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Summary
The proportional hazards assumption in the commonly used Cox model for censored failure time
data is often violated in scientific studies. Yang and Prentice (2005) proposed a novel
semiparametric two-sample model that includes the proportional hazards model and the
proportional odds model as sub-models, and accommodates crossing survival curves. The model
leaves the baseline hazard unspecified and the two model parameters can be interpreted as the
short-term and long-term hazard ratios. Inference procedures were developed based on a pseudo
score approach. Although extension to accommodate covariates was mentioned, no formal
procedures have been provided or proved. Furthermore, the pseudo score approach may not be
asymptotically efficient. We study the extension of the short-term and long-term hazard ratio
model of Yang and Prentice (2005) to accommodate potentially time-dependent covariates. We
develop efficient likelihood-based estimation and inference procedures. The nonparametric
maximum likelihood estimators are shown to be consistent, asymptotically normal, and
asymptotically efficient. Extensive simulation studies demonstrate that the proposed methods
perform well in practical settings. The proposed method successfully captured the phenomenon of
crossing hazards in a cancer clinical trial and identified a genetic marker with significant long-
term effect missed by using the proportional hazards model on age-at-onset of alcoholism in a
genetic study.
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1. Introduction
Much of the modern statistical methodology for survival analysis originates from the
seminal work of Cox (1972). The Cox proportional hazards model specifies that the hazard
function of the event time T given a p × 1 covariate vector X takes the form
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(1)

where λ(t) is an unspecified baseline hazard function and β is a p × 1 vector of unknown
regression parameters. The assumption of constant relative risks over time in the Cox model,
however, is often violated in many biomedical and genetic studies. For instance, crossing
hazards may be commonly observed in certain clinical trials, in which a particularly
aggressive treatment such as surgery may have adverse effects initially but may show
beneficial results in the long run. In genetic studies, a certain gene may have a large impact
on the hazard for children shortly after birth, but may have a relatively small impact later in
life. In some other studies, genes related to susceptibility for a certain disease may affect
older people more than younger people.

A motivating example is from the Collaborative Study on the Genetics of Alcoholism
(COGA), a genetic family study with the aim of identifying and characterizing genetic
factors that affect the susceptibility to alcohol dependence and related phenotypes (Hasin,
2003). The investigators were particularly interested in assessing genetic effects on the age
at onset of ALDX1, the DSM-III-R+Feighner classification status for alcohol dependence.
Recent studies by Wang et al. (2006) and Diao and Lin (2010) suggested that SNP
rs1972373 on chromosome 14 might be a disease susceptibility locus. There are three
possible genotypes, ‘1/1’, ‘1/2’, and ‘2/2’, at SNP rs1972373. Kaplan-Meier estimates of
survival curves for the three genotype groups presented in Figure 1 appear to be overlapping
with each other before age of around 25 whereas allele ‘2’ appears to be associated with the
risk of alcoholism at older ages. In such situations, the proportional hazards model cannot
distinguish short-term and long-term genetic effects. Another interesting example involves
data from a randomized clinical trial on the treatment of locally unresectable gastric cancer
(Gastrointestinal Tumor Study Group, 1982). The aim of this trial was to compare
chemotherapy with the combined chemotherapy and radiotherapy. As shown in Yang and
Prentice (2005) and Zeng and Lin (2007), the Kaplan-Meier survival curves for the two
treatment groups cross at around 1000 days indicating crossing hazards. The proportional
hazards model cannot capture crossing hazards and could yield very misleading results in
such situations.

When the assumption of proportional hazards is questionable, an alternative to the Cox
model is the proportional odds model (Bennett, 1983; Murphy et al., 1997), which assumes
that the relative risk converges to one rather than remaining constant as time increases. The
survival function of T given covariates X under the proportional odds model takes the form

(2)

where G(·) is a strictly increasing function with G(0) = 0. Both the proportional hazards and
proportional odds models belong to the class of linear transformation models which relate an
unknown monotone transformation of the failure time T linearly to the covariates X (Bickel
et al., Ch 3; Zeng and Lin, 2007). The phenomenon of crossing hazards, however, cannot be
directly captured by linear transformation models.

