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SUMMARY

Linear classifiers are very popular, but can have limitations when classes have distinct
subpopulations. General nonlinear kernel classifiers are very flexible, but do not give clear
interpretations and may not be efficient in high dimensions. We propose the bidirectional
discrimination classification method, which generalizes linear classifiers to two or more hyper-
planes. This new family of classification methods gives much of the flexibility of a general
nonlinear classifier while maintaining the interpretability, and much of the parsimony, of linear
classifiers. They provide a new visualization tool for high-dimensional, low-sample-size data.
Although the idea is generally applicable, we focus on the generalization of the support vector
machine and distance-weighted discrimination methods. The performance and usefulness of the
proposed method are assessed using asymptotics and demonstrated through analysis of simu-
lated and real data. Our method leads to better classification performance in high-dimensional
situations where subclusters are present in the data.

Some key words: Asymptotics; Classification; High-dimensional data; Initial value; Iteration; Optimization;
Visualization.

1. INTRODUCTION

In statistical machine learning, the objective of linear classification is to make a decision
based on the value of a linear combination of the characteristics. Examples of linear
classification algorithms include Fisher’s (1936) linear discriminant, the support vector machine
(Vapnik, 1995; Cristianini & Taylor, 2000; Hastie et al., 2001) and distance-weighted discrimi-
nation (Marron et al., 2007).

Although linear classifiers are very widely used, they can be improved upon when each
class contains diverse subpopulations. For example, in microarray analysis, within each class of
interest, e.g., disease versus control, auxiliary differences such as male versus female can lead
to diverse subpopulations. A toy example illustrating this given in Fig. 1 includes two classes,
each divided into two subclusters. Linear methods for classification cannot capture the class
differences effectively in this case, which motivates us to find a more general hypersurface that
can do so.



852 HANWEN HUANG, YUFENG LIU AND J. S. MARRON

−4 −2 0 2 4 −4 −2 0 2 4

(+, +)

(+, −)(–, −)

(−, +)

−4 −2 0 2 4

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

(a) SVM linear hyperplane (b) Full quadratic curve (c) BDD hyperplanes

Fig. 1. The scatter-plot of a toy data example in two dimensions. Black indicates the positive class and
grey indicates the negative class. Different symbols in the same class represent different subclusters. The
linear support vector machine decision boundary is denoted by the solid line in (a). The decision boundaries
from the two nonlinear methods are denoted by the curves in (b) and (c). SVM, support vector machine;

BDD, bidirectional discrimination.

The extension of support vector machine and distance-weighted discrimination methods from
the linear case to the nonlinear case is quite straightforward using the so-called kernel trick
(Aizerman et al., 1964; Boser et al., 1992); for an overview, see Hastie et al. (2001). The solid
curves shown in Fig. 1(b) are the nonlinear decision boundary implemented using the full
quadratic kernel support vector machine method (Vapnik, 1995; Burges, 1998). Its performance
is clearly much better than that of the linear classifier.

Although nonlinear classification methods can have low error rates, they do not easily provide
intuitive interpretations of class differences relative to the linear ones. To achieve a new balance
between the relative strengths of linear and nonlinear methods, we develop a new classification
method, bidirectional discrimination, which lies between linear and full nonlinear kernel meth-
ods. This employs two or more linear hyperplanes to separate the two classes. The bidirectional
discrimination decision boundary, shown in Fig. 1(c), does an intuitively appealing job of sepa-
rating the two classes, since it not only provides good between-class separation but also divides
each class into two subclusters. Relative to linear methods, it has the flexibility to tackle problems
with a complex structure. In contrast to general nonlinear methods, it has a simpler functional
form and thus retains most of the parsimony of the linear methods.

Linear methods have good interpretability in the sense that they seek to find a direction that
can explain the biggest difference between the two classes. The loadings, i.e., the entries of this
direction vector, explain the importance of each variable in the model. The score of each data
point can be evaluated by projecting it onto this direction. Bidirectional discrimination inherits
these appealing interpretation properties.

Another important feature of bidirectional discrimination is that its two hyperplanes auto-
matically provide a visualization tool for high-dimensional low-sample-size data. In particular,
visualization of the scores is usually very informative.

