional martingale residuals and score residuals for
the Cox regression model with missing covariates. When there are no missing covariates, the
martingale residual for the i th observation at time t is defined as

Mi (t)= Ni (t)−
∫ t

0
Yi (u) exp(vT

i β)h0(u) du,

where Ni (t)= δi 1(Ti � t). However, since zm,i is missing, Mi (t) cannot be directly calculated for
cases with missing covariates. Although there are many ways of integrating out zm,i , we define
a conditional martingale residual for the i th observation at t by

Ri (t)= Ni (t)−
∫ t

0
Yi (u)E{exp(vT

i β) | do,i }h0(u) du (i = 1, . . . , n), (7)

where do,i = (yi , δi , xi , zo,i , ri ) and the expectation is taken with respect to p(zm,i | do,i ; η). If
there are no missing covariates in zi , then Ri (t) reduces to Mi (t). Thus, Ri (t) can be regarded
as a generalization of the martingale residuals used in Cox regression. Computationally, the con-
ditional expectation in (7) can easily be calculated using Markov chain Monte Carlo methods
(Chen et al., 2000). Then Ri (t) evaluated at η̂ is given by

R̂i (t)= Ni (t)−
∫ t

0
Yi (u)E{exp(vT

i β̂) | do,i ; η̂}ĥ0(u) du.

In particular, when t = τ = sup{u : pr{Y (u)= 1}> 0}, i.e., the end time of the study, we can
obtain the corresponding conditional martingale residual as follows:

R̂i = R̂i (τ )= δi − r̂i = δi −
∫ yi

0
E{exp(vT

i β̂) | do,i ; η̂}ĥ0(u) du,

where r̂i is a generalization of the Cox–Snell residual in the case of missing covariates (Cox &
Snell, 1968).

Turning to the score residual, we define S(r)(β, u; η̂)= n−1∑n
i=1 Yi (u)E{exp(vT

i β)v
⊗r
i |

Do; η̂} for r = 0, 1, 2, where a⊗0 = 1, a⊗1 = a and a⊗2 = a aT for a vector a. The score function
associated with β is

∂βQ(η̂ | η̂)=
n∑

i=1

[
δi E(vi | do,i ; η̂)− Ĥ0(yi )E{vi exp(vT

i β̂) | do,i ; η̂}
]

=
n∑

i=1

∫ ∞

0
Ui (u, η̂) dNi (u),

where Ui (u; η)= {Ui,1(u; η)T,Ui,2(u; η)T}T = E(vi | do,i ; η)− S(1)(β, u; η)/S(0)(β, u; η),with
Ui,1(u; η) denoting the first p1 components of Ui (u; η) associated with xi . Further, we can define
a score process for β,

U (t | η)= {U1(t | η)T,U2(t | η)T}T =
n∑

i=1

∫ t

0
Ui (u; η) dNi (u),
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where U1(t | η) denotes the first p1 components of U (t | η) associated with xi . Finally, we have
0 = ∂βQ{β̂, ĥ0(·) | η̂} = U (τ | η̂)=∑n

i=1 Ŝi , where Ŝi = (ŝi1, . . . , ŝi p) is given by(
Ŝi,1

Ŝi,2

)
= δi

(
xi

E(zi | do,i ; η̂)
)

− Ĥ0(yi ) exp(xT
i β̂1)

(
xi E{exp(zT

i β̂2) | do,i ; η̂}
E{zi exp(zT

i β̂2) | do,i ; η̂}

)
,

with Ŝi,1 being the first p1 × 1 subvector of Ŝi associated with β1. Score residuals are useful
tools in detecting influential observations and in assessing model assumptions (Therneau et al.,
1990). As with the case-deletion diagnostic measures, we can use the semi-bootstrap method to
generate random samples and then calculate the detection probabilities of |ŝik | for k = 1, . . . , p.

We study several properties of the proposed conditional martingale residuals and score resid-
uals. Through a better understanding of the properties of these residuals, we can develop both
formal and informal diagnostic tools to examine the adequacy of the Cox regression model with
missing covariates.

