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Summary

Parametric estimation of the cumulative incidence function (CIF) is considered for competing
risks data subject to interval censoring. Existing parametric models of the CIF for right censored
competing risks data are adapted to the general case of interval censoring. Maximum likelihood
estimators for the CIF are considered under the assumed models, extending earlier work on
nonparametric estimation. A simple naive likelihood estimator is also considered that utilizes only
part of the observed data. The naive estimator enables separate estimation of models for each
cause, unlike full maximum likelihood in which all models are fit simultaneously. The naive
likelihood is shown to be valid under mixed case interval censoring, but not under an independent
inspection process model, in contrast with full maximum likelihood which is valid under both
interval censoring models. In simulations, the naive estimator is shown to perform well and yield
comparable efficiency to the full likelihood estimator in some settings. The methods are applied to
data from a large, recent randomized clinical trial for the prevention of mother-to-child
transmission of HIV.
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1. Introduction

Breastfeeding accounts for up to half of infant HIV infections worldwide. Unfortunately, in
resource poor settings where the burden of HIV infection is highest, non-breastfed babies
face significantly increased morbidity and mortality from early childhood diseases like
malnutrition and diarrhea due to alternative feeding methods, poor sanitation or lack of clean
fresh water. This presents a dilemma for HIV positive mothers which has motivated studies
of the prevention of mother-to-child transmission (PMTCT) of HIV through breast milk. In
PMTCT studies, an infant can experience one of three events during the breastfeeding
period: (i) HIV infection, (ii) weaning prior to HIV infection, or (iii) death prior to HIV
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infection or weaning. Typically the event times, especially the time of HIV infection, are not
directly observed but only known up to some interval. PMTCT studies therefore give rise to
interval censored competing risks data.

In the competing risks setting it is often of interest to estimate the probability of a particular
event occurring by some time t as given by the cumulative incidence function (CIF). The
CIF and the cause specific hazard function (CSHF) are basic identifiable quantities in the
competing risks framework. In many settings the CIF may be preferred to the CSHF because
the CIF has a simple interpretation as the cumulative risk of a specific event in the presence
of competing risks, as opposed to the instantaneous rate of the event.

Nonparametric statistical methods have been studied for estimating the CIFs under interval
censoring, with rigorous theory having been established for current status data with a single
monitoring time. Hudgens et al. (2001) derived the nonparametric maximum likelihood
estimator (NPMLE) of the CIFs for competing risks data subject to interval censoring.
Jewell et al. (2003) studied the NPMLE of the CIF for current status data; they also
introduced a naive estimator for current status data which only uses a subset of the observed
data. Groeneboom et al. (2008b) derived the limiting distributions for the NPMLE and naive
estimator of the CIF for current status data. Unfortunately nonparametric estimation has the
disadvantage of being computationally intense, is difficult to implement using standard
software, and may perform poorly in small samples owing to slow rates of convergence
(Groeneboom et al., 2008a). Consequently, parametric models are attractive in this setting.
When the model is correct, parametric estimation is usually more efficient than
nonparametric estimation and permits extrapolation of long-term event probabilities.
However, estimation of parametric models for the CIF for general interval censored
competing risks data has not been investigated to date.

Jeong and Fine (2006) proposed parametric modeling of the CIF for right censored
competing risks data. In this paper we extend the Jeong-Fine models to the general case of
interval censored competing risks data. Both maximum likelihood estimators (MLEs) and a
naive estimator are considered. The naive estimator enables separate estimation of models
for each cause, unlike the MLEs where all models are fit simultaneously. This eases the
computational burden, with standard software available for inference, and does not require
correct specification of models for the competing causes. However, unlike the full
likelihood, the validity of the naive likelihood is shown to depend on the particular interval
censoring model assumed. These results have important practical implications for the use of
the naive likelihood.

