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Summary

In HIV-1 clinical trials the interest is often to compare how well treatments suppress the HIV-1 

RNA viral load. The current practice in statistical analysis of such trials is to define a single ad hoc 

composite event which combines information about both the viral load suppression and the 

subsequent viral rebound, and then analyze the data using standard univariate survival analysis 

techniques. The main weakness of this approach is that the results of the analysis can be easily 

influenced by minor details in the definition of the composite event. We propose a straightforward 

alternative endpoint based on the probability of being suppressed over time, and suggest that 

treatment differences be summarized using the restricted mean time a patient spends in the state of 

viral suppression. A nonparametric analysis is based on methods for multiple endpoint studies. We 

demonstrate the utility of our analytic strategy using a recent therapeutic trial, in which the 

protocol specified a primary analysis using a composite endpoint approach.
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1. Introduction

A well-defined outcome is fundamental to the analysis of time to event data. However, in 

some settings a clear definition of the event of interest is a challenge. An example of such 

settings include clinical trials evaluating the difference between treatments which are 

intended to suppress the level of HIV-1 RNA viral load (henceforth viral load) in people 

infected with HIV (DeGruttola et al., 1998; Gilbert et al., 2000; Ribaudo et al., 2006).
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Infection with HIV is monitored by the number of copies of viral load present in circulating 

plasma (Mellors et al., 1996). HIV research relies heavily on viral load levels for evaluating 

the comparative efficacy and effectiveness of competing therapy regimens, and estimating 

the prognosis of HIV-infected individuals (Egger et al., 2002; Cole et al., 2007; Riddler et 

al., 2008). It is a desirable quality that a treatment regimen would suppress the viral load 

below a clinically relevant level (200 copies/ml is often used in practice) and keep the viral 

load suppressed. One way to quantify viral load suppression is to assess the average time 

between two events, the viral load suppression below a threshold level, and the viral load 

rebound above the threshold.

Traditionally, to analyze such data HIV researchers have created a single composite time-to-

event endpoint, often called “virologic failure.” The time of virologic failure is defined as 

the time of rebound, given that a patient’s viral load has suppressed by some clinically 

relevant cut-off time point, for example, 16 weeks since the beginning of treatment. If the 

patient’s viral load did not suppress by 16 weeks, then the time of virologic failure is set 

equal to 16 weeks. Examples of such an endoint can be found in ACTG A5095 trial (Gulick 

et al., 2004, 2006). Numerous variations of this definition are used in practice, with varying 

values of the cut-off time point (Robbins et al., 2003; Fischl et al., 2003; Riddler et al., 

2008). More complicated definitions of virologic failure may employ multiple criteria for 

viral load suppression and rebound, such as in ACTG A5142 and A5202 trials (Riddler et 

al., 2008; Sax et al., 2009). A related endpoint is the Federal Drug Administration’s time to 

loss of virologic response (TLOVR) (Guidance for Industry, 2002), where patients not 

suppressing by the cut-off time point are assigned zero as their time of virologic failure. 

Although such definitions may differ substantially, often being tailored to particular trials, 

they share two common features. Firstly, the information contained in two distinct events, 

viral suppression and viral rebound, is collapsed into a single composite event. Secondly, for 

patients who do not suppress by some chosen cut-off time, the time of virologic failure is 

assigned to a prespecified time, for example, the cut-off time. The differences between the 

above definitions involve different choices of cut-off timepoints and different criteria for 

suppression and rebound.

While such composite endpoints facilitate the application of standard methodology for right 

censored time to event data in an intent to treat analysis, there are practical concerns which 

arise from such endpoint definition. The definitions are complicated, and while 

understandable to most clinicians, may not generalize readily across trials and populations. 

For the patients who did not suppress their viral load by the cut-off time, the event time is 

redefined, which can have a notable impact on results, as evidenced in the simulation studies 

in Section 3. Finally, the early dynamics of suppression may be obscured using such 

composite endpoints.