THEOREM 2. Suppose that Assumption 3 holds. Then:

(i) E{Ri (t) | xi , zo,i } = E{Ri (t) | xi } = E{Ri (t)} = 0;
(ii) in general, E{Ri (t) | xi , zo,i , ri } may not equal zero; but if p(ri | vi , yi , δi , ξ) is independent

of yi and δi , then E{Ri (t) | xi , zo,i , ri } = 0;
(iii) if the missing data are missing at random, then

Ri (t)= Ni (t)−
∫ t

0
Yi (u)E

[
exp{(xT

i , zT
i )β} | xi , zo,i , δi , yi

]
h0(u) du

and Ri (t) is independent of ξ ; moreover, for any t,
∑n

i=1 R̂i (t)= 0;
(iv) U1(t | η)=∑n

i=1

∫ t
0 Ui,1(u; η) d{Ri (u)};

(v) U2(t | η) |=∑n
i=1

∫ t
0 Ui,2(u; η) d{Ri (u)}.

Theorem 2 characterizes the behaviour of Ri (t) and R̂i (t). First, E{Ri (t)}, E{Ri (t) | xi } and
E{Ri (t) | xi , zo,i } are unbiased, whereas E{Ri (t) | xi , zo,i , ri } is biased. Second, the missing-
data indicators can be dropped from Ri (t) under the missing-at-random assumption. Third, the
conditional martingale residuals share some properties with ordinary residuals in linear models
and martingale residuals in the Cox regression model. Fourth, when there are missing covariates,
we cannot replace Ni (t) by Ri (t) in the score residual process.

3·3. Conditional residual process without incorporating missing data

We use the conditional martingale residuals to develop test statistics to check model assump-
tions in the Cox regression model with missing covariates. These statistics are designed to
test the null hypothesis H (0)

0 : E{M(t) | x, z} = 0 for some η and all t against the alternative

H (0)
1 : E{M(t) | x, z} |= 0 for all η and some t . However, since some components of z are miss-

ing, we may wish to test the equality h(t | x)= E{R(t) | x} = 0 instead; so we test

H (1)
0 : h(t | x)= 0 for some η and all t,

H (1)
1 : h(t | x) |= 0 for all η and some t.

Note that h(t | x)= 0 is only a necessary condition for E{M(t) | x, z} = 0, so accepting
h(t | x)= 0 does not imply acceptance of H (0)

0 .
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We can construct statistics for testing H (1)
0 as follows. Using the same reasoning as in Escan-

ciano (2006) and Zhu et al. (2009), we can show that H (1)
0 is equivalent to testing E{R(t)1(xTϕ �

u)} = 0 for almost every (ϕ, u) and all t ∈ [0, τ ]. Thus, we may define a stochastic process

I1(ϕ, u, t; η)= n−1/2
n∑

i=1

1(xT
i ϕ � u)Ri (t),

where (ϕ, u) ∈ and t ∈ [0, τ ]. We regard I1(ϕ, u, t; η) as a stochastic process indexed by
(ϕ, u, t) and use it to construct a Cramer–von Mises test statistic

CM1(t)=
∫


∣∣I1(ϕ, u, t; η̂)∣∣2 Fn,ϕ(du) dϕ,

where Fn,ϕ(u) is the empirical distribution function of {xT
i ϕ : i = 1, . . . , n}. Large values of

CM1(t) lead to rejection of H (1)
0 . Compared with other test statistics based on martingale residual

processes (Lin et al., 1993), CM1(t) avoids both numerical integration in high dimensions and
high-dimensional maximization.