Many statistical methods suffer from overfitting, especially in high-dimensional situations.
Regularization schemes have been introduced to mitigate against severe overfitting, but as the
dimension grows, with the signal in the data fixed, any method will eventually break down. It is
interesting to compare the methods on the basis of when this breakdown occurs. If the dimen-
sion is d, the number of parameters included in the bidirectional discrimination method will be
2d, far fewer than the number used in the quadratic kernel method, d(d + 1)/2. We will see in
§ 3 that this dependence on fewer parameters, together with a more effective use of the data,
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gives bidirectional discrimination superior breakdown properties, relative to the full quadratic
and Gaussian kernel methods.

Another important use of bidirectional discrimination is for datasets that include subpopula-
tions, where subclusters within each class can be discovered, as shown in § 3·2.

In this article, we focus on the bidirectional method. We have also generalized bidirectional
discrimination to multiple directions as discussed in the Supplementary Material. Here explicit
focus is on the support vector machine and distance-weighted discrimination methods. Hence,
these are used as examples to illustrate how the bidirectional discrimination method works.
The fundamental concept is more general and can also be applied to other linear classifiers.

2. BIDIRECTIONAL DISCRIMINATION FRAMEWORK

2·1. Review

Suppose that the training dataset consists of n d-vectors xi = (xi1, . . . , xid) with corres-
ponding class indicators yi ∈ {+1, −1} (i = 1, . . . , n), which are distributed according to some
unknown probability distribution function pr(x, y). The main idea behind the classical one-
directional classification problem is to find the separating hyperplane with maximum separation
between the two classes, assuming that there is a plane that perfectly separates them. One impor-
tant goal is prediction: if we choose w ∈Rd as the normal vector for our hyperplane and β ∈R
to determine its position, the sign of f = xTw + β can be used for the prediction of class labels
for new inputs x .

Both the one-directional support vector machine and the distance-weighted discrimination
approaches can be represented in terms of optimization problems. They depend on the signed
distance from each data point to the decision boundary, which is defined as

ri = yi (xT
i w + β) + ξi , (1)

where the slack variable ξi � 0 is added to make sure that all residuals are positive
(Cortes & Vapnik, 1995). The one-directional support vector machine classifier solves the
regularization problem

min
{w,β}

(
1

2
‖w‖2 + C1SVM

n∑
i=1

ξi

)
,

subject to yi (xT
i w + β) + ξi � 1 and ξi � 0, where the penalty parameter C1SVM > 0 balances

the separation and the amount of violation of the constraints, and ‖w‖ denotes the Euclidean
norm of w.

The optimization task of the one-directional distance-weighted discrimination is to solve

min
{w,β}

∑
i

(
1

ri
+ C1DWDξi

)
, (2)

subject to ri = yi (xT
i w + β) + ξi � 0, ‖w‖2 = 1 and ξi � 0, where C1DWD > 0 is the penalty

parameter. The optimization formula (2) can be reparameterized as a second-order cone pro-
gramming problem. There exist many well-established algorithms for solving such problems
(Alizadeh et al., 2001). For a more detailed description of the one-directional distance-weighted
discrimination, see Marron et al. (2007).
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2·2. Bidirectional discrimination

In the bidirectional case, we have two hyperplanes represented by parameters (w1, β1) and
(w2, β2). Let f1 = xTw1 + β1 and f2 = xTw2 + β2 be classification functions representing each
of the two separating hyperplanes, defined as f1 = 0 and f2 = 0. As shown in Fig. 1(c), we denote
by (+, +) the region that satisfies f1 > 0 and f2 > 0 and denote the other three regions likewise.
Data from the positive class tend to be located on the upper-right and lower-left regions, with
labels (+, +) and (−, −) while those from the negative class tend to lie in the upper-left and
lower-right regions, with labels (−, +) and (+, −). Thus, sign( f1 f2) is used as the prediction
rule in the bidirectional setting. A natural way of generalizing linear classifiers is to replace the
signed distance ri of the i th data point (1) with

si = yi f1 f2 + ξi . (3)

Once si are given, the optimization problem solved by the bidirectional support vector machine
can be stated as

min
w,β,ξ

1

2
(‖w1‖2 + ‖w2‖2) + CSVM

n∑
i=1

ξi ,

subject to
si = yi (xT

i w1 + β1)(xT
i w2 + β2) + ξi � 1, ξi � 0. (4)

Similarly, the optimization problem solved by the bidirectional distance-weighted discrimina-
tion can be stated as

min
w,β,ξ

∑
i

(
1

si
+ CDWDξi

)
,

subject to

si = yi (xT
i w1 + β1)(xT

i w2 + β2) + ξi � 0, ξi � 0,

‖w1‖2 + β2
1 = 1, ‖w2‖2 + β2

2 = 1. (5)

To meet the uniqueness requirement, here we use the constraints ‖w j‖2 + β2
j = 1 instead of

‖w1‖2 = ‖w2‖2 = 1, as used in the one-directional method. We choose this type of constraint to
ensure that the optimization problem can be described in second-order cone programming terms.