To avoid the above mentioned problems, we suggest using a different endpoint and different 

analysis methods based on multistate models (Pepe, 1991). These methods explicitly 

acknowledge the fact that we have two distinct events, viral load suppression and rebound, 

with corresponding survival functions SS(t) and SR(t), respectively. Our proposed endpoint is 

based on the probability of being in suppression G(t), which is simply SR(t) – SS(t). We 

suggest an intuitive summary of treatment efficacy based on a weighted integral of this 
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difference over a specified time interval of interest, say 1 year. With equal weights over 

time, this measure reduces to the restricted mean time suppressed over the time interval. One 

may tailor the weights to emphasize the timepoints of scientific interest, enabling a rigorous 

exploration of either early or late suppression dynamics. This endpoint is well-defined and 

has a clear and simple interpretation which may permit comparisons across trials and 

populations. The proposed analysis accounts for the fact that a proportion of patients will 

never suppress their viral load and allows investigators to simultaneously assess differences 

in both time to viral suppression and time to viral rebound, emphasizing those timepoints 

relevant to treatment evaluation. A simulation study assessing performance of the proposed 

endpoint in comparison to endpoints based on composite events is discussed in Section 3. 

The practical utility of the analysis is illustrated in a reanalysis of ACTG A5142 in Section 

4. A discussion concludes in Section 5.

2. Methods

For patient i, let Ri be the treatment regimen assignment at time of randomization, with the 

focus being an intent to treat analysis of treatment efficacy. The potential time at which 

patient i has their viral load suppressed is denoted by  and the potential time at which 

patient i has their viral load rebound is denoted by . Let Ci denote the potential censoring 

time for patient i, with the binary indicators  and  equallying 1 when  and  are 

smaller than Ci, respectively, and 0 otherwise. Furthermore, define  and 

. In general, , because the time to rebound of viral load may only 

occur subsequent to viral load suppression. For patient i, the observed data consists of 

. The main difficulty in conducting a time-to-event intent to treat 

analysis using this data structure is that there is not an obvious single “time to event” on 

which to base the analysis.

Suppose for simplicity that there are two treatment groups, r = 1 and 2, and let  and 

denote the survival functions for  and , respectively, in group r = 1, 2. The endpoint 

we propose for viral suppression studies is the probability of being suppressed at time t, 

, r = 1, 2. This endpoint is defined without conditioning on 

information observed post randomization and may be analyzed using intent to treat methods. 

However, because the event probability is the difference difference of two survival functions 

and is not itself a survival function for a single time to event, the Kaplan–Meier estimator 

and logrank test are not applicable. Inferential methods for multistate data must be used in 

the development of non-parametric estimators and tests for treatment differences.

Following Pepe (1991), we employ the Kaplan–Meier estimates , r = 1, 2, of 

survival functions for time to viral suppression and time to viral rebound respectively. Note 

that time to viral rebound defined as above is measured from randomization. The survival 

function for time to viral rebound will be the marginal survival function, not conditional on 

being suppressed. We can estimate the probability for a patient to be in the state of 

suppression, within each treatment group separately, as
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The variance estimator for Ĝr(t), r = 1, 2, is given by

where nr is the number of subjects in group r,

, are the counting processes for the events of suppression and rebound, 

respectively for a patient i,  and  are the at risk processes for suppression and 

rebound, respectively for a patient i, and

The probability of being in suppression Gr(t) for group r = 1, 2 varies over time, similarly to 

a survival function, albeit not a monotically decreasing function of t. As with standard time 

to event analyses, simple summary measures are needed for quantifying differences among 

treatment regimens. One should recognize that Gr(t) does not have a corresponding hazard 

function and treatment differences cannot be summarized using hazard ratios, as they might 

in separate analyses of  and . We suggest summarizing using the weighted restricted 

mean time a patient from group r will spend in suppression in the time interval [0, t0], which 

is , where Ŵ (u) is an estimate of some appropriately chosen weight 

function W(u) discussed below.