To accommodate time-varying covariate effects on survival outcomes, one option is to use
manufactured time-dependent covariates involving interactions between covariates and time
in the standard Cox model (Hess, 1994; Therneau and Grambsch, 2000). Specifying the
right form of the interaction terms can be challenging, particularly when there are multiple
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continuous covariates. Alternatively, one can extend the Cox model (1) through the use of
time-varying regression coefficients such that

where β(t) is a p × 1 vector of unspecified functions of t. Estimation and inference
procedures for this so-called varying-coefficient Cox model have been investigated by
several authors, including Zucker and Karr (1990), Murphy and Sen (1991), Murphy (1993),
Martinussen et al. (2002), Winnett and Sasieni (2003), Cai and Sun (2003), Tian et al.
(2005), and Peng and Huang (2007), among others. In general, nonparametric smoothing is
required to estimate the time varying coefficients. Other methods that allow for non-constant
hazard ratios also include the heteroscedastic version of linear transformation models (Zeng
and Lin, 2007) and the gamma frailty model with scale and shape parameters dependent on
covariates, which includes the proportional hazards and the proportional odds models as
nested models (Hougaard, 2000; Kosorok et al., 2004; Zeng and Lin, 2007). It is worthwhile
to note that the interpretations of the parameters in these models can be different.

Yang and Prentice (2005) proposed a novel semiparametric two-sample hazards rate model
that accommodates crossing survival curves. Their model leaves the baseline distribution
unspecified and the two model parameters have appealing interpretations of the short-term
and the long-term hazard ratios, respectively. The authors developed inference procedures
based on a pseudo score approach and showed that the estimators are consistent and
asymptotically normal. Although extension to accommodate covariates was mentioned, no
formal procedures have been provided or proved. In addition, the pseudo score approach
may not be asymptotically efficient.

In this paper, we study the extension of the two-sample semiparametric hazards rate model
of Yang and Prentice (2005) to accommodate potentially time-dependent covariates. We
develop efficient likelihood-based estimation and inference procedures. The estimators are
shown to be consistent, asymptotically normal, and asymptotically efficient. The rest of the
paper is organized as follows. In section 2, we introduce the semiparametric hazards rate
model accommodating potentially time-dependent covariates and formulate the non-
parametric likelihood function. In Section 3, we describe the model assumptions and derive
the asymptotic theories. Extensive simulations studies are presented in Section 4 to examine
the finite sample properties of the proposed method. In Section 5, we illustrate the new
model through the applications to a cancer clinical trial and a genetic study on alcoholism.
We conclude with a brief discussion in Section 6.

2. Models and Inference
Suppose that there is a random sample of n independent subjects. For the ith subject, let Ti
be the failure time, Ci be the censoring time, and Xi be a p × 1 vector of (time invariant)
covariates. The data consist of {Yi = min(Ti, Ci), Δi = I(Ti ≤ Ci), Xi, i = 1, …, n}, where I(·)
is the indicator function. Let τ be a constant denoting the end of the study. We assume that
Ti and Ci are independent given Xi. We also assume that P(Ci ≥ τ|Xi) = P (Ci = τ|Xi) > 0.