The multiplicative form of the si in (3) poses great optimization challenges and makes it dif-
ficult to solve simultaneously for (w1, β1) and (w2, β2) in (4) and (5). However, provided one
of the two hyperplanes is given, the other can be obtained using methods similar to the one-
directional problem. This suggests that iterative algorithms be used, so we propose to solve the
bidirectional minimization problem by minimizing a sequence of one-directional subproblems,
as follows: first, propose initial values for {w(0)

1 , β
(0)
1 }; obtain {w(0)

2 , β
(0)
2 } by solving the revised

one-directional problems with yi replaced by ŷi = yi (xT
i w

(0)
1 + β

(0)
1 ); based on {w(0)

2 , β
(0)
2 },

obtain {w(1)
1 , β

(1)
1 } and repeat this process until convergence of both parameters. In all cases

we have considered, this algorithm has converged in at most ten steps.

2·3. Starting points

The solutions of (4) and (5), based on the iterative algorithm described above, strongly depend
on the choice of the initial values, especially in high-dimensional situations. Our next goal is to
propose some appropriate ways to choose good initial values. We have considered a full quadratic
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(a) Example 1: 4-cluster-twisted
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Fig. 2. Illustration of different subcluster structures. Black indicates the positive class. Grey indicates the negative
class. Different symbols in the same class represent different subclusters. These show different levels of challenge

to linear discriminant methods, all of which are resolvable using bidirectional discrimination.

projection approach that chooses two initial hyperplanes to be those whose product is closest
to the hypersurface solved using the full quadratic kernel method. Because of relatively poor
performance, further discussion of this approach appears only in the Supplementary Material.
Now we will introduce approaches based on within-class clustering.

As one of the motivations of our method comes from the fact that there might be further
subclusters within each class, we can illustrate our approaches using three bidimensional exam-
ples shown in Fig. 2. Three subcluster structures are considered, with each subcluster sampled
from a shifted standard bivariate normal distribution determined by a common parameter μ,
taken as μ = 51/2.

Example 1. Four-cluster-twisted is shown in Fig. 2(a), which includes four clusters, two for
each class. The clusters +1, +2, −1, −2 are shifted by (μ, μ), (−μ, −μ), (μ, −μ) and (−μ, μ),
respectively. Each cluster has sample size 25. This is particularly challenging for linear discrim-
ination methods.

Example 2. Four-cluster-straight is shown in Fig. 2(b), which includes four clusters, two for
each class. The clusters +1, +2, −1, −2 are shifted by (μ, μ), (μ, −μ), (−μ, μ) and (−μ, −μ),
respectively. Each cluster has sample size 25. Linear methods can be expected to perform
well here.

Example 3. Three-cluster-triangle is shown in Fig. 2(c), which includes three subclusters,
two for the positive class and one for the negative class. The clusters +1, +2, −1 are shifted
by (μ, 0), (−μ, 0) and (0, μ), respectively. Sample sizes n+1 = n+2 = n−1/2 = 25. This is also
challenging for linear methods.

The three examples given above represent settings with at most two clusters per class.
For more complex settings, e.g., classes with more than two subpopulations, we find that treating
them as two subpopulations will frequently give better performance than a single linear method.
For those cases where the subpopulations cannot be combined in a useful way, we can handle them
by generalizing bidirectional discrimination to more directions as shown in the Supplementary
Material.

For Example 1, the ideal choice for the initial hyperplane will be the one-directional
hyperplane that separates groups (+1, −1) and (+2, −2) or the one that separates groups
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(+1, −2) and (+2, −1). Therefore, our cluster-2-2 method first uses the 2-means clustering
algorithm to divide the positive class into two clusters labelled as c+1 and c+2 and similarly
divides the negative class into two clusters labelled as c−1 and c−2. Then we choose the ini-
tial hyperplane as the usual one-directional hyperplane that either separates between groups
(c+1, c−1) and (c+2, c−2) or separates between groups (c+1, c−2) and (c+2, c−1).

