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Summary

Parametric estimation of the cumulative incidence function (CIF) is considered for competing

risks data subject to interval censoring. Existing parametric models of the CIF for right censored

competing risks data are adapted to the general case of interval censoring. Maximum likelihood

estimators for the CIF are considered under the assumed models, extending earlier work on

nonparametric estimation. A simple naive likelihood estimator is also considered that utilizes only

part of the observed data. The naive estimator enables separate estimation of models for each

cause, unlike full maximum likelihood in which all models are fit simultaneously. The naive

likelihood is shown to be valid under mixed case interval censoring, but not under an independent

inspection process model, in contrast with full maximum likelihood which is valid under both

interval censoring models. In simulations, the naive estimator is shown to perform well and yield

comparable efficiency to the full likelihood estimator in some settings. The methods are applied to

data from a large, recent randomized clinical trial for the prevention of mother-to-child

transmission of HIV.
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1. Introduction

Breastfeeding accounts for up to half of infant HIV infections worldwide. Unfortunately, in

resource poor settings where the burden of HIV infection is highest, non-breastfed babies

face significantly increased morbidity and mortality from early childhood diseases like

malnutrition and diarrhea due to alternative feeding methods, poor sanitation or lack of clean

fresh water. This presents a dilemma for HIV positive mothers which has motivated studies

of the prevention of mother-to-child transmission (PMTCT) of HIV through breast milk. In

PMTCT studies, an infant can experience one of three events during the breastfeeding

period: (i) HIV infection, (ii) weaning prior to HIV infection, or (iii) death prior to HIV
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infection or weaning. Typically the event times, especially the time of HIV infection, are not

directly observed but only known up to some interval. PMTCT studies therefore give rise to

interval censored competing risks data.

In the competing risks setting it is often of interest to estimate the probability of a particular

event occurring by some time t as given by the cumulative incidence function (CIF). The

CIF and the cause specific hazard function (CSHF) are basic identifiable quantities in the

competing risks framework. In many settings the CIF may be preferred to the CSHF because

the CIF has a simple interpretation as the cumulative risk of a specific event in the presence

of competing risks, as opposed to the instantaneous rate of the event.

Nonparametric statistical methods have been studied for estimating the CIFs under interval

censoring, with rigorous theory having been established for current status data with a single

monitoring time. Hudgens et al. (2001) derived the nonparametric maximum likelihood

estimator (NPMLE) of the CIFs for competing risks data subject to interval censoring.

Jewell et al. (2003) studied the NPMLE of the CIF for current status data; they also

introduced a naive estimator for current status data which only uses a subset of the observed

data. Groeneboom et al. (2008b) derived the limiting distributions for the NPMLE and naive

estimator of the CIF for current status data. Unfortunately nonparametric estimation has the

disadvantage of being computationally intense, is difficult to implement using standard

software, and may perform poorly in small samples owing to slow rates of convergence

(Groeneboom et al., 2008a). Consequently, parametric models are attractive in this setting.

When the model is correct, parametric estimation is usually more efficient than

nonparametric estimation and permits extrapolation of long-term event probabilities.

However, estimation of parametric models for the CIF for general interval censored

competing risks data has not been investigated to date.

Jeong and Fine (2006) proposed parametric modeling of the CIF for right censored

competing risks data. In this paper we extend the Jeong-Fine models to the general case of

interval censored competing risks data. Both maximum likelihood estimators (MLEs) and a

naive estimator are considered. The naive estimator enables separate estimation of models

for each cause, unlike the MLEs where all models are fit simultaneously. This eases the

computational burden, with standard software available for inference, and does not require

correct specification of models for the competing causes. However, unlike the full

likelihood, the validity of the naive likelihood is shown to depend on the particular interval

censoring model assumed. These results have important practical implications for the use of

the naive likelihood.

2. Competing risks model specification

Let the random variable K ∈ {1, 2, …, nK} denote the cause of failure for an individual who

can only experience one of nK mutually exclusive competing causes. Let the non-negative

random variable T denote the time of failure, which may be only known up to some interval.

The CIF for events of type k is Fk(t) = Pr[T ≤ t, K = k], i.e., the probability of experiencing

an event of type k by time t in the presence of competing causes of failure. It is well known

Hudgens et al. Page 2

Biometrics. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



that  where  is the all cause survival

probability and λk(t) = limdt→0{Pr(t ≤ T < t + dt, K = k|t ≤ T)/dt} is the type k CSHF.