THEOREM 3. Under Assumptions 1–7, I1(ϕ, u, t; η̂) is asymptotically equivalent to
the sum of I1(ϕ, u, t; η∗) and n1/2[h1(ϕ, u, t; η∗)T(β̂ − β∗)+ h2(ϕ, u, t; η∗)T(α̂ − α∗)+∫ τ

0 h3(ϕ, u, t; η∗)(s) d{Ĥ0(s)− H0(s)}], where h1(ϕ, u, t; η∗), h2(ϕ, u, t; η∗) and h3(ϕ, u,
t; η∗)(s) are defined in the Supplementary Material. Moreover, as n → ∞, I1(ϕ, u, t; η̂)
converges in distribution to a zero-mean Gaussian process G1(ϕ, u, t) and CM1(t) converges
in distribution to

∫


|G1(ϕ, u, t)|2 Fϕ(du) dϕ.

Theorem 3 characterizes the asymptotic null distributions of I1(ϕ, u, t; η̂) and CM1(t). Based
on this result, we can develop a resampling method to approximate the null distribution of CM1.
Let {v(b)i : i = 1, . . . , n} be a random sample from the N (0, 1) distribution. We calculate

I1(ϕ, u, t; η̂)(b) = n−1/2
n∑

i=1

v
(b)
i

{
R̂i (t)1(x

T
i ϕ � u)+ n�̂n(ϕ, u, t)T J−1

n ψn,i
}
,

whereψn,i denotes the score vector for (β, α) and the ĥ0(yi ) for all uncensored observations, and
�̂n(ϕ, u, t) includes h1(ϕ, u, t; η̂), h2(ϕ, u, t; η̂) and all h3(ϕ, u, t; η̂)(yi ) for δi = 1. We then
calculate the test statistics {CM1(t)(b) : b = 1, . . . , B} and approximate the p-value of CM1(t).
Theoretically, we can show that this resampling method is asymptotically valid.

COROLLARY 1. Suppose that Assumptions 1–7 hold. As n → ∞, conditional on the observed
data, I1(ϕ, u, t; η̂)(q) converges weakly to the same Gaussian process as I1(ϕ, u, t; η̂).

3·4. Conditional residual process incorporating missing data

Here we consider using the missing covariates zi to improve the power of I1(ϕ, u, t; η) in
detecting potential model misspecification. Since 1(xTϕ � u) in I1(ϕ, u, t; η) does not involve
the missing covariates z, we may lose power in detecting the misspecification of H (0)

0 in the
missing-covariate space. In particular, if the fraction of missing covariates is small, then it is
very inefficient to drop all the information in z.



916 H. ZHU, J. G. IBRAHIM AND M.-H. CHEN

We first suppose that p(ri | xi , zi , yi , δi ; ξ) is independent of yi and δi . It can be shown that

E{Ri (t)1(v̂
T
i ϕ̃ � u) | xi , zo,i } = 0 (i = 1, . . . , n),

where (ϕ̃, u) ∈ ̃= {ϕ̃ ∈ R
p1+p2 : ϕ̃Tϕ̃ = 1} × [−∞,∞] and v̂i = {xi , zo,i , zm,i (α̂)}. We are thus

able to incorporate the additional information from zo,i into the indicator function 1(v̂T
i ϕ̃ � t).

We propose the stochastic process

I2(ϕ̃, u, t; η)= n−1/2
n∑

i=1

1(v̂T
i ϕ̃ � u)Ri (t).

Plotting I2(ϕ̃, u, t; η̂) against t for a specific ϕ̃ provides an exploratory tool for detecting the form
of misspecification of assumption (1). Then we introduce the corresponding Cramer–von Mises
test statistic based on I2(ϕ̃, u, t; η̂), denoted by CM2. Large values of CM2 lead to rejection of the
hypothesis that E{Ri (t) | xi , zo,i , ri } = 0, which may be caused either by dependence of p(ri |
xi , zi , yi , δi ; ξ) on (yi , δi ) or by E{R(t) | x, z} |= 0.