Similarly, cluster-1-1 and cluster-1-2 methods are motivated by Examples 2 and 3, respectively.
We will see that each method for finding initial values has a situation for which it works the best.
Typically, there is no prior knowledge as to the subcluster structure of the dataset. Therefore, we
propose to implement all of these proposed initial values and take our solution to be the one that
gives the minimum value of the objective function.

3. VISUALIZATION AND NUMERICAL DATA

3·1. Simulated high-dimensional examples

We now investigate the performance of the proposed method using simulated data. We have
tried simulations for both low- and high-dimensional situations. Since our main focus is on high-
dimensional low-sample-size settings, low-dimensional results are given in the Supplementary
Material. We set the sample sizes of training and test data as 100 and 1000, respectively. We
generated the test data from the same distributions as the training data. In this paper, bidirec-
tional discrimination is implemented using both the distance-weighted discrimination and sup-
port vector machine methods. As the results were similar, we focus here on distance-weighted
discrimination. However, for the final comparisons, the support vector machine is included.

It is of interest to compare both methods with the kernel support vector machine, kernel
distance-weighted discrimination and random forest methods (Breiman, 2001). The two kernels
used here are the full quadratic and the Gaussian. The bandwidth parameter in the Gaussian ker-
nel support vector machine was tuned via crossvalidation. Crossvalidation was also used to tune
the penalty parameters in distance-weighted discrimination and in the support vector machine.
For random forest, we used the R package (R Development Core Team, 2012) randomForest and
took the default value 500 for the number of trees to grow.

Consider a typical high-dimensional low-sample-size context. Let d = 1000. We simulated
three types of examples. The first two dimensions are generated using distributions similar to
Examples 1–3. We maintain an appropriate signal-to-noise ratio by taking μ = d1/2/8 instead of
the constant μ = 51/2. The rest of the d − 2 dimensions are pure noise, i.e., all sampled from the
standard normal distribution. The four different initialization options considered in § 2·3 are used.
The combined solution is determined from the one that gives the minimum objective function
value among the four options.

The visualization results of the simulated training data for the four-cluster-twisted
high-dimensional example are shown in Fig. 3. The visualization results for other examples are
shown in the Supplementary Material. From Fig. 3, cluster-2-2 seems to find the right struc-
ture. The combination of one-directional distance-weighted discrimination and orthogonal first
principal component directions can separate the four clusters, but the structure is twisted in con-
trast to the original one, as shown in the upper-left plot. No structure of this type is part of the
underlying signal in the data, so we conclude that it is a noise artefact. All the other bidirec-
tional discrimination initialization methods exhibit artefacts that suggest overfitting. Cluster-1-2
attempts to divide the data into three clusters and gives an apparently reasonable separation of
the negative class into two clusters. Cluster-1-1 attempts to divide the data into only two clusters.
Even cluster-2-2 seems to show some overfitting, as the clusters are better separated than in the
raw data.
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Fig. 3. Application to the four-cluster-twisted high-dimensional simulated dataset. (a) Raw data projected
onto the first two directions. (d) Projections onto the one-directional distance-weighted discrimination and
an orthogonal principal component direction. (b), (c), (e) and (f) Projections onto the f1, f2 directions.
1DWD, one-directional distance-weighted discrimination; PC1, the first principal component; FQP, full

quadratic projection.

Table 1. Performance summary, average error rates in percentage over 100 simulations,
of the application of the one-directional and the bidirectional distance-weighted dis-

crimination methods to three high-dimensional simulated examples

Bidirectional distance-weighted discrimination
1DWD Cluster-2-2 Cluster-1-2 Cluster-1-1 FQP Combined

Example 1 50·2 0·2 21·9 50·1 39·7 0·2
Example 2 0·1 50·3 43·9 0·1 39·4 0·1
Example 3 14·9 26 6·1 26·4 30·4 6·1
1DWD, one-directional distance-weighted discrimination; FQP, full quadratic projection. The largest stan-
dard error for the numbers in the table is 0·3.