The analysis may be tailored to capture the information of greatest importance with a careful 

choice of the weight function. When W(u) ≡ 1, the weighted integral estimates the restricted 

mean time spent in viral suppression. For those interested in short term outcomes, larger 

weights may be applied at early time points, and vice versa for long term outcomes. For 

example, for those interested primarily in long term maintenance, zero weights may be 

employed at time points before some predetermined cut-off for suppression, for example, 24 

weeks. On the other hand, for those interested in population health where individuals with 

circulating virus present a transmission risk, nonzero weights at early time points would be 

an important consideration.

Following Pepe (1991), for the purpose of hypothesis testing one may compute a simple Z 

type test statistic as the difference of the weighted averages in the two treatment arms. The 

test statistic is:
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Under the null hypothesis, the test statistic is asymptotically normal with zero mean and its 

asymptotic variance can be estimated by

where

Wald type confidence intervals for the weighted average time in suppression may be 

calculated using the asymptotic normality of the estimator  and its 

variance estimator V̂
r, r = 1, 2.

The choice of the weight function may also be directed towards improving the power of the 

test statistic to detect treatment differences in the probability of suppression over time. As 

suggested by Pepe and Fleming (1989), one may downweight at time points where Ĝ1 – Ĝ2 

is highly variable using the weight function:

where . This may also be accomplished 

using some function of the censoring distributions in the two groups Pepe and Fleming 

(1989), with weight:

where  is the Kaplan–Meier estimator of the survival function of Ci, , in group r 

= 1, 2 and pr is the proportion of patients allocated to group r = 1, 2. The unity weight 

assigns equal weight to all time points, while the second and third weights tend to assign 

higher weight to earlier time points, where the estimation is typically less variable, 

potentially resulting in increased power. In applications with focused scientific objectives, 

the choice of the weight should be driven by those objectives and not by unguided power 

considerations.
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If we have several strata j = 1, …, J and wish to conduct a stratified analysis, we can 

compute the above WG statistics separately within each stratum j and then let

where WGj and  are the test statistic and its estimated variance within stratum j = 

1, …, J. The scalar ωj determines the relative weight given to stratum j = 1, …, J. Under the 

null hypothesis of no difference between the groups, the SWG statistic is asympttically 

normal N(0, 1).

To perform power and sample size calculations for studies using the proposed endpoint, one 

can use standard formulas for continuous normally distributed outcomes. The standard 

deviation of the test statistic necessary for such computations can be obtained by re-analysis 

of previously available similar data or via simulations. For example, for the test statistic 

based on the unity weight, for a trial with two arms of equal size and assuming equal 

variances in both arms, we can take the desired effect size Δ to be a clinically relevant 

difference in average time spent in suppression between the treatment and control arms (e.g., 

4 weeks, if weeks is the chosen time scale). If the data from an earlier similar trial is 

available, we can compute the WGprior statistic for the prior trial data and estimate its 

standard error. Due to the scaling of WG by , the standard error  is an 

estimate of the true standard deviation of the time spent in suppression. Hence we can use Δ 

and  as the effect size and the standard deviation in the standard sample size 

formulas. The results of a small simulation study verifying this approach are provided at the 

end of Section 3.

3. Simulation Results

We conducted a simulation study to compare performance of the proposed endpoint with the 

virologic failure endpoint used in the A5142 trial and TLOVR. For each simulated patient 

we generated a treatment group assignment and then, conditionally on the treatment 

assignment, times to suppression , rebound , and censoring (Ci). The time was on 

the weeks scale, and the length of the observation period was chosen to be 80 weeks. We 

first generated time from randomization to suppression, then time from suppression to 

rebound, and then computed the time from randomization to rebound as the sum of the two 

above times.