Second, we develop a general strategy for incorporating the information from the missing
data. We investigate whether we can use the imputed missing covariate data v̂i when p(ri |
xi , zi , yi , δi , ξ) depends on yi and δi . It can be shown that

E{Ri (t)1(v̂
T
i ϕ̃ � t) | xi , zo,i } = E[E{Ri (t) | xi , zo,i , ri }1(v̂T

i ϕ̃ � t) | xi , zo,i ] |= 0,

which arises from the facts that vi (α) is a function of vi and ri and that E{Ri (t) | xi , zo,i , ri } |= 0.
We propose to construct a density function for zi given xi , denoted by p̂(zi | xi ), using either
parametric methods or nonparametric methods based on all the observed data, and then simulate
zi in the space of the missing covariate data for all observations rather than only imputing the
missing covariates zm,i . For simplicity, we use p(zi | xi ; α̂) to simulate {z(b)i : i = 1, . . . , n} for

b = 1, . . . , B3. Let v(b)i = (xi , z(b)i ). Then we propose a conditional martingale residual process

I3(ϕ̃, u, t; η)(b) = n−1/2
n∑

i=1

1(v(b)Ti ϕ̃ � u)Ri (t).

We can plot I3(ϕ̃, u, t; η̂)(b) against u for a specific ϕ̃ as an exploratory tool for detecting pos-
sible model misspecification. Similar to the above, we can construct a corresponding Cramer–
von Mises test statistic based on I3(ϕ̃, u, t; η̂)(b), which we denote by CM

(b)
3 . Large values of

CM
(b)
3 lead to rejection of the hypothesis that E{R(t) | xi , zo,i } = 0.
Following Zhu et al. (2009), we can establish the asymptotic distributions of I2(ϕ̃, u, t; η̂),

I3(ϕ̃, u, t; η̂)(b), CM2 and CM
(b)
3 . For brevity, we present only the asymptotic null distribution of

I2(ϕ̃, u, t; η̂) below.

COROLLARY 2. If Assumptions 1–8 hold, then I2(ϕ̃, u, t; η̂) converges in distribution to a
zero-mean Gaussian process G2(ϕ, u, t) defined in the Supplementary Material.

Based on the results in Corollary 2, we can also develop a resampling method to approximate
the null distribution of CM2(t) in order to calculate the p-values of the test statistic CM2(t).
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4. SIMULATION STUDIES

4·1. Case-deletion measures and martingale residuals

We generated 100 datasets from a Cox regression model with missing covariates. Each
dataset consists of n = 200 observations {(xi , zi , δi , yi ) : i = 1, . . . , n}, with a completely
observed covariate xi and two missing covariates zi = (zi1, zi2)

T. The covariate xi was gen-
erated from a Ber(0·5) distribution; conditional on xi , zi1 was generated from the logis-
tic regression model logit{pr(zi1 = 1 | xi , α1)} = α10 + α11xi with α10 = −1·0 and α11 = −0·5;
conditional on (xi , zi1), zi2 was generated from a N (α20 + α21xi1 + α22zi1, α23) distri-
bution, where (α20, α21, α22, α23)= (0·2, 0·1,−0·4, 1). The survival time Ti was indepen-
dently generated from λ(t | ci ;β)= h0(t) exp(xiβ1 + zi1β2 + zi2β3) with h0(t)= 0·56 and
β = (0·5, 0·5,−1·0)T, and the censoring times Ci were independently generated from a Un(0, 3)
distribution. We then let yi = min(Ti ,Ci ) and set δi = 1 when Ti � Ci and 0 otherwise. The
missing data zi1 were generated from the logistic regression model logit{pr(ri1 = 1 | yi , ci ; ξ1)} =
ξ10 + ξ11yi + ξ12xi + ξ13zi2 with ξ1 = (0·5, 0·3, 0·5,−0·5)T, and the missing data zi2 were gen-
erated from the logistic regression model logit{pr(ri2 = 1 | yi , ri1, xi , zi , ξ2)} = ξ20 + ξ21yi +
ξ22ri1 + ξ23xi + ξ24zi1 with ξ2 = (0·3, 0·3, 0·4,−0·2, 0·2)T. In the above simulation design,
each simulated dataset has about 44% censored values of the yi , about 23% missing covariates
zi1, and about 37% missing covariates zi2.