To analyse which methods have found reproducible structure in the data, we repeat the
simulation 100 times; see Table 1. For Example 1, not surprisingly, the cluster-2-2 method works
the best. The cluster-1-1 method is no better than random choice. The performances of the cluster-
1-2 and the full quadratic projection methods are in between these. For Example 2, the cluster-1-1
method works best, as expected, and the cluster-2-2 method is no better than random choice. For
Example 3, the cluster-1-2 method works best, as expected. For all three examples, the combined
method always chooses the best among the four initialization methods. On the other hand, the
standard one-directional distance-weighted discrimination method is best only in Example 2. It
is no better than random choice in Example 1 and gives moderate performance in Example 3. For
all examples, the full quadratic projection method typically was far from the best performance,
because it works in a space with much higher dimension than the original one and thus is more
prone to overfitting.
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Table 2. Comparison of test errors (%) among different methods on three high-
dimensional simulated datasets

Method Example 1 Example 2 Example 3

Linear support vector machine 50 0·2 16
Linear distance-weighted discrimination 49 0·1 15
Quadratic kernel support vector machine 4 44 26
Quadratic kernel distance-weighted discrimination 3 44 24
Gaussian kernel support vector machine 16 0·1 16
Gaussian kernel distance-weighted discrimination 46 0·1 14
Bidirectional support vector machine 0·4 0·2 16
Bidirectional distance-weighted discrimination 0·2 0·1 6
Random forest 50·1 4 28

The largest standard error for the numbers in the table is 0·3.

Table 2 summarizes the comparison of one-directional linear, full quadratic kernel, Gaussian
kernel, and bidirectional discrimination methods based on support vector machine and distance-
weighted discrimination implementations for the three simulated high-dimensional datasets.
Results based on the random forest method are also included. For Example 1, one-directional
linear methods were no better than random choice, quadratic kernel methods give much improve-
ment but bidirectional discrimination methods are the best. Random forest is also no better
than random. For Example 2, all methods work well except the quadratic kernel methods. For
Example 3, bidirectional distance-weighted discrimination gives the best performance. From
Table 2, we can see that each kernel method works well in some situations, and the special strength
of bidirectional discrimination comes from its ability to frequently mimic the performance of any
of linear, quadratic or Gaussian kernel methods, in situations where each is the best. The random
forest works well in certain situations where the two classes can be well separated by the linear
methods. In situations where the two classes cannot be separated by the linear methods, such as
Example 1, the performance of the random forest is poor.

The relatively poor performance of the regularized kernel methods may be somewhat
surprising. Certainly, regularization is critical to avoiding overfitting in such high-dimensional
settings. In the Supplementary Material, it is carefully checked that this is not simply an arte-
fact of poor tuning. As the dimension increases, any method will eventually break down. Our
results indicate that bidirectional discrimination has better breakdown properties in this sense
than other methods considered in Table 2. It would be interesting to see a more explicit study of
this phenomenon in future work.

To study interpretability, we show relative contributions of each variable for the one-directional
linear and bidirectional support vector machine methods shown in Fig. 4. Recall that the target
direction is nonzero only in the first two entries. The bidirectional method correctly picks the
first two variables, whereas the one-directional method assigns roughly equal importance to all
variables. Thus, in this example, bidirectional results give much better interpretability in terms
of directions found than linear methods.

3·2. Real data

In this section, we apply our method to a real glioblastoma dataset. In this example, the sub-
cluster labels for each class are unknown and we also want to see whether or not our method can
discover some subclusters within each class.

Glioblastoma multiforme is the most common form of malignant brain cancer in adults. For the
purposes of the current analysis, we selected a cohort of patients with glioblastoma cancer whose
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Fig. 4. The averages (solid lines) with ±2 standard deviations (dashed lines), over 100 replications of
the absolute values of the first 20 entries, i.e., loadings, of the normal direction vectors from applying the
support vector machine to Example 1. (a) Based on the one-directional method. (b) Based on the f1 function

from the bidirectional method. (c) Based on the f2 function from the bidirectional method.

Table 3. Average crossvalidation errors (%) over 100 replications for the glioblastoma
microarray dataset

Bidirectional distance-weighted discrimination

1DWD Cluster-2-2 Cluster-1-2 Cluster-1-1 FQP Combined
3·41 (0·34) 9·89 (0·73) 2·84 (0·30) 3·22 (0·35) 4·73 (0·51) 2·73 (0·26)

Standard errors are shown in parentheses. 1DWD, one-directional distance-weighted discrimination; FQP,
full quadratic projection.

brain samples were assayed to obtain the corresponding gene expression data. Several clinically
relevant subtypes were identified using integrated genomic analysis discussed in Verhaak et al.
(2010). After filtering the genes using the ratio of the sample standard deviation and sample
mean of each gene, the dataset contains 186 patients with 2727 genes. Our analysis focused on
mesenchymal and neural subtypes because there was an impression that the latter might have two
subclasses. There are 117 mesenchymal samples and 69 neural samples.