2. Competing risks model specification

Let the random variable K € {1, 2, ..., nk} denote the cause of failure for an individual who
can only experience one of ng mutually exclusive competing causes. Let the non-negative
random variable T denote the time of failure, which may be only known up to some interval.
The CIF for events of type kis Fi(t) = Pr[T <t, K = K], i.e., the probability of experiencing
an event of type k by time t in the presence of competing causes of failure. It is well known
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that £, ()= .5 (u) Ay, (u)du Where S(£)=exp {— [~ Ax(w)du} is the all cause survival
probability and Ay(t) = limg—ofPr(t< T < t + dt, K = k|t < T)/dt} is the type k CSHF.

There are different ways to parametrically model the CIF. With right censored data the
standard approach is by indirect parameterization via the CSHF (Prentice et al., 1978).
Because of the form of the likelihood with right censored data, indirect modeling of CIF
greatly simplifies estimation. Such simplification does not occur with interval censoring, in
which case direct modeling of CIFs may be preferable as the likelihood can be more easily
expressed using the CIFs (Section 3.1 below). The direct modeling approach (Jeong and
Fine 2006) is appealing when the CIF is of primary interest because the assumed model has
a natural interpretation in terms of the probability of an event of interest. In this case a
separate parametric model Fy(t; ©y) is specified for each CIF such that @y is distinct from @
for all j # k. Assuming ng > 1 and each cause occurs with non-zero probability, the CIF is an
improper distribution function, i.e., lim;_.c Fi(t) < 1. Thus it is natural to model the CIF
using cure-type models whereby the cure probability equals the probability of never having
the event of interest. For example, in PMTCT studies there is interest in the probability of an
infant never becoming HIV infected through breast milk.

Different cure-type models may be used to model the CIFs. For right censored data, Jeong
and Fine (2006) considered the Gompertz model

Fi.(t:0r)=1—exp [ Gk {1—exp(ar t)}/ox] (1)

with Oy = (ak, B) where B> 0 and ay < 0 ensure (1) is an improper distribution function.
In this case, the probability of never having an event of type k equals limi—,co{1-F(t; © )}
= exp(Bd ay). Note if (1) holds for all k, the marginal distribution of T does not follow a
Gompertz distribution; moreover

Pr[T < £01,...,0, J=ng—>_ " exp[B; {1—exp(ax t)}/ax] which does not reduce to a
simple parametric form. An alternative parametric modeling approach entails letting Fy(t;
By, 1) = i Pr(T < t|K = k; ©y) where i, = Pr[K = K] and assuming Pr[T < {|K = k; @]
follows a particular parametric distribution such as Weibull. However, unless the conditional
distribution of T given K = k follows a one-parameter model (e.g., exponential), this
approach will generally be less parsimonious than (1).

In the sequel, regardless of parameterization, the models are assumed to satisfy

0<Fy(t;0r)<lforallt>0and k=1,...,n.; (2)

F,(t;0}) is monotonically increasing function of t for k=1, ..., n,. (3)

Additional constraints, such as assuming all individuals must eventually experience one of

the nk competing risks, i.e., hmtﬂooZ:ile (t;©%)=1, will be considered in Section 3.3.
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3. Full likelihood estimation

3.1 Full likelihood

Interval censored data arise when subjects are inspected intermittently and the actual failure
time is only known to lie between successive observation times. Formulations of the
likelihood function for interval censored data without competing risks often assume the
observation process is determined independently of the failure time, e.g., as in the “mixed
case” interval censoring (Schick and Yu, 2000) model where each participant may have a
different number of follow-up visits. Alternatively, Gruger, Kay, and Schumacher (1991)
and Lawless (2003, §2.3.1) consider an independent inspection process (11P) model for
interval censored data which allows future observation times to possibly depend on the
history of the observed data. The development below considers both mixed case and 1P
models.

Let V= (Vy, ..., Vi) denote the vector of ordered observations times where M is the random
number of observation times for an individual. Let Vg = 0 and V),4+1 = 00 such that V|_; < V|
forl=1,...,M+1 DefineAg=1(V-1< TV, K=K fork=1,...,ngcand 1 =1, ..., M
where 1(:) is the usual indicator function. In other words, Ay equals 1 if an individual has an
event of type k during the interval (V|-1, V|], and 0 otherwise. Let

n M
AM‘H:l_ZkilZl:lAkl' The event type is assumed to be unknown for right censored
observations, i.e., when Ap1+1 = 1. Assume we are not able to observe (T, K) directly, but we
do observe copies of Y= (M, V, A) where A = (A1q, ..., DmsB21, -0 Brgm, AM4y).