There are different ways to parametrically model the CIF. With right censored data the

standard approach is by indirect parameterization via the CSHF (Prentice et al., 1978).

Because of the form of the likelihood with right censored data, indirect modeling of CIF

greatly simplifies estimation. Such simplification does not occur with interval censoring, in

which case direct modeling of CIFs may be preferable as the likelihood can be more easily

expressed using the CIFs (Section 3.1 below). The direct modeling approach (Jeong and

Fine 2006) is appealing when the CIF is of primary interest because the assumed model has

a natural interpretation in terms of the probability of an event of interest. In this case a

separate parametric model Fk(t; Θk) is specified for each CIF such that Θk is distinct from Θj

for all j ≠ k. Assuming nK > 1 and each cause occurs with non-zero probability, the CIF is an

improper distribution function, i.e., limt→∞ Fk(t) < 1. Thus it is natural to model the CIF

using cure-type models whereby the cure probability equals the probability of never having

the event of interest. For example, in PMTCT studies there is interest in the probability of an

infant never becoming HIV infected through breast milk.

Different cure-type models may be used to model the CIFs. For right censored data, Jeong

and Fine (2006) considered the Gompertz model

(1)

with Θk = (αk, βk) where βk > 0 and αk < 0 ensure (1) is an improper distribution function.

In this case, the probability of never having an event of type k equals limt→∞{1−Fk(t; Θk)}

= exp(βk/αk). Note if (1) holds for all k, the marginal distribution of T does not follow a

Gompertz distribution; moreover

 which does not reduce to a

simple parametric form. An alternative parametric modeling approach entails letting Fk(t;

Θk, πk) = πk Pr(T ≤ t|K = k; Θk) where πk = Pr[K = k] and assuming Pr[T ≤ t|K = k; Θk]

follows a particular parametric distribution such as Weibull. However, unless the conditional

distribution of T given K = k follows a one-parameter model (e.g., exponential), this

approach will generally be less parsimonious than (1).

In the sequel, regardless of parameterization, the models are assumed to satisfy

(2)

(3)

Additional constraints, such as assuming all individuals must eventually experience one of

the nK competing risks, i.e., , will be considered in Section 3.3.
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3. Full likelihood estimation

3.1 Full likelihood

Interval censored data arise when subjects are inspected intermittently and the actual failure

time is only known to lie between successive observation times. Formulations of the

likelihood function for interval censored data without competing risks often assume the

observation process is determined independently of the failure time, e.g., as in the “mixed

case” interval censoring (Schick and Yu, 2000) model where each participant may have a

different number of follow-up visits. Alternatively, Gruger, Kay, and Schumacher (1991)

and Lawless (2003, §2.3.1) consider an independent inspection process (IIP) model for

interval censored data which allows future observation times to possibly depend on the

history of the observed data. The development below considers both mixed case and IIP

models.

Let V = (V1, …, VM) denote the vector of ordered observations times where M is the random

number of observation times for an individual. Let V0 = 0 and VM+1 = ∞ such that Vl−1 < Vl

for l = 1, …, M + 1. Define Δkl = 1(Vl−1 < T ≤ Vl, K = k) for k = 1, …, nK and l = 1, …, M

where 1(·) is the usual indicator function. In other words, Δkl equals 1 if an individual has an

event of type k during the interval (Vl−1, Vl], and 0 otherwise. Let

. The event type is assumed to be unknown for right censored

observations, i.e., when ΔM+1 = 1. Assume we are not able to observe (T, K) directly, but we

do observe copies of Y = (M, V, Δ) where Δ = (Δ11, …, Δ1M,Δ21, …,, ΔnKM, ΔM+1).

Under the mixed case interval censoring model, the observation process is assumed to be

independent of the time and cause of failure, i.e.,

(4)

This model might hold in studies of relatively healthy individuals where the competing

events do not include death. For example, in longitudinal studies of women at risk for

infection with various types of human papillomavirus (HPV), investigators are often

interested in time until HPV infection, which is typically interval censored. Because the rate

of subsequent clearance of infection and/or progression towards early stages of cervical

cancer is also of interest, follow-up might continue on a regular schedule regardless of

whether a woman becomes HPV infected, such that the mixed case model may be

appropriate.