To incorporate short-term and long-term covariate effects, Yang and Prentice (2005)
discussed the following semiparametric hazards rate model
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(3)

where λ(t|Xi) is the hazard function of the event time Ti given Xi, λ(t) is the baseline hazard

function,  is the baseline survival function, F(t) = 1 − S(t) is the
baseline cumulative distribution function, and β and γ are two vectors of unknown

regression parameters. The baseline cumulative hazard function  is left
unspecified. Under this model, the hazard ratios between two sets of covariate values are
allowed to be non-constant over time. Particularly, we can show that

assuming the existence of the limits, where τ0 = sup{t : S(t) > 0}. Therefore, the parameters
eβ and eγ can be interpreted as the short-term and long-term hazard ratios, respectively.
Moreover, model (3) includes the proportional hazards and proportional odds models as two
sub-models. When β = γ, model (3) reduces to the proportional hazards model (1); and when
γ = 0, model (3) reduces to the proportional odds model (2) with G(t) = eΛ(t) − 1 and β gives
the log-odd ratios.

We extend model (3) to allow time-dependent covariates. Let Xi(·) be a p × 1 vector of
(possibly time-dependent) covariates. Also let X̄i(t) denote the history of Xi(·) over [0, t].
We assume that the time dependent covariates are external and that Xi(·) are bounded right-
continuous functions with bounded right derivatives in [0, τ] with probability one. We
specify that the cumulative hazard function conditional on X̄i(t) takes the form

(4)

where Λ (t), S(t), F (t), β, and γ have the same interpretation as those under model (3).

Our goal is to make inference about parameters θ ≡ (β, γ) and the function Λ(t). Under the
assumption of conditional independent censoring, the likelihood for (θ, Λ) takes the form

where Λ′(t) is the first derivative of Λ(t).

In order to estimate the unknown parameters, we need to maximize the observed-data
likelihood. However, this maximum does not exist because one can always choose Λ′(Yi) =
∞ for some Yi with Δi = 1. Thus, we take a nonparametric maximum likelihood approach, in
which Λ is allowed to be a right-continuous function. Specifically, we replace Λ′(Yi) with
Λ{Yi}, the jump size of Λ(·) at Yi. Therefore, we obtain the following nonparametric
likelihood function
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(5)

We maximize the nonparametric log-likelihood function ln(φ) ≡ log Ln(φ). The resultant
nonparametric maximum likelihood estimators (NPMLEs) are denoted by (θ̂n, Λ̂n). It is easy
to show that Λ̂n must be a step function with positive jumps only at the Yis for which Δi = 1.
We order the distinct observed failure time as (Y(1), …, Y(m)), where m is the total number of
distinct observed failure times. Therefore, the above maximization should be performed over
the parameters θ and these positive jumps. The cumulative hazard function Λ(t|X̄i(t)) in (5)
takes the form

To compute the NPMLEs, we use the quasi-Newton algorithm described in Chapter 10 of
Press et al. (1992). Specifically, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method, which is one of the most efficient method for solving nonlinear optimization
problems, and was proposed by Broyden (1970), Fletcher (1970), Goldfarb (1970), and
Shanno (1970) individually. The BFGS method and its variants have been implemented in
standard software such as SAS, R, and Matlab and have been successfully used in literature.
To ensure the stability of the quasi-Newton algorithm, we suggest to center covariates at
their means. When we constrain the regression parameters such that β = γ, the quasi-Newton
algorithm yields the exactly the same parameter estimates as those from the procedure phreg
in SAS software and R routine coxph under the proportional hazards model; when we
constrain γ = 0, the NPMLEs obtained from the quasi-Newton algorithm are the same as
those from R routine nltm under the proportional odds model. These results provide an
empirical validation of the quasi-Newton algorithm.

In Web Appendix A, we establish consistency and asymptotic normality of the NPMLEs.
We show that the asymptotic covariance matrix for θ̂n attains the semiparametric efficiency
bound and can be consistently estimated using the inverse of the observed Fisher
information matrix for all parameters including θ and the jump sizes of Λ̂n. Alternatively,
following the argument of Murphy and van der Vaart (2000), we can estimate the covariance
matrix of θ̂n by using the profile likelihood function for θ, which is defined as the maximum
likelihood of Ln(θ, Λ) for any fixed θ. Our simulation studies indicated that both approaches
work very well in practical situations. Detailed proofs of the asymptotic properties of the
NPMLEs are provided in Web Appendices B–F.