Under the mixed case interval censoring model, the observation process is assumed to be
independent of the time and cause of failure, i.e.,

(M,V) L (T,K). (@

This model might hold in studies of relatively healthy individuals where the competing
events do not include death. For example, in longitudinal studies of women at risk for
infection with various types of human papillomavirus (HPV), investigators are often
interested in time until HPV infection, which is typically interval censored. Because the rate
of subsequent clearance of infection and/or progression towards early stages of cervical
cancer is also of interest, follow-up might continue on a regular schedule regardless of
whether a woman becomes HPV infected, such that the mixed case model may be
appropriate.

On the other hand, the mixed case model may be unreasonable in other settings. For
example, in the PMTCT setting if an infant tests HIV positive at a particular visit, then
typically no HIV testing is conducted at subsequent planned study visits. Or if an infant dies,
then necessarily there will be no further study visits. In this case, the IIP model may be more
applicable. Following Lawless (2003), for | =1, 2, ... define the history of observation times
and failure information by Hy = (Vo, V1, ..., VI-1, 811, «+vy Bngts -5 By i-1, -+, Bpgi-1) Where
Hy = Vg = 0. Under the 1IP model it is assumed
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Vi L(T,K)|H;, 5)

i.e., the next observation time is independent of the failure time and cause given the history
of observation times and failure information. As in Lawless (2003, page 65) in (5) it is
implied that H, includes information that the individual is alive and uncensored at V|_1, i.e.,
(5) holds for Ayq = -+ = Apgq = = Ay -1 = =+ = Bpgg-1 = 0. Assume that the IIP stops if a
failure is detected, such that Ay =0 forall | < Mandj € {1, ..., nc}.

Following the discussion in Section 2, inference about the CIF may be based on assuming
parametric models for the CSHFs or by directly specifying parametric models for the CIF. In
either case, for k=1, ..., nk let Fi(t; ®y) denote the CIF for type k failure under the assumed
model. Let Y3, ..., Y, be a random sample of n independent and identically distributed
copies of Y. The log likelihood function under either the mixed case or IIP model is given by
the following lemma.

Lemma 1—Under the mixed case interval censoring model (4) or the 1P model (5), the log
likelihood for Yy, ..., Y, equals, up to a constant,

logL (@)zZlogE(Yi;@) ®)

i=1

where © is the vector consisting of elements of ®1 U -+ U ®y,, and {Y; ®) is the likelihood
contribution for a single observation, which equals

Ny M 7 A1\44»1
0V;0)= [ [T{F:(Vis0r) — Fi(Vie1305) } 24 {1—2Fk<m;@k)}
k=1l=1 k=1

Proofs of all lemmas are given in Web Appendix A. In the following sections we consider
maximizing (6) under different constraints on @.

3.2 Unconstrained estimation

Define the unconstrained full likelihood (UFL) estimator © to be the value of ® which
maximizes (6) under assumptions (2) — (3). Under suitable regularity conditions,

\/E{Fk(t;(:)k)_Fk(t;@k)} is asymptotically Normal with mean 0 and variance which may be
estimated by

’

@ {aeont=(F5e) T (56, ) s

=0

where ﬁé equals the inverse of the observed Fisher information, i.e., the matrix of the
negative second derivatives of (6) with respect to ®. Web Appendix B provides details for
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model (1). A pointwise (1 — a) confidence interval (CI) for Fy(t; ©y) is

Fi(t;08) £ 210y | var {Fk(t?ek)} where z is the g quantile of the standard Normal

distribution.