We employ three different simulation scenarios shown in Figure 1. In scenario 1 the 

treatment group was the same as control in terms of suppression and had much later 

rebound, thus maintaining suppression much longer than the control group. Under scenario 

2, the treatment group had faster suppression but also faster rebound. On average, in 

scenario 2, the treatment group was suppressed longer. In scenario 3, the treatment group 

suppressed later than in the control group, but maintained suppression longer. Thus, under 
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scenario 3, the treatment group had reduced probability of suppression in the beginning of 

the observation period which reversed at later times.

We used the Weibull distribution for all time variables in the simulations, due to its flexible 

shape, with the CDF function  and the distribution parameters α 

and β as follows. Scenario 1: the treatment group—αS = 0.2, βS = 4000, 

, the control group— αS = 0.2, βS = 4000, . 

Scenario 2: the treatment group—αS = 0.4, βS = 800, , the control group

—αS = 0.8, βS = 320, . Scenario 3: the treatment group—αS = 1, βS = 8, 

, the control group—αS = 0.1, βS = 0.0008, . The 

censoring distribution was the same in both treatment groups and across all scenarios, with 

αcens = 1.5, βcens = 400. Treatment assignment was generated as a Bernoulli random variable 

with success probability 0.5. We assessed several sample sizes between 250 and 2000 

patients. All simulations were conducted using 1000 samples. For the proposed method, we 

defined observed data as , and 

. We computed the test statistic WG, with each of the three weight functions 

described in Section 2.

To define virologic failure as in the A5142 trial or for the TLOVR-like endpoint, we first 

chose a cut-off point γ0, non-suppression prior to which should be considered a failure. 

Then, given the cut-off, we defined the observed data for the composite event in A5142 as:

and

Similarly, the data for the TLOVR-like event were defined as:

and

Gouskova et al. Page 7

Biometrics. Author manuscript; available in PMC 2015 February 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Using the composite endpoint from the A5142 protocol and TLOVR independently, we 

separately performed two-sided logrank tests and then determined the direction of the 

difference by fitting the Cox model using treatment group as the sole covariate, to mimic the 

intent to treat analysis from Riddler et al. (2008). We looked at a range of possible cut-off 

points in the definition of composite events for the A5142 and TLOVR endpoints.

The observed type I error rate was close to the nominal level for all three methods, ranging 

from 0.041 to 0.057 for the proposed endpoint and from 0.040 to 0.060 for A5142 and 

TLOVR endpoints (not shown in tables). The results for power are summarized in Table 1. 

For the proposed method, the power to reject the null hypothesis was consistent for all 

scenarios, for all choices of the weight function, and increased with sample size. However, 

for the A5142 composite endpoint and for TLOVR, the power varied from being higher than 

that for the proposed method to being almost zero, depending on the scenario and the choice 

of the cut-off point γ0. For scenario 1, the power for both composite endpoints was much 

higher than for the proposed method. For scenario 2, the power for A5142 and TLOVR 

endpoints was sometimes worse than for the proposed method, depending on the chosen 

value of the cut-off. The results for scenario 3 are the most interesting. If we look at which 

treatment arm was selected under scenario 3, for some values of γ0, the A5142 and TLOVR 

analyses always incorrectly selected the control arm. For a large sample size (2000 patients), 

the null hypothesis was rejected in favor of the wrong treatment group 81% of the time 

using the A5142 endpoint and 92% of the time using TLOVR. Such a reversal of results 

happened because both composite endpoints from A5142 and TLOVR re-defined the time of 

event. For some values of the cut-off γ0 (prior to 12 weeks in the scenario 3), the failures in 

the treatment group were forced to happen earlier than in the control group.

We also conducted a small simulation study to test the sample size computations for the 

proposed endpoint. We generated 1000 samples from the known distributions under scenario 

3 described above, assuming a known effect size. Based on each simulated sample, we 

estimated standard deviations for our test statistics and computed predicted power based on 

the observed standard deviations and hypothesized effect size (using SAS procedure 

POWER). Then we compared the average predicted power with the power observed in 1000 

simulations. The results summarized in Table 2 generally exhibit good agreement between 

the observed and predicted powers.