On the other hand, the mixed case model may be unreasonable in other settings. For

example, in the PMTCT setting if an infant tests HIV positive at a particular visit, then

typically no HIV testing is conducted at subsequent planned study visits. Or if an infant dies,

then necessarily there will be no further study visits. In this case, the IIP model may be more

applicable. Following Lawless (2003), for l = 1, 2, … define the history of observation times

and failure information by Hl = (V0, V1, …, Vl−1, Δ11, …, ΔnK1, …, Δ1,l−1, …, ΔnKl−1) where

H1 = V0 = 0. Under the IIP model it is assumed
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(5)

i.e., the next observation time is independent of the failure time and cause given the history

of observation times and failure information. As in Lawless (2003, page 65) in (5) it is

implied that Hl includes information that the individual is alive and uncensored at Vl−1, i.e.,

(5) holds for Δ11 = ··· = ΔnK1 = ··· = Δ1,l−1 = ··· = ΔnKl−1 = 0. Assume that the IIP stops if a

failure is detected, such that Δjl = 0 for all l < M and j ∈ {1, …, nK}.

Following the discussion in Section 2, inference about the CIF may be based on assuming

parametric models for the CSHFs or by directly specifying parametric models for the CIF. In

either case, for k = 1, …, nK let Fk(t; Θk) denote the CIF for type k failure under the assumed

model. Let Y1, …, Yn be a random sample of n independent and identically distributed

copies of Y. The log likelihood function under either the mixed case or IIP model is given by

the following lemma.

Lemma 1—Under the mixed case interval censoring model (4) or the IIP model (5), the log

likelihood for Y1, …, Yn equals, up to a constant,

(6)

where Θ is the vector consisting of elements of Θ1 ∪ ··· ∪ ΘnK and ℓ(Y; Θ) is the likelihood

contribution for a single observation, which equals

Proofs of all lemmas are given in Web Appendix A. In the following sections we consider

maximizing (6) under different constraints on Θ.

3.2 Unconstrained estimation

Define the unconstrained full likelihood (UFL) estimator Θ̂ to be the value of Θ which

maximizes (6) under assumptions (2) – (3). Under suitable regularity conditions,

 is asymptotically Normal with mean 0 and variance which may be

estimated by

where Σ̂Θ̂ equals the inverse of the observed Fisher information, i.e., the matrix of the

negative second derivatives of (6) with respect to Θ. Web Appendix B provides details for
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model (1). A pointwise (1 − α) confidence interval (CI) for Fk(t; Θk) is

 where zq is the q quantile of the standard Normal

distribution.

The UFL estimator is unconstrained in that there are no restrictions on the parameters aside

from those imposed by (2) – (3). Consequently, the UFL estimator has the property that the

resulting estimator of the distribution of T, i.e.,  may be

greater than one. Although, because Θ̂ maximizes (6), it follows  for t less

than or equal to the largest observation time VM among right censored individuals, as

otherwise evaluating (6) at Θ̂ would entail taking the log of a non-positive number. Thus, as

with right censored competing risks data, with interval censored competing risks data,

unconstrained full likelihood estimation only requires that the parametric models hold on the

support of the observation time distribution and does not require modelling assumptions

beyond the upper bound of this support.

3.3 Constrained estimation

In certain settings it may be known that all individuals must eventually experience one of the

nK competing risks such that

(7)

This will be the case, for example, in studies where death is one of the competing risks. One

may impose constraint (7) on the assumed parametric models. Define the constrained full

likelihood (CFL) estimator to be the value of Θ which maximizes (6) under assumptions (2)

– (3) subject to the equality constraint (7). Inference about Θ then follows from standard

constrained maximum likelihood theory. In some cases, (7) can be enforced by solving for

one parameter explicitly in terms of the other parameters, thereby reducing the number of

model parameters by one; e.g., for model (1) when nK = 2, let β2 = α2 log{1 − exp(β1/α1)}.

In these cases the CFL estimator can be found by unconstrained maximum likelihood based

of the reduced model.