The UFL estimator is unconstrained in that there are no restrictions on the parameters aside
from those imposed by (2) — (3). Consequently, the UFL estimator has the property that the

resulting estimator of the distribution of T, i.e., Pr[7 < t;é]:ZZile<t;ék) may be

greater than one. Although, because © maximizes (6), it follows Z:Zle (f;@k)<1 for t less
than or equal to the largest observation time V), among right censored individuals, as
otherwise evaluating (6) at ® would entail taking the log of a non-positive number. Thus, as
with right censored competing risks data, with interval censored competing risks data,
unconstrained full likelihood estimation only requires that the parametric models hold on the
support of the observation time distribution and does not require modelling assumptions
beyond the upper bound of this support.

3.3 Constrained estimation

In certain settings it may be known that all individuals must eventually experience one of the
Nk competing risks such that

N
Jim ;Fk(t):L 9

This will be the case, for example, in studies where death is one of the competing risks. One
may impose constraint (7) on the assumed parametric models. Define the constrained full
likelihood (CFL) estimator to be the value of ® which maximizes (6) under assumptions (2)
— (3) subject to the equality constraint (7). Inference about ® then follows from standard
constrained maximum likelihood theory. In some cases, (7) can be enforced by solving for
one parameter explicitly in terms of the other parameters, thereby reducing the number of
model parameters by one; e.g., for model (1) when ng =2, let £, = a; log{1 - exp(Bi/a1)}-
In these cases the CFL estimator can be found by unconstrained maximum likelihood based
of the reduced model.

In practice, it may not be known a priori whether the equality constraint (7) holds,
particularly because there may not be information from the observable data about the tail of
the distribution of T, e.g., when the maximum observation time V) is bounded. For instance,
in a cohort study of sexually active women at risk for infection with different HPV types,
many women might not acquire HPV during the study yet may go on to acquire HPV
subsequently. Moreover, in certain populations (e.g., commerical sex workers), whether all
women will eventually contract HPV may not be known. If constraint (7) is not known to
hold a priori, then the MLE for the full model could potentially be computed with respect to
the inequality constraint
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Jim ;Fk(t) <l @

When the true model is off the boundary (i.e., (7) does not hold), then constrained MLEs
obtained assuming (8) are asymptotically equivalent to the UFL and standard large sample
results (as in Section 3.2) apply. However, when the true model is on the boundary (i.e., (7)
holds), standard asymptotic results may not apply; e.g., the constrained MLESs assuming (8)
will not in general have a Normal distribution asymptotically. Therefore, in situations where
it is not known whether the true model lies on the boundary, we propose using the UFL
estimator, which is as efficient as the constrained MLEs assuming (8) when the true model
is off the boundary, but avoids inferential complexities when the true model is on the
boundary. Simulations in Section 5 demonstrate that the UFL can have similar efficiency to
the CFL when the true model is on the boundary.

Note the CFL estimator relies on modelling assumptions beyond the support of the
distribution of observation times. Such assumptions cannot be checked with the observed
data and may not be satisfied if the assumed models are misspecified beyond the support of
the observation time distribution. Similar issues arise with right censored data, where
parametric models cannot be checked beyond the support of the right censoring time
distribution.

3.4 Partly interval censored data

In some instances events of certain types may be observed exactly whereas events of other
types may be interval censored. For example, in the PMTCT study discussed below, failure
times associated with two event types (HIV infection and weaning) are subject to interval
censoring whereas failure times associated with the other event type (death) are observed
exactly. In general, suppose for a subset s C {1, ..., ng} of event types the corresponding
times are observed exactly if T < V), and right censored otherwise with right censoring time
Vu ; otherwise if K s assume T is subject to interval censoring. In this case the observed
data are copies of (M, V, A, T1(T £ V), K € 8)). Under either the mixed case or I1IP models,
the full likelihood contribution for a single observation is

A

M g M+1
IT | TT {E:(Vis01) = Fi(Vie1300) Y25 T f1(T:00) 2" {1—2&%;@@} )
=1 | k¢’ ke k=1

where fi(t; ) = 0F(t; ®y)/ot is the sub-density function for a type k failure. Here we
assume F(t; ®) is continuous at t; otherwise fi(t; k) = Fi(t; By) — Fi(t—; ®y) assuming in
general Fi(:; ®y) is right-continuous with left limits.