We consider the classification problem that treats mesenchymal as the positive class and neural
as the negative class. Due to the limited sample size, we study the generalization properties of
our method using crossvalidation. The dataset is split into 80 and 20% for a training set and a test
set. We further split the training set with 80 and 20% to give crossvalidation for tuning parameter
selection. We use a stratified sampling scheme; splits are random subject to the constraint that
we keep the original proportion of each class in the training set and the test set. The division of
the training data is randomly repeated 100 times and the tuning parameter is chosen to be the
one that gives the lowest average crossvalidation error. The test error is calculated based on this
parameter.

The crossvalidation errors for the classification problem, listed in Table 3, are computed on
the basis of 100 random splits of the dataset. The crossvalidation errors show that the cluster-
1-2 method gives the best performance among the methods considered, although the difference
between the cluster-1-2 and one-directional methods is not highly significant.

Projection of the data onto the f1 and f2 directions from the cluster-1-2 method is shown in
Fig. 5. The data naturally fall into three clusters: one for the mesenchymal class and two for
the neural class. Our analysis provides new evidence for the notion of two subclusters in the
neural class. To confirm whether or not these clusters represent potentially important new cancer



860 HANWEN HUANG, YUFENG LIU AND J. S. MARRON

−30 −20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

30
Cluster 1-2

f1

f 2

Fig. 5. Visualization of the glioblastoma dataset using two direc-
tions from the cluster-1-2 method. Black plus signs denote mes-

enchymal and grey triangles denote neural.

Table 4. Crossvalidated error comparison of different methods
for the glioblastoma data

Linear support vector machine 3·03 (0·19)
Linear distance-weighted discrimination 3·41 (0·28)
Quadratic kernel support vector machine 10·1 (0·34)
Quadratic kernel distance-weighted discrimination 9·30 (0·60)
Gaussian kernel support vector machine 3·35 (0·23)
Gaussian kernel distance-weighted discrimination 3·51 (0·34)
Bidirectional support vector machine 2·90 (0·19)
Bidirectional distance-weighted discrimination 2·73 (0·28)
Random forest 4·17 (0·34)

Standard errors are shown in parentheses.

subclasses, the statistical significance of the clustering method (Liu et al., 2008) was performed
to evaluate the significance of the split of the neural class into two clusters. The resulting p-value
is less than 0·001, so we conclude that there are further subclusters within the neural samples that
are worth deeper biological investigation.

Two subsets of genes were selected based on the 200 biggest absolute values of the loadings,
i.e., coefficients in f1 and f2 from the cluster-1-2 method. The number of common genes in
the two subsets is 26. Let Neural-1 denote the neural samples that satisfy f2 < 0, and Neural-
2 denote those that satisfy f1 < 0, see Fig. 5. The Supplementary Material contains heatmap
visualizations, which give deeper insights into the driving genes for these subclasses. Thus, our
bidirectional discrimination method not only improves the classification performance but also
provides an effective tool for feature selection.

Table 4 summarizes the crossvalidation comparison of linear, full quadratic kernel, Gaussian
kernel, and bidirectional discrimination methods implemented through both support vector
machine and distance-weighted discrimination for the glioblastoma data. The result for the
random forest method is also included. For this example, two lowest errors are obtained
by the bidirectional distance-weighted discrimination and support vector machine methods.
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The quadratic kernel methods give the worst performance. The performances of the linear,
Gaussian kernel and random forest methods are in between. The improved crossvalidation errors
of the bidirectional methods over the one-directional methods seem to be due to the distinct
subclusters in the neural class. This example shows how further consideration of the subcluster
structure can improve the classification error rates. We have also studied another real example of
lung cancer data in the Supplementary Material where the subcluster structures are known and it
is shown that the bidirectional discrimination methods correctly identify them without using the
cluster labels.

4. HIGH-DIMENSIONAL LOW-SAMPLE-SIZE ASYMPTOTICS

4·1. Four clusters case

To gain further insight into bidirectional discrimination, in this section we study some of its
theoretical properties. We consider asymptotics of the method for d → ∞ with the sample size
n fixed. Hall et al. (2005) first demonstrated the insight available from such asymptotics. They
showed that, under some conditions, each data point in a sample of size n tends to lie near a vertex
of a regular n-simplex and all the randomness in the data appears in the form of a random rotation
of this simplex. This data structure yields new insight into the binary classification problem. In
practice, data points from the positive class of size n+ and those from the negative class of size
n− can be viewed as an n+-simplex and an n−-simplex, respectively. This gave direct results on
completely perfect and completely imperfect classifications.