The formulation of the semiparametric hazards rate model provides an appealing diagnostic
tool for testing the proportional hazards and proportional odds models since the latter two
models are embedded in the former. Specifically, we can check the proportional hazards and
proportional odds assumptions by testing H0 : β = γ and H0 : γ = 0, respectively. This can be
done by the Wald, score or likelihood ratio statistics.

To judge the goodness of fit of the proposed model and compare fits of different models, we
propose to use a Cramér-von Mises type criterion. Specifically, we first define some strata
based on the covariate values. We then define the following Cramér-von Mises type
criterion (CMC)
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where K is the number of strata, nk is the number of subjects in the kth stratum, and F̂k(t) and
F̃k(t) are the model fit and the nonparametric estimators of the cumulative distribution
function of the failure time for the kth stratum, respectively. Smaller values of CMC indicate
a better fit to the data.

3. Simulation Studies
We conducted extensive simulation studies to evaluate the finite sample performance of the
proposed methodology using 1000 replicates. We generated failure times from the following
model

(6)

where Xi is a uniform(−1, 1) variable. The baseline cumulative hazard function is set to be
Λ(t) = t. We consider four scenarios for the values of regression parameters: (a) (β, γ) =
(−0.5, 0.5); (b) (β, γ) = (−0.5, 0); (c) (β, γ) = (0, 0.5); and (d) (β, γ) = (0.5, 0.5). Under
scenario (a), the short-term and long-term hazard ratios are on opposite directions; under
scenario (b), the long-term hazard ratio is 1 corresponding to a true proportional odds model;
under scenario (c), the short-term hazard ratio is 1; and under scenario (d), the short-term
and long-term hazard ratios are equal corresponding to a true proportional hazards model.
The censoring time is set to be the minimum of 2 and a uniform(0, 4) variable, producing
approximately 29% censoring under all four scenarios. We used the quasi-Newton algorithm
(Press et al., 1992) to calculate the NPMLEs. There is little difference between the standard
error estimates through the Fisher information matrix and those from the profile likelihood
approach. We present the standard error estimates based on the observed Fisher information
matrix throughout the simulation studies and real data applications.

Table 1 summarizes the results for β, γ, and Λ(t) with n = 100 and n = 200. For the
nonparametric estimation of Λ(t), we evaluated its estimates at t = 0.5 and t = 1.0. For
comparison, we also fit the proportional hazards and proportional odds models, for which
the regression parameters were denoted as βPH and βPO, respectively. The results in Table 1
indicate that the proposed method performs well for small sample sizes. In particular, the
proposed estimators appear to be unbiased. The standard error estimator reflects accurately
the true variation, and the confidence intervals have proper coverage probabilities. When the
proportional hazards assumption is violated, the Cox model leads to biased estimates.
Particularly, the results based on the Cox model can be very misleading when the short-term
and long-term covariate effects are in opposite directions. Similar results were observed for
the proportional odds model when the model assumption is not true. When the Cox model or
the proportional odds model holds, as expected, the proposed NPMLEs are less efficient
than those obtained under the true sub-model.

We also carried out simulation studies to incorporate a time-dependent covariate.
Specifically, we generated failure times from the following model
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where Xi(t) = ui(1+t) and ui is a uniform(−1, 1) variable. We considered the same simulation
setting as above regarding the parameters (β, γ, Λ). The summary statistics of the estimation
of (β, γ, Λ) are provided in Table 2. The NPMLEs appear to continue to have good
properties in the presence of time-dependent covariates.