4. Naive likelihood estimation

Jewell et al. (2003) proposed a simple naive estimator for the CIF given current status
competing risks data. The non-parametric naive estimator of the CIF is estimated separately
for each failure type based on a reduced version of the observable data and has been shown
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empirically to perform well relative to the full likelihood NPMLE. Jewell et al. (2003) also
gave a brief discussion of using simple parametric models to estimate the CIF with current
status data. Here a naive parametric estimator of the CIF is considered in the general case of
interval censored competing risks data with a random number of observation times.

Fork€ {1, ...,nc} let &, s :1—ZZIAM and AK = (Ay, ..., Dy, Dk m+1) denote the
vector of indicator variables corresponding to cause k only. Let Z, = (M, V, AK) denote the
observable random variables related to failure from cause k, with information about other
causes of failure being ignored. The naive estimator defined below utilizes only the reduced
data Zy, essentially treating failures from other causes as right censored observations. Let
Zik ---» Znk be a random sample of n independent and identically distributed copies of Z.

Lemma 2—Under mixed case interval censoring model (4), the log likelihood function for
Z1k ---» Znk €quals, up to a constant,

logLy,(©)=> 1ogle(Zi;0k) (10)

i=1

where

M
0:(Z1:01) = [{F: (Vis01) —Fr (Vi-1505) } M {1=Fy (V,:05) Y501, (1)
=1

According to Lemma 2, under the mixed case model the naive likelihood has the same form
as the usual likelihood for interval censored data in the absence of competing risks. Lemma
3 indicates that the naive log likelihood (10) is not valid under the 1P model.

Lemma 3—Under the IIP model (5), the log likelihood function for Zyy, ..., Zn equals, up
to a constant,

logLIP (@4, ... ,@"K ):ZlogéiIP(Zik;@l, e @"K) (12)

=1

where

P (24301, 0, =TT {Fu(Vi;0k)— Fu (Vi-1;05) } ¥
n TAVSY
x {1_2j§1Fj Vs ;@j)_Fk (VarsOr)+Fe (Vi ;ek)} o

Unlike the mixed case model, under the 1P model the naive log likelihood (12) includes
parameters ©; for j # k. Thus the naive approach does not afford a simpler likelihood than
the full likelihood under the 11P model. Therefore in the sequel only the naive likelihood
under the mixed case model is considered.

Biometrics. Author manuscript; available in PMC 2015 March 01.
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For mixed case interval censoring, define the naive estimator ® to be the value of ©, which
maximizes (10) assuming 0 < Fi(t; ®,) < 1 for all t and F(t; ®) is monotonically increasing

in t. Under suitable regularity conditions v {Fk(t;ék)—Fk(f;@k)} is asymptotically
Normal and pointwise (1 — a) Cls for Fi(t; ®,) can be computed as in Section 3.2. Like the
UFL estimator, the naive estimators are unconstrained such that

Pr[T < t6y,..., @nK]ZZZIFk(t;ék) may be greater than 1. As in Section 3.4, under
the mixed case model (11) can be generalized to allow for certain events to be observed
exactly. For cause k € S, the set of event types where the corresponding times are observed
exactly, the likelihood contribution for a single observation equals

M
ka(T§@k)AM{1—Fk(VM ;@k)}Ak~1\4+l :
=1

for cause k & s, the naive likelihood contribution equals (11) as before.