4. Re-analysis of the A5142 Trial

As an example, we re-analyzed the ACTG A5142 trial using the virologic failure endpoint 

from A5142 and the proposed method. The A5142 trial included 753 patients whose 

baseline viral load was at least 2000 copies/ml. Patients were randomized to one of the three 

treatment arms, efavirenz plus two NRTIs (efavirenz group), lopinavir–ritonavir plus two 

NRTIs (lopinavir–ritonavir group), or lopinavir–ritonavir plus efavirenz (NRTI-sparing 

arm). The median follow-up was 112 weeks, with the longest follow-up time being 157 

weeks.

The definition of a virologic failure for A5142 (Riddler et al., 2008, p. 2097) was lack of 

confirmed viral load suppression below 200 copies/ml or by log10 by 8 weeks; or lack of 
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confirmed viral suppression below 200 copies/ml by 32 weeks; or confirmed viral rebound. 

The definition of viral rebound also varied depending on when the rebound occurred. Early 

rebound (prior to 32 weeks) was defined as a viral load increase to over 1000 copies/ml for 

patients whose viral load had suppressed below 200 copies/ml; or viral load increase by 

log10 from the nadir value for patients whose viral load had never suppressed below 200 

copies/ml. Late rebound (after 32 weeks) was defined as a viral load ≥200 copies/ml. 227 

patients experienced virologic failure by the A5142 definition. The Kaplan–Meier estimators 

for virologic failure are shown on the top panel of Figure 2.

For the proposed approach, we defined two separate events, viral suppression and viral 

rebound. We defined viral suppression as viral load being reduced to <200 copies/ml for two 

consecutive measurements 4 weeks or less apart. We defined viral rebound as viral load 

being ≥200 copies/ml at two consecutive measurements 4 or less weeks apart. We had 667 

patients in all treatment groups whose viral load was suppressed and 129 patients who 

experienced viral rebound. A plot of the estimated probability of being suppressed, over 

time from randomization, by treatment group, is displayed on the bottom panel of Figure 2.

Next, we computed the test statistic WG, using the three different weight functions 

introduced in Section 2. We integrated over the first 143 weeks of follow-up, capturing 

almost all information in the dataset. For comparison, logrank tests were also calculated 

based on the A5142 composite endpoint. Over the 143 week period after randomization, the 

analysis showed that a patient from the efavirenz group was in a state of viral suppression 

for 12 weeks longer on average than a patient from the lopinavir–ritonavir group (95% CI = 

(3, 21), p-value after Bonferroni correction p = 0.032) and for 3 weeks longer than a patient 

from the NRTI-sparing group (95% CI = (−3, 13), p-value p = 0.783). Moreover, a patient 

from the NRTI-sparing group was in the state of suppression for 5 weeks longer than a 

patient from the lopinavir–ritonavir group (95% CI = (−2, 16), p-value p = 0.365). The 

results of testing the null hypothesis of no difference between the three treatment groups 

using WG are reported in Table 3 as endpoint 1. Inferences are similar to those obtained 

from the original analysis.

Recognizing that there might have been clinical considerations for defining a separate early 

viral suppression and viral rebound, we performed additional analyses mimicking the 

definitions of viral suppression and viral rebound from the A5142 trial as closely as 

possible. We defined early viral suppression and viral rebound prior to 32 weeks as was 

done in the A5142 trial. Under this definition, the number of patients in all treatment groups 

who experienced viral suppression was 691, and who experienced viral rebound was 183. 

The results of this supplementary analysis are also summarized in Table 3 as endpoint 2 and 

are not statistically significant at 0.05 level, though the direction of the differences remained 

the same.