The regularity conditions for the geometric representation in Hall et al. (2005) require that the
entries of the data vector satisfy a ρ-mixing condition. Ahn et al. (2007) gave a milder condition
using asymptotic properties of the sample covariance. A more general and even milder set of con-
ditions for the result of Hall et al. (2005) is given in Jung & Marron (2009) and Qiao et al. (2010).

To illustrate the principles underlying bidirectional discrimination, we consider two examples.
The first includes four clusters labelled as +1, +2, −1 and −2. Assume that data points from
clusters +1 and +2 belong to the positive class and those from clusters −1 and −2 belong to the
negative class.

We use the regularity conditions of Qiao et al. (2010). Consider the +1 cluster consisting
of data vectors x+1

1 (d), . . . , x+1
n+1

(d) with d variables, where x+1
j (d) = (x+1

1 j , . . . , x+1
d j )T ∈ Rd

( j = 1, . . . , n+1). Assume that these vectors are independent and identically distributed from a
d-dimensional multivariate distribution. Concatenate these into a d × n+1 data matrix X+1

d =
[x+1

1 (d), . . . , x+1
n+1

(d)].

For a fixed n+1, consider a sequence of random data matrices X+1
1 , . . ., X+1

d , . . ., indexed
by the number of rows d. Assume that each X+1

d comes from a d-dimensional multivariate
distribution with covariance matrix �+1

d . Let λ+1
1,d � · · · � λ+1

d,d be the eigenvalues of �+1
d .

Assume the following.

Assumption 1. The fourth moments of each entry of each column of X+1
d are uniformly

bounded.

Assumption 2. The entries of Z+1
d = (�+1

d )(−1/2)X+1
d are independent.

Assumption 3. The eigenvalues of �+1
d are sufficiently diffuse, in the sense that

ε+1
d =

∑d
j=1(λ

+1
j,d)2(∑d

j=1 λ+1
j,d

)2 → 0, d → ∞.
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Assumption 4. The sum of the eigenvalues of �+1,d is of the same order as d, in the sense
that

∑d
j=1 λ+1

j,d = O(d) and 1/
∑d

j=1 λ+1
j,d = O(1/d).

Define the scaled variance (σ+1
d )2 = d−1∑d

j=1 λ+1
j,d . Under Assumptions 1–4, as d → ∞,

these n+1 data vectors tend to form a regular n+1-simplex in Rd with the side length 21/2dσ+1
d .

Assume that the other three independent data samples X+2
d , X−1

d and X−2
d also satisfy Assump-

tions 1–4. Define σ+2
d , σ−1

d and σ−2
d similarly to σ+1

d . Then the four clusters can be viewed
asymptotically as four simplices in Rd with side lengths 21/2dσ+1

d , 21/2dσ+2
d , 21/2dσ−1

d and
21/2dσ−2

d , respectively. Based on this geometric representation, our next goal is to develop con-
ditions under which the bidirectional method is better than the usual one-directional method.

In general, the population mean positions of the four clusters lie in a three-dimensional
hyperplane in Rd . They are located at the vertices of a tetrahedron. In order to illus-
trate the basic idea of when the bidirectional method is preferred, we consider a sim-
ple setting here. Given two sequences of between-class distances l+,d � 0, l−,d � 0 and a
sequence of within-class distances l0,d � 0, the mean positions of the four clusters in the
three-dimensional space are C+1,d = (l+,d/2, 0, l0,d/2), C+2,d = (−l+,d/2, 0, l0,d/2), C−1,d =
(0, l−,d/2, −l0,d/2), C−2,d = (0, −l−,d/2, −l0,d/2), respectively. These mean positions can also
be parameterized in terms of variance shifts and rotations, but this form makes the main idea most
clear. The geometries of this setting are fully characterized by three sequences l+,d , l−,d and l0,d .
Here for simple understanding of the main ideas, we assume that the sample sizes and variances
of the two clusters within each class are the same.

Assumption 5. The sample sizes satisfy n+1 = n+2 = n+/2, n−1 = n−2 = n−/2.

Assumption 6. For given constants σ+, σ− > 0, σ+1,d = σ+2,d = σ+,d → σ+, σ−1,d =
σ−2,d = σ−,d → σ−, as d → ∞.