5. Simulation study

Simulation studies were conducted to compare the UFL, CFL, and naive estimators under
several scenarios. For all scenarios there were ng = 2 causes of failure. In the first scenario
failure time and type were simulated according to (1) with the parameters ® = (ay, ay, b,
) chosen to satisfy the equality constraint (7) and observation times were simulated
according to a mixed case interval censoring model. Event type and time were simulated
utilizing the factorization F(t; ®y) = Pr(T < t|K = k; ®) Pr(K = k; @), where the cause of
failure K was first randomly generated from a multinomial distribution with cell
probabilities 1 — exp(Bi/ ay) for k=1, 2, and the failure time T was then simulated based on
the conditional distribution of T given K = k using the inverse probability transformation.
The observation times V; < -+ < V) were independently generated to mimic the PMTCT
study described in Section 7. Specifically, study visits (i.e., observation times) were
randomly generated to occur approximately every 4 weeks up to week 28, for a maximum of
7 study visits, where the observation times were uniformly distributed from week 3 to week
5, week 7 to week 9, and so on. For each scheduled visit, an individual missed the visit with
probability 0.1, so the number of actual study visits M was often less than 7. Data sets were
simulated for various sample sizes. For each simulated data set, the UFL, CFL, and naive
estimators were computed. For comparison, NPMLEs of the CIFs were also computed,
based on a full likelihood analogous to (6) and also a naive likelihood analogous to (10).

Results based on 5000 simulated data sets per sample size of n =500, 1000, and 2000 are
given in Tables 1 and 2. In terms of the parameters ay and g, the UFL, CFL, and naive
estimators were approximately unbiased, the model based variance estimates using the
observed information were similar to the empirical variances of the estimators, and the
corresponding 95% Cls exhibited approximately the correct coverage probability (Table 1).
Similar results were obtained for the CIF estimators (Table 2, results for n = 1000 not
shown). In comparison to the non-parametric estimators, the UFL, CFL, and naive

Biometrics. Author manuscript; available in PMC 2015 March 01.
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estimators exhibited smaller bias and variance which is not surprising given the CIF and
observation process models were both correctly specified. Web Appendix C includes
additional simulations conducted under alternative scenarios investigating the effect of
model misspecification. In general these results suggest that the UFL, CFL, and naive
estimators are not particularly robust to severe violations of the parametric assumptions of
the CIF model such that assessment of model fit should be considered when using these
estimators in practice.

6. Goodness-of-fit

The fit of a particular model for Fi(t) can be assessed by comparing parametric estimates
(e.g., F(t; @k)) with non-parametric estimates such as the NPMLE that do not rely on any
modeling assumptions. Formally deriving the properties of a goodness-of-fit statistic that
compares nonparametric and parametric estimates of the CIF is challenging because under a
continuous time model nonparametric estimators converge at a rate slower than vV to
nonstandard distributions (Groeneboom et al. 2008a, 2008b). On the other hand, the
parametric and non-parametric estimates can be compared graphically as an informal
assessment of fit since both estimators are consistent. An alternative approach to assessing
fit is to consider a more general parametric model which includes as a special case the
parametric model under consideration. For instance, a simple three parameter generalization
of (1) is

Fi.(t;0r)=1—exp [ Br{1—exp(axt™)}/ar], (13)

where here Oy = (ak, Bk, M) With the constraints 7 > 0, B« > 0, and ay < 0 ensuring an
improper distribution function. Under (13), lim—co Fi(t; ®y) = 1 — exp(B/ ay) as in the two
parameter model. Because (13) reduces to (1) for n = 1, when using UFL or naive
likelihood, a Wald, score or likelihood ratio test of Hy : 7 = 1 provides a one degree of
freedom goodness-of-fit test of (1). Haile (2008) also proposed a three parameter Gompertz
model, although the form of F(t; ®y) under Haile’s model is more complicated than (13).

7. The breastfeeding, antiretrovirals, and nutrition (BAN) study

The BAN study was a large randomized intervention trial of 2369 HIV-infected women and
their infants conducted in Malawi (Chasela et al., 2010). The specific aims of the study
included evaluating (i) the benefit and safety of antiretroviral (ARV) prophylaxis given
either to infants or to their mothers for PMTCT of HIV during breastfeeding, and (ii) the
feasibility of exclusive breastfeeding followed by early, rapid breastfeeding cessation.
Eligible mother-infant pairs were randomized into one of three ARV arms: maternal ARV,
infant ARV, or control. Blood for HIV testing was scheduled to be drawn from infants at
birth and weeks 1, 2, 4, 6, 8, 12, 18, 24, 28. The actual timing of study visits often deviated
from the scheduled times with some visits missed completely and some infants dropping out
of the study.