We also performed sensitivity analysis to assess how much the results of the A5142 trial 

depended on the choice of cut-off time of 8 weeks for early rebound and 32 weeks for late 

rebound. Judging by the plot of the probability to be in suppression by treatment group, we 

did not expect inference to change when we varied the cut-off times for early and late viral 

rebound. This is because the best treatment group was uniformly better than the second best 
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treatment group both in terms of viral suppression and viral rebound, with the same ordering 

holding for the second and third best treatment groups. We re-defined virologic failure using 

cut-offs ranging from 5 to 15 weeks for early rebound and from 25 to 40 weeks for late 

rebound. The results confirmed our expectations: the p-values for comparison of the 

efavirenz and lopinavir–ritonavir groups remained significant and ranged from 0.0107 to 

0.0306 (after a Bonferroni correction), all other comparisons were still not statistically 

significant, and all the differences between the groups were in the same direction.

In summary, certain advantages of the proposed endpoint can be clearly seen in Figure 2, 

where the time-specific treatment differences are cleanly summarized via the probability of 

being in suppression. The efavrienz group suppresses most rapidly and with higher 

probability and the suppression is maintained as effectively as in the NRTI-sparing arm. The 

NRTI-sparing arm has comparable early suppression to that in the lopinavir group, but with 

superior long term maintenance. Such information is not as readily gleaned from the plot of 

the survival curves for the A5142 composite endpoint.

5. Discussion

DeGruttola et al., (1998) were the first to discuss the use of HIV-1 RNA viral load as an 

outcome measure in HIV trials, both as a repeatedly-assessed continuous biomarker and as 

an indicator of treatment (virologic) failure. Gilbert et al., (2000) expand on the discussion 

of virologic failure and consider several competing definitions. Ribaudo et al. (2006) 

discussed design issues in HIV trials, concentrating the discussion of endpoints on further 

refinements in virologic failure. To the best of our knowledge, no one has previously 

suggested the combined endpoint we propose here.

We implemented a novel approach to defining a time to event endpoint in HIV research that 

combines time to viral suppression and time to viral rebound into a single measure, the 

probability of being suppressed over time. As demonstrated in the A5142 data analysis, this 

quantity precisely captures the interplay of suppression and rebound, yielding a simple 

graphical representation of early and late suppression dynamics which may be preferable to 

that for the existing composite endpoints. The integrated probability of suppression can 

easily be adapted by choice of the weight function to target specific time periods of interest. 

Employing unity weight provides a particularly attractive summary which may be 

interpreted as the average number of weeks suppressed over the time period of interest. As 

suggested by a referee, if there is scientific justification to disregard a portion of the 

followup period, the weights function can be set to zero for those times points.

The probability of suppression endpoint may also be useful in observational studies, albeit 

with the necessary caveats about confounding. Further work is needed to appropriately 

adjust for confounding factors in the analysis. Future research is planned into regression 

modeling of the probability of suppression and the associated weighted average times in 

suppression. However, the application of the proposed endpoint to observational studies is 

beyond the scope of the current manuscript which deals with intent to treat analyses in 

randomized HIV trials with HIV RNA measurements obtained on a specific predefined 

schedule.
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The unifying multistate framework applied here to the HIV setting may also prove useful in 

other settings where endpoints are defined using biomarker threshold values, for example, 

hypertension as defined by elevated blood pressure. As in the HIV application, the resulting 

composite endpoints may be ad hoc and not easily generalizable across studies and 

populations. A more efficient use of the observed data in these settings might be 

accomplished via jointly modeling the longitudinal biomarker measurements as continuous 

outcomes and the event times. To adopt this strategy, rather strong modeling assumptions 

may be needed, the computations may be challenging, and summarizing the results from the 

fitted joint model may not be straightforward.

All analysis for this article has been conducted using SAS 9.3 software (SAS Institute, Cary, 

NC).
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Figure 1. 
Simulations scenarios: CDF for time to suppression, CDF for time to rebound, and 

probability to be in suppression, by treatment group.
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Figure 2. 
Top panel: Survival functions for virologic failure as defined in A5142 trial, by treatment 

group. Bottom panel: Probability to be in suppression, by treatment group.
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