We investigate the performance of different diagnostic measures on the simulated datasets.
Two outliers are introduced into each simulated dataset. In the first dataset, we perturbed the 41st
observation by adding s to each survival time, i.e., yi + s, and perturbed the 90th observation
by adding s to zi,2, i.e., zi,2 + s. For each of the other 99 datasets, we selected the two observa-
tions closest to the 41st and 90th observations according to the values of (yi , δi , xi , zi , ri ) and
perturbed these two observations in the same way as in the first dataset. We varied the value of s
to represent different degrees of perturbation. We fitted the same missing-not-at-random model
used to generate the simulated datasets, and then calculated various diagnostic measures and
their detection probabilities. Table 1 summarizes the detection probabilities of various diagnos-
tic measures for the 100 simulated datasets. As the degree of perturbation increases, the detection
probabilities increase in magnitude. Lowering the threshold for the detection probabilities from
97·5% to 90% increases the probability of detecting the induced outliers. Overall, our detection
probability is effective for detecting outliers.

4·2. Cramer–von Mises goodness-of-fit test statistics

The goal of this simulation is to assess the empirical performance of CM1(τ ) and CM2(τ ) and
their associated resampling method. We generated datasets from a Cox regression model with
two completely observed covariates xi = (xi1, xi2)

T and one missing covariate zi as follows.
In this simulation study, xi1 and xi2 were independently generated from the normal distribu-
tions N (0, 1) and N (0, 0·52), respectively; conditional on xi , zi was generated from a normal
distribution N (α0 + α1xi1 + α2xi2, α3), where (α0, α1, α2, α3)= (0·5, 0·1,−0·4, 1). The sur-
vival times Ti were independently generated from λ(t | xi , zi ;β)= h0(t) exp(xi1β1 + xi2β2 +
ziβ3 + cx2

i1) with h0(t)= 1·0 and β = (1·0, 1·0,−1·0)T, and the censoring times Ci were inde-
pendently generated from a Un(0, 11) distribution. We then set yi = min(Ti ,Ci ) and set δi = 1
when Ti � Ci and 0 otherwise. The missing data zi were assumed to be missing at random and
generated from the logistic regression model logit{pr(ri = 1 | xi ; ξ)} = ξ0 + ξ1xi1 + ξ2xi2. We
considered two sets of ξ : (I) ξ = (1·085, 0·2, 0·1)T; (II) ξ = (−0·015, 0·2, 0·1)T. The averages
and ranges of the missing-data fractions are, respectively, 25% and (19·2%, 31·6%) under (I)
and 50% and (44·0%, 58·4%) under (II). We considered c = 0, 0·25, 0·50 and 0·75. The average
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Table 1. Summary of detection probabilities (%) of QDi,1, QDi,2, QDi,3, QDi,h0(·), the martingale

residual R̂i , and the score residual si1 for 100 simulated datasets under the missing-
not-at-random model

y41 + s pQDi,1 pQDi,2 pQDi,3 pQDi,h0(·) pR̂i psi1 Max
s = 0·1 Median 83 97 38 16·5 55·5 95 98

Q1 32·5 94·5 30 6 23 70·5 96
Q3 98 100 49 40·5 95 99 100

�90% 44 95 0 0 33 56 96
�97·5% 26 48 0 0 15 39 62

s = 0·2 Median 95 97 36 29 92 98·5 99
Q1 78·5 94 23·5 13 48 89·5 98
Q3 99 99 47·5 56 98 100 100

�90% 66 97 0 0 53 75 100
�97·5% 41 48 0 0 34 57 76

z90,2 + s pQDi,1 pQDi,2 pQDi,3 pQDi,h0(·) pR̂i psi1 Max
s = 1·5 Median 95 85 55 36·5 79 99 99