In practice, it may not be known a priori whether the equality constraint (7) holds,

particularly because there may not be information from the observable data about the tail of

the distribution of T, e.g., when the maximum observation time VM is bounded. For instance,

in a cohort study of sexually active women at risk for infection with different HPV types,

many women might not acquire HPV during the study yet may go on to acquire HPV

subsequently. Moreover, in certain populations (e.g., commerical sex workers), whether all

women will eventually contract HPV may not be known. If constraint (7) is not known to

hold a priori, then the MLE for the full model could potentially be computed with respect to

the inequality constraint

Hudgens et al. Page 6

Biometrics. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(8)

When the true model is off the boundary (i.e., (7) does not hold), then constrained MLEs

obtained assuming (8) are asymptotically equivalent to the UFL and standard large sample

results (as in Section 3.2) apply. However, when the true model is on the boundary (i.e., (7)

holds), standard asymptotic results may not apply; e.g., the constrained MLEs assuming (8)

will not in general have a Normal distribution asymptotically. Therefore, in situations where

it is not known whether the true model lies on the boundary, we propose using the UFL

estimator, which is as efficient as the constrained MLEs assuming (8) when the true model

is off the boundary, but avoids inferential complexities when the true model is on the

boundary. Simulations in Section 5 demonstrate that the UFL can have similar efficiency to

the CFL when the true model is on the boundary.

Note the CFL estimator relies on modelling assumptions beyond the support of the

distribution of observation times. Such assumptions cannot be checked with the observed

data and may not be satisfied if the assumed models are misspecified beyond the support of

the observation time distribution. Similar issues arise with right censored data, where

parametric models cannot be checked beyond the support of the right censoring time

distribution.

3.4 Partly interval censored data

In some instances events of certain types may be observed exactly whereas events of other

types may be interval censored. For example, in the PMTCT study discussed below, failure

times associated with two event types (HIV infection and weaning) are subject to interval

censoring whereas failure times associated with the other event type (death) are observed

exactly. In general, suppose for a subset  ⊂ {1, …, nK} of event types the corresponding

times are observed exactly if T ≤ VM and right censored otherwise with right censoring time

VM ; otherwise if K ∉  assume T is subject to interval censoring. In this case the observed

data are copies of (M, V, Δ, T1(T ≤ VM, K ∈ )). Under either the mixed case or IIP models,

the full likelihood contribution for a single observation is

(9)

where fk(t; Θk) = ∂Fk(t; Θk)/∂t is the sub-density function for a type k failure. Here we

assume Fk(t; Θk) is continuous at t; otherwise fk(t; Θk) = Fk(t; Θk) − Fk(t−; Θk) assuming in

general Fk(·; Θk) is right-continuous with left limits.

4. Naive likelihood estimation

Jewell et al. (2003) proposed a simple naive estimator for the CIF given current status

competing risks data. The non-parametric naive estimator of the CIF is estimated separately

for each failure type based on a reduced version of the observable data and has been shown
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empirically to perform well relative to the full likelihood NPMLE. Jewell et al. (2003) also

gave a brief discussion of using simple parametric models to estimate the CIF with current

status data. Here a naive parametric estimator of the CIF is considered in the general case of

interval censored competing risks data with a random number of observation times.

For k ∈ {1, …, nK} let  and Δk = (Δk1, …, ΔkM, Δk,M+1) denote the

vector of indicator variables corresponding to cause k only. Let Zk = (M, V, Δk) denote the

observable random variables related to failure from cause k, with information about other

causes of failure being ignored. The naive estimator defined below utilizes only the reduced

data Zk, essentially treating failures from other causes as right censored observations. Let

Z1k, …, Znk be a random sample of n independent and identically distributed copies of Zk.

Lemma 2—Under mixed case interval censoring model (4), the log likelihood function for

Z1k, …, Znk equals, up to a constant,

(10)

where

(11)

According to Lemma 2, under the mixed case model the naive likelihood has the same form

as the usual likelihood for interval censored data in the absence of competing risks. Lemma

3 indicates that the naive log likelihood (10) is not valid under the IIP model.

Lemma 3—Under the IIP model (5), the log likelihood function for Z1k, …, Znk equals, up

to a constant,

(12)

where

Unlike the mixed case model, under the IIP model the naive log likelihood (12) includes

parameters Θj for j ≠ k. Thus the naive approach does not afford a simpler likelihood than

the full likelihood under the IIP model. Therefore in the sequel only the naive likelihood

under the mixed case model is considered.
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For mixed case interval censoring, define the naive estimator Θ̃
k to be the value of Θk which

maximizes (10) assuming 0 < Fk(t; Θk) < 1 for all t and Fk(t; Θk) is monotonically increasing

in t. Under suitable regularity conditions  is asymptotically

Normal and pointwise (1 − α) CIs for Fk(t; Θk) can be computed as in Section 3.2. Like the

UFL estimator, the naive estimators are unconstrained such that

 may be greater than 1. As in Section 3.4, under

the mixed case model (11) can be generalized to allow for certain events to be observed

exactly. For cause k ∈ , the set of event types where the corresponding times are observed

exactly, the likelihood contribution for a single observation equals

for cause k ∉ , the naive likelihood contribution equals (11) as before.