One primary endpoint of BAN was infant HIV infection by week 28. Here there are nx = 3
competing risks: HIV transmission (k = 1), death of an HIV/-free breastfeeding infant (k = 2),
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weaning prior to HIV infection (k = 3). By 28 weeks there were 184 HIV-infected infants
and 29 HIV-uninfected deaths. The analysis below excludes 119 infants that were HIV
infected in the first two weeks as these infections were likely due to transmission in utero or
during delivery and thus were not of primary interest to investigators. Seven infants that died
in the first two weeks were also excluded as breast milk transmission of HIV was unlikely
for these infants. Finally 180 infants with no data on breastfeeding were excluded, yielding n
= 2063.

Figure 1 depicts the NMPLE and UFL estimates of the CIF for the two (1) and three (13)
parameter Gompertz models. The UFL estimates were computed using (9) with s = {2}
since death times were known exactly. On the other hand, HIV infection times were interval
censored, known only to be between the last visit where the infant tested HIV negative and
the first visit where the infant tested positive. Likewise, weaning times were only known to
be between the last visit where the mother reported breastfeeding and the first visit where
she reported the infant had been weaned. In comparison to the NPMLE, the two parameter
Gompertz model clearly provides a poor fit; indeed, likelihood ratio tests comparing the two
and three parameter models were significant for all three study arms (p < 0.001).
Conversely, agreement between the NPMLE and three parameter model estimates suggests
the latter provides an adequate fit. Because there were no subsequent study visits after an
infant died, the naive estimators are not recommended as the implied 11P invalidates these
estimators. While all infants in the BAN study will eventually wean or die (i.e.,

1imt—>ooZ:£1Fk(t)=1), the data only provide information on the first 28 weeks of life.
Therefore the CFL estimates are also not recommended as (7) implies the unverifiable
assumption that the Gompertz models hold for t > 28 weeks. Although not recommended,
for comparison’s sake the CFL and naive estimates are included in Web Figures 1 and 2;
estimates of the CIFs are very similar to the UFL estimates in this case.

The parametric estimates of the CIFs provide a straightforward method to test for
differences in the probability of a particular failure type by time t between two study arms.

For example, let Y (¢;07) denote the CIF for a failure of type k for study arm g =1, 2. Let

Z={F}(;6})-F2(t;03)}/ \/ var{ F}(t;0})}+var{F?(t;67)} where &7 are the UFL
estimators computed separately for each study arm g = 1, 2. From Section 3.2 it follows that
the Wald statistic Z will have a standard Normal distribution under the null hypothesis

Ho:F(t;0})=F2(t;0%). Analogous test statistics can be defined using the naive estimators.
Wald statistics comparing the different arms of the BAN study at t = 28 suggest a significant
difference in the probability of HIV infection by 28 weeks between the infant ARV and
control arms (two-sided p-value p < 0.001), and between the maternal ARV and control
arms (p = 0.02). There is also some indication the risk of HIV infection by 28 weeks is
lower in the infant ARV arm compared to the maternal ARV arm (p = 0.11).

8. Discussion

Numerical studies suggest the NL, UFL, CFL perform quite well when the parametric
models are correctly specified. In theory the CFL estimator should have smaller asymptotic
variance than the UFL and naive estimators when (7) holds, although simulation results
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suggest this gain may be small in practice. One appealing feature of the naive estimator is
that under mixed case interval censoring the likelihood has the same form as in the absence
of competing risks, such that existing software for interval censored data could potentially
be utilized. In contrast, the UFL and CFL estimators will in general require additional
programming. The simulations described in Web Appendix C suggest none of the estimators
are particularly robust to severe violations of the assumed parametric CIF model, such that
goodness-of-fit diagnostics will be important in practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Estimated CIFs for HIV, HIV-free death, and HIV-free weaning. The solid black line is the NPMLE; the dashed line is the UFL
estimate for the two parameter Gompertz model; the solid gray line is the UFL estimate for the three parameter Gompertz

model.
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