Our next set of studies evaluated the proposed inference procedures for the testing of
covariate effects and the assumptions of proportional hazards and proportional odds.
Specifically, we considered Wald tests for the following null hypotheses: (H1) H0 : β = 0;
(H2) H0 : γ = 0; (H3) H0 : β = γ = 0; and (H4) H0 : β = γ. Note that testing the long-term
hazard ratio is equivalent to testing the proportional odds model. For comparison, we also
considered the testing of covariate effects under the proportional hazards model: (H5) H0 :
βPH = 0. We used the same simulation setting as above with n = 200. Table 3 presents the
sizes/powers of the Wald tests at the nominal levels of 0.05. In all cases, the proposed tests
have accurate control of type I error rates and reasonable powers under the alternative. The
proposed tests of short-term, long-term and overall covariate effects tend to be more
powerful than the Cox model when the proportional hazards assumption is violated. When
our interest is to test the short-term or long-term hazard ratio only, the Cox model tends to
yield inflated type I error rates under model mis-specifications.

We carried out additional simulation studies to compare the efficiency of the proposed
NPMLEs relative to the pseudo-maximum likelihood estimators for two-sample data as
implemented by Yang and Prentice (2005). We considered the same simulation settings as
above except that Xi is a binary variable taking values −0.5 and 0.5 with equal probabilities.
Table 4 presents the empirical mean squared errors for estimating β and γ based on 1,000
repetitions. As expected, under almost all situations the proposed estimators are more
efficient than the pseudo-maximum likelihood estimators.

Finally, we conducted simulation studies to compare the new method with the time-varying
coefficient Cox model (TimeCox) of Martinussen and Scheike (2006) and the Cox
proportional hazards model incorporating time-dependent covariates (CoxPHt), under both
the true model and the mis-specfied model. The latter two models were fit by using R
packages timereg (Martinussen and Scheike, 2006) and survival, respectively. We first
generated data under the true model (6). To evaluate the performance of the new method
under model mis-specification, we also generated data from the following model

(7)

In both cases, β and γ were set to be −0.5 and 0.5. The simple time-dependent covariate in
the Cox proportional hazards model was defined as the interaction term between time and
Xi. Table 5 displays the mean squared errors of three different estimators of the cumulative
hazard function Λ(t|x) with n = 400 based on 1,000 replicates. Under the correct model
specification, as expected, the proposed estimators are more efficient than the other two
estimators. When data are generated from model (7), the proposed estimators still perform
reasonably well compared to the varying-coefficient Cox model and the Cox proportional
hazards model with time-dependent covariates, both of which were fit under the correct
model specification.
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4. Real Data Examples
4.1 COGA study

In the COGA study mentioned previously, 643 individuals were affected with alcoholism
and 971 individuals were disease-free at the time of interview. After excluding individuals
with missing genotype at the target gene locus or phenotype data, the final data set for our
analysis consisted of 1,371 individuals, including 626 affected individuals and 745
unaffected individuals.

Preliminary analysis revealed that gender was a risk factor for alcoholism; males were at a
higher risk than females. Of the 626 affected individuals, 424 were males, as opposed to 229
males in the unaffected individuals. Previous linkage analysis showed a linked region on
chromosome 14 (Palmer et al., 1999). Several recent studies on the genetic association
analysis of ordinal traits (Wang et al., 2006; Diao and Lin, 2010) and age-at-onset data using
cure models (Diao and Yin, 2012) suggested that SNP rs1972373 on chromosome 14 might
be a disease susceptibility locus. Based on the Kaplan-Meier estimates of survival curves for
the three genotype groups at SNP rs1972373 presented in Figure 2, allele ‘2’ appeared to
have little short-term impact but strong long-term impact on the risk of alcoholism.

In our analysis, we fit the proposed model (4) and included gender and genotype score at
SNP rs1972373 as covariates. The gender of an individual was coded as 1 for male and 0 for
female, and the genotype score was coded as the numbers of allele type ‘2’. Both covariates
were then centered at their means. The tests of the proportional hazards assumption for
gender and genotype score at SNP rs1972373 were significant with p-values of 0.016 and
0.027. Gender appeared to have significant short-term and long-term effects on the age-at-
onset of alcoholism. The short-term and long-term log-hazard ratios