5. Simulation study

Simulation studies were conducted to compare the UFL, CFL, and naive estimators under

several scenarios. For all scenarios there were nK = 2 causes of failure. In the first scenario

failure time and type were simulated according to (1) with the parameters Θ = (α1, α2, β1,

β2) chosen to satisfy the equality constraint (7) and observation times were simulated

according to a mixed case interval censoring model. Event type and time were simulated

utilizing the factorization Fk(t; Θk) = Pr(T ≤ t|K = k; Θk) Pr(K = k; Θk), where the cause of

failure K was first randomly generated from a multinomial distribution with cell

probabilities 1 − exp(βk/αk) for k = 1, 2, and the failure time T was then simulated based on

the conditional distribution of T given K = k using the inverse probability transformation.

The observation times V1 < ··· < VM were independently generated to mimic the PMTCT

study described in Section 7. Specifically, study visits (i.e., observation times) were

randomly generated to occur approximately every 4 weeks up to week 28, for a maximum of

7 study visits, where the observation times were uniformly distributed from week 3 to week

5, week 7 to week 9, and so on. For each scheduled visit, an individual missed the visit with

probability 0.1, so the number of actual study visits M was often less than 7. Data sets were

simulated for various sample sizes. For each simulated data set, the UFL, CFL, and naive

estimators were computed. For comparison, NPMLEs of the CIFs were also computed,

based on a full likelihood analogous to (6) and also a naive likelihood analogous to (10).

Results based on 5000 simulated data sets per sample size of n = 500, 1000, and 2000 are

given in Tables 1 and 2. In terms of the parameters αk and βk, the UFL, CFL, and naive

estimators were approximately unbiased, the model based variance estimates using the

observed information were similar to the empirical variances of the estimators, and the

corresponding 95% CIs exhibited approximately the correct coverage probability (Table 1).

Similar results were obtained for the CIF estimators (Table 2, results for n = 1000 not

shown). In comparison to the non-parametric estimators, the UFL, CFL, and naive
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estimators exhibited smaller bias and variance which is not surprising given the CIF and

observation process models were both correctly specified. Web Appendix C includes

additional simulations conducted under alternative scenarios investigating the effect of

model misspecification. In general these results suggest that the UFL, CFL, and naive

estimators are not particularly robust to severe violations of the parametric assumptions of

the CIF model such that assessment of model fit should be considered when using these

estimators in practice.

6. Goodness-of-fit

The fit of a particular model for Fk(t) can be assessed by comparing parametric estimates

(e.g., Fk(t; Θ̂
k)) with non-parametric estimates such as the NPMLE that do not rely on any

modeling assumptions. Formally deriving the properties of a goodness-of-fit statistic that

compares nonparametric and parametric estimates of the CIF is challenging because under a

continuous time model nonparametric estimators converge at a rate slower than  to

nonstandard distributions (Groeneboom et al. 2008a, 2008b). On the other hand, the

parametric and non-parametric estimates can be compared graphically as an informal

assessment of fit since both estimators are consistent. An alternative approach to assessing

fit is to consider a more general parametric model which includes as a special case the

parametric model under consideration. For instance, a simple three parameter generalization

of (1) is

(13)

where here Θk = (αk, βk, ηk) with the constraints ηk > 0, βk > 0, and αk < 0 ensuring an

improper distribution function. Under (13), limt→∞ Fk(t; Θk) = 1 − exp(βk/αk) as in the two

parameter model. Because (13) reduces to (1) for ηk = 1, when using UFL or naive

likelihood, a Wald, score or likelihood ratio test of H0 : ηk = 1 provides a one degree of

freedom goodness-of-fit test of (1). Haile (2008) also proposed a three parameter Gompertz

model, although the form of Fk(t; Θk) under Haile’s model is more complicated than (13).

7. The breastfeeding, antiretrovirals, and nutrition (BAN) study

The BAN study was a large randomized intervention trial of 2369 HIV-infected women and

their infants conducted in Malawi (Chasela et al., 2010). The specific aims of the study

included evaluating (i) the benefit and safety of antiretroviral (ARV) prophylaxis given

either to infants or to their mothers for PMTCT of HIV during breastfeeding, and (ii) the

feasibility of exclusive breastfeeding followed by early, rapid breastfeeding cessation.