For some distance orders α± � 0 and α0 � 0, we study the asymptotic behaviours of the
one- and bidirectional classifiers as the within-class distances l±,d grow at the rate of dα± and
the between-class distance l0,d grows at the rate of dα0 , in the sense that l±,d/dα± → μ± and
l0,d/dα0 → μ0 for some μ± > 0 and μ0 > 0. To test the performance of the classification meth-
ods, we need to add a new random point to a d-variate space which is independent of the data in
X+1

d ∪ X+2
d ∪ X−1

d ∪ X−2
d and has the distribution of any of the four clusters.

THEOREM 1. Without loss of generality, assume that σ 2+/n+ > σ 2−/n−; if need be, inter-
change + and − to achieve this. Under Assumptions 1–6, we have:

(i) the one-directional support vector machine gives either completely correct or incorrect
classification as follows: (a) If limd→∞(μ2

0d2α0−1) > σ 2+/n+ − σ 2−/n−, then the proba-
bility that the usual one-directional hyperplane gives correct classification of new points
converges to 1 as d → ∞. (b) If limd→∞(μ2

0d2α0−1) < σ 2+/n+ − σ 2−/n−, then with prob-
ability converging to 1 as d → ∞ a new datum from either population will be classified by
the usual one-directional hyperplane as belonging to the positive population.

(ii) bidirectional discrimination gives completely correct classification as follows: If either
limd→∞(μ2

0d2α0−1) > σ 2+/n+ − σ 2−/n− or limd→∞(μ±dα±−1/2) > 0, the probability that
the bidirectional classifier gives correct classification of new points converges to 1 as
d → ∞.
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Theorem 1(i) says that the one-directional support vector machine gives an asymptotically cor-
rect classification of a new point when the between-class distance is large enough, in the sense
that either α0 > 1/2 or α0 = 1/2 and μ2

0 > σ 2+/n+ − σ 2−/n−. When the between-class distance
is small enough, in the sense that either α0 < 1/2 or α0 = 1/2 and μ2

0 < σ 2+/n+ − σ 2−/n−, the
one-directional method will fail regardless of the size of the within-class distances. Theorem 1(ii)
shows that the bidirectional discrimination method works as well as the one-directional method
when either α0 > 1/2 or α0 = 1/2 and μ2

0 > σ 2+/n+ − σ 2−/n−. More importantly, the major
improvement available from bidirectional discrimination is demonstrated in the result that it will
classify correctly when α± � 1/2, for any value of between-class distance.

The Supplementary Material contains an asymptotic characterization of the balanced case with
n+ = n−, σ+ = σ−.

4·2. Three clusters case

The second example includes three clusters labelled as +1, +2 and −1. Thus, only the positive
class contains two distinct clusters. Similar to the four clusters case, we consider a simple setting
here. Given a within-class distance l+,d � 0 and a between-class distance l0,d � 0, the mean posi-
tions of the three clusters +1, +2, −1 in the bidimensional space are C+1,d = (l+,d/2, l0,d/2),
C+2,d = (−l+,d/2, l0,d/2), C−,d = (0, −l0,d/2). Further, we have the following assumptions.

Assumption 7. The sample sizes satisfy n+1 = n+2 = n+/2.

Assumption 8. For a given constant σ+ > 0, σ+1,d = σ+2,d = σ+,d → σ+, as d → ∞.

The following theorem characterizes the high-dimensional low-sample-size data asymptotics
of the one-directional and bidirectional methods under the above setting.

THEOREM 2. Without loss of generality, assume that σ 2+/n+ > σ 2−/n−; if need be, inter-
change + and − to achieve this. Under Assumptions 1–4 and Assumptions 7–8, we have the
following results:

(i) the one-directional support vector machine gives either completely correct or incorrect
classification as follows: (a) If limd→∞(μ2

0d2α0−1) > σ 2+/n+ − σ 2−/n−, then the proba-
bility that the usual one-directional hyperplane gives correct classification of new points
converges to 1 as d → ∞. (b) If limd→∞(μ2

0d2α0−1) < σ 2+/n+ − σ 2−/n−, then with prob-
ability converging to 1 as d → ∞ a new datum from either population will be classified by
the usual one-directional hyperplane as belonging to the positive population.

(ii) Bidirectional discrimination gives completely correct classification as follows: if either
limd→∞(μ2

0d2α0−1) > σ 2+/n+ − σ 2−/n− or limd→∞(μ2+d2α+−1) > 8σ 2+/n+, the probabil-
ity that the bidirectional classifier gives correct classification of new points converges to 1
as d → ∞.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional simulated and real
examples, the extension of our method to the multi-directional case and proofs of all the theorems.
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