Q1 90 80 42·5 26·5 73·5 97·5 97·5
Q3 97 92 66 46 83 99 99

�90% 78 33 1 0 5 100 100
�97·5% 24 3 1 0 1 75 75

s = 2·5 Median 99 99 85 41 86 100 100
Q1 98 98 75 31 82·5 100 100
Q3 100 100 93 52 89 100 100

�90% 100 99 41 0 24 100 100
�97·5% 80 87 14 0 0 100 100

Q1, Median and Q3, the 25th, 50th and 75th percentiles of 100 detection probabilities; Max, maximum value calculated
as max(pQDi,1, pQDi,2, pQDi,3, pQDi,h0(·), pR̂i , psi1).

Table 2. Rejection rates (%) of CM1(τ ) and CM2(τ ) at the 5% significance level

Average missing data fraction
25% 50%

Complete-case analysis Analysis of all cases Complete-case analysis Analysis of all cases
c CM1(τ ) CM2(τ ) CM1(τ ) CM2(τ ) CM1(τ ) CM2(τ ) CM1(τ ) CM2(τ )

0·00 3 2 7 5 2 2 4 4
0·25 67 42 77 57 46 23 72 41
0·50 99 94 94 92 92 83 87 80
0·75 100 100 96 95 98 93 88 86

censoring percentages are, respectively, 24·6%, 21·4%, 18·7% and 16·7% for c = 0, 0·25, 0·50
and 0·75. For each combination of c and ξ , we generated 100 datasets.

For all simulated datasets, we fitted the Cox regression model (1) with λ(t | xi , zi , β)=
h0(t) exp(xi1β1 + xi2β2 + ziβ3), assuming missingness at random. We carried out the complete-
case analysis and the all-case analysis. Thus, the model would be misspecified if c |= 0, and the
misspecification would be due to the covariate x2

i1. We set B = 500 to calculate the p-values of
all test statistics. The significance level was fixed at 0·05.

The rejection rates are presented in Table 2. As expected, the power of both CM1(τ ) and CM2(τ )

to detect model misspecification increases with c and decreases with the missing-data fraction.
Moreover, the power of CM1(τ ) is higher than that of CM2(τ ), but CM1(τ ) has slightly greater
Type I errors than CM2(τ ) when the missing-data fraction is low. For the complete-case analysis,
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the Type I error rates of CM1 and CM2 are close to 0·025. In contrast, for the all-case analysis, the
Type I error rates of CM1 and CM2 are 0·07 and 0·05 when the average missing-data fraction is 25%
and are 0·04 and 0·04 when the average missing-data fraction is 50%. When c = 0·25, the all-case
analysis outperforms the complete-case analysis in terms of detecting model misspecification.
However, this is not the case when c � 0·5, which may be due to the robustness of the complete-
case analysis when the data are truly missing at random.

5. ANALYSIS OF LUNG CANCER DATA

We analyse data from a Phase III advanced non-small-cell lung cancer clinical trial conducted
at the University of North Carolina at Chapel Hill (Socinski et al., 2002). The goal of this trial was
to compare a defined duration of therapy with continuous therapy followed by second-line ther-
apy in order to determine the optimal duration of therapy for non-small-cell lung cancer patients.
The study involved n = 230 patients. We consider five prognostic factors: x1 = treatment, which
takes the value 1 if the subject received a defined duration of therapy and 0 otherwise; x2 = gen-
der, which equals 1 if the subject is male and 0 otherwise; x3 = age in years; z1 = Apex, which
equals 1 if the tumour was at the top of the lung and 0 otherwise; and z2 = FACT-G score. Of
these five prognostic factors, z1 and z2 had missing information while x1, x2 and x3 were com-
pletely observed for all cases. In this dataset, 52·74% of the subjects had missing values in at
least one of z1 and z2. The outcome variable is time to disease progression, which is continuous
and subject to right censoring; the censoring indicator δi is equal to 1 if the i th subject showed
disease progression and 0 otherwise. The median follow-up time is 3·94 months, and the range
of the follow-up time is (0·1, 27·61) months. A summary of the dataset can be found in Chen
et al. (2009).

We fitted the Cox regression model (1) to the data, where vi = (xT
i , zT

i )
T and β = (β1, . . . , β5)

T

with p1 = 3 and p2 = 2. We model two missing covariates zi conditional on xi as
p(zi1 | xi ;α) p(zi2 | xi , zi1;α). We use a logistic regression model for zi1 and a normal linear
regression model for zi2. Specifically, we have logit{p(zi1 | xi ;α)} = zi1(α10 +∑3

k=1 α1k xik)

and zi2 ∼ N (α20 +∑3
k=1 α2k xik + α24zi1, α25), where α1 = (α10, α11, α12, α13)

T and
α2 = (α20, . . . , α25)

T. We consider both missing-at-random and missing-not-at-random
models for ri . Under the missing-not-at-random model, we take p(ri | vi , yi , δi ; ξ)= p(ri1 |
vi , yi , δi ; ξ1) p(ri2 | ri1, vi , yi , δi ; ξ2) with ξ = (ξ T

1 , ξ
T
2 )

T. Moreover, logistic regression models
are specified for p(ri1 | vi , yi , δi ; ξ1) and p(ri2 | ri1, vi , yi , δi ; ξ2), where ξ1 and ξ2 are the
vectors of the corresponding regression coefficients. Under the missing-at-random model,
p(ri | vi , yi , δi ; ξ)= p(ri | xi , yi , δi ; ξ) and a logistic regression model is specified for
p(ri | xi , yi , δi ; ξ). For comparison, we also consider the complete-case analysis.

Table 3 shows the maximum partial likelihood estimate of β for the complete-case analysis and
the maximum likelihood estimates of β under the missing-at-random and missing-not-at-random
models for the missing-data mechanism. We can see some differences between the estimates in
Table 3. In the complete-case analysis, the p-value for β1 is 0·062 while that for β4 is 0·032.
Hence, in the complete-case analysis, treatment is not significant but Apex is significant at the
0·05 significance level. However, the p-values are 0·006 and 0·006 for β1 and 0·016 and 0·015 for
β4 under the missing-at-random and missing-not-at-random models, respectively, implying that
treatment and Apex may be significantly associated with time to disease progression. Therefore,
in terms of time to disease progression, continuous therapy followed by second-line therapy may
be more beneficial than a defined duration of therapy, based on the analysis incorporating all of
the cases. Also, the standard errors obtained from the analysis incorporating all of the cases are
consistently smaller than those from the complete-case analysis for all of the β j . In addition, the
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Table 3. Maximum likelihood estimates of β based on complete-case, missing-at-random and
missing-not-at-random analyses of the lung cancer data. For each βk , the efficiency shown in the
last column represents the ratio of the standard error of β̂k for the complete-case analysis to that

for the missing-at-random (or missing-not-at-random) analysis

Model Parameter Estimate SE Z -statistic p-value 95% CI Efficiency

Complete β1 0·47 0·25 1·86 0·06 (−0·02, 0·97) 1·00
case β2 0·07 0·24 0·28 0·78 (−0·41, 0·55) 1·00

β3 −0·02 0·13 −0·15 0·88 (−0·28, 0·24) 1·00
β4 0·88 0·41 2·14 0·03 (0·07, 1.68) 1·00
β5 −0·14 0·12 −1·16 0·25 (−0·37, 0·10) 1·00

Missing β1 0·48 0·18 2·72 0·01 (0·13, 0·82) 1·45
at β2 0·17 0·18 0·97 0·33 (−0·18, 0·53) 1·35
random β3 −0·02 0·09 −0·24 0·81 (−0·20, 0·16) 1·44

β4 0·91 0·38 2·40 0·02 (0·17, 1·66) 1·08
β5 −0·05 0·11 −0·49 0·62 (−0·26, 0·16) 1·12

Missing β1 0·48 0·18 2·73 0·01 (0·14, 0·82) 1·45
not at β2 0·17 0·18 0·96 0·34 (−0·18, 0·53) 1·35
random β3 −0·02 0·09 −0·24 0·81 (−0·20, 0·16) 1·44

β4 0·92 0·38 2·43 0·015 (0·18, 1·67) 1·08
β5 −0·05 0·11 −0·48 0·63 (−0·26, 0·16) 1·12

SE, standard errors; CI, confidence interval.

two sets of maximum likelihood estimates of β are very similar. Under the missing-not-at-random
model, the p-values for the coefficients associated with zi in p(ri | vi , yi , δi ; ξ) are greater than
0·34, which could suggest that there is no evidence against the missing-at-random assumption.

We calculated the test statistics CM1 and CM2 to be 0·377 and 0·637, respectively. By setting
B = 1000, we approximated the p-values of CM1 and CM2 by 0·303 and 0·127, respectively. These
results may also indicate that E{Ri (t) | xi } |= 0 or E{Ri (t) | xi , zi } |= 0, and p(ri | xi , zi , yi , δi ; ξ)
does not depend on (yi , δi ).

Figure 1 plots the detection probabilities of selected diagnostic measures under the missing-
at-random and missing-not-at-random models. Additional results are shown in the Supplemen-
tary Material. The purpose of plotting the detection probabilities corresponding to QDi,1, QDi,2,
QDi,3, and QDi,h0(·) is to identify influential observations due to the specifications of the regres-
sion component of the Cox model, the covariate model, the logistic regression models for the
missing-data binary indicators, and the baseline hazard component of the Cox model, respec-
tively. In addition, the plots corresponding to R̂i are used to determine the appropriateness of
the entire Cox model, while the plots corresponding to ŝi3 and ŝi5 are used to check the propor-
tional hazard assumptions for age and FACT-G score, respectively. For the 111 complete cases,
both the missing-at-random and the missing-not-at-random models detected the same 13 outly-
ing cases with maximum detection probabilities greater than 0·95. Of the 119 subjects who had
at least one missing value in Apex or FACT-G score, the same 12 subjects had maximum detec-
tion probabilities greater than 0·95 under both the missing-at-random and the missing-not-at-
random models, six subjects had maximum detection probabilities greater than 0·95 only under
the missing-at-random model, and four subjects had maximum detection probabilities greater
than 0·95 only under the missing-not-at-random model. For the six missing-at-random outlying
cases, the maximum detection probabilities range from 0·902 to 0·932 under the missing-not-
at-random model and range from 0·967 to 0·992 under the missing-at-random model. For the
four missing-not-at-random outlying cases, the maximum detection probabilities are 0·80, 0·58,
0·825 and 0·898 under the missing-at-random model and 0·96, 0·958, 0·984 and 0·990 under the
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Fig. 1. Plots of detection probabilities of QDi,1, QDi,2, the conditional martingale residuals R̂i , and the score
residuals ŝi5 for the missing-at-random (panels (a), (c), (e), (g)) and missing-not-at-random (panels (b), (d), (f),
(h)) analyses of the lung cancer data. Filled circles represent the detection probabilities for progression subjects,

and empty triangles represent the detection probabilities for censored subjects.

missing-not-at-random model. The disagreements between the missing-at-random and missing-
not-at-random models for these four cases were in the values and detection probabilities of QDi,2.
Overall, the detection probabilities under the missing-at-random model are very close to those
under the missing-not-at-random model. The outlying case with the greatest maximum detection
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probabilities is the subject whose FACT-G score is 34, which is the smallest value among all
subjects, with mean FACT-G score 78·14. In this case, the values of si5 are 5·77, 4·84 and 4·82,
and the corresponding detection probabilities are all 1·0 under the complete-case analysis and
under the missing-at-random and missing-not-at-random models.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes details of the semi-bootstrap
method, proofs of the theoretical results, additional simulations, real-data analysis results, the
lung cancer data used in § 5, and the computer code.
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