Eligible mother-infant pairs were randomized into one of three ARV arms: maternal ARV,

infant ARV, or control. Blood for HIV testing was scheduled to be drawn from infants at

birth and weeks 1, 2, 4, 6, 8, 12, 18, 24, 28. The actual timing of study visits often deviated

from the scheduled times with some visits missed completely and some infants dropping out

of the study.

One primary endpoint of BAN was infant HIV infection by week 28. Here there are nK = 3

competing risks: HIV transmission (k = 1), death of an HIV-free breastfeeding infant (k = 2),
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weaning prior to HIV infection (k = 3). By 28 weeks there were 184 HIV-infected infants

and 29 HIV-uninfected deaths. The analysis below excludes 119 infants that were HIV

infected in the first two weeks as these infections were likely due to transmission in utero or

during delivery and thus were not of primary interest to investigators. Seven infants that died

in the first two weeks were also excluded as breast milk transmission of HIV was unlikely

for these infants. Finally 180 infants with no data on breastfeeding were excluded, yielding n

= 2063.

Figure 1 depicts the NMPLE and UFL estimates of the CIF for the two (1) and three (13)

parameter Gompertz models. The UFL estimates were computed using (9) with  = {2}

since death times were known exactly. On the other hand, HIV infection times were interval

censored, known only to be between the last visit where the infant tested HIV negative and

the first visit where the infant tested positive. Likewise, weaning times were only known to

be between the last visit where the mother reported breastfeeding and the first visit where

she reported the infant had been weaned. In comparison to the NPMLE, the two parameter

Gompertz model clearly provides a poor fit; indeed, likelihood ratio tests comparing the two

and three parameter models were significant for all three study arms (p < 0.001).

Conversely, agreement between the NPMLE and three parameter model estimates suggests

the latter provides an adequate fit. Because there were no subsequent study visits after an

infant died, the naive estimators are not recommended as the implied IIP invalidates these

estimators. While all infants in the BAN study will eventually wean or die (i.e.,

), the data only provide information on the first 28 weeks of life.

Therefore the CFL estimates are also not recommended as (7) implies the unverifiable

assumption that the Gompertz models hold for t > 28 weeks. Although not recommended,

for comparison’s sake the CFL and naive estimates are included in Web Figures 1 and 2;

estimates of the CIFs are very similar to the UFL estimates in this case.

The parametric estimates of the CIFs provide a straightforward method to test for

differences in the probability of a particular failure type by time t between two study arms.

For example, let  denote the CIF for a failure of type k for study arm g = 1, 2. Let

 where  are the UFL

estimators computed separately for each study arm g = 1, 2. From Section 3.2 it follows that

the Wald statistic Z will have a standard Normal distribution under the null hypothesis

. Analogous test statistics can be defined using the naive estimators.

Wald statistics comparing the different arms of the BAN study at t = 28 suggest a significant

difference in the probability of HIV infection by 28 weeks between the infant ARV and

control arms (two-sided p-value p < 0.001), and between the maternal ARV and control

arms (p = 0.02). There is also some indication the risk of HIV infection by 28 weeks is

lower in the infant ARV arm compared to the maternal ARV arm (p = 0.11).

8. Discussion

Numerical studies suggest the NL, UFL, CFL perform quite well when the parametric

models are correctly specified. In theory the CFL estimator should have smaller asymptotic

variance than the UFL and naive estimators when (7) holds, although simulation results

Hudgens et al. Page 11

Biometrics. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



suggest this gain may be small in practice. One appealing feature of the naive estimator is

that under mixed case interval censoring the likelihood has the same form as in the absence

of competing risks, such that existing software for interval censored data could potentially

be utilized. In contrast, the UFL and CFL estimators will in general require additional

programming. The simulations described in Web Appendix C suggest none of the estimators

are particularly robust to severe violations of the assumed parametric CIF model, such that

goodness-of-fit diagnostics will be important in practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Estimated CIFs for HIV, HIV-free death, and HIV-free weaning. The solid black line is the NPMLE; the dashed line is the UFL

estimate for the two parameter Gompertz model; the solid gray line is the UFL estimate for the three parameter Gompertz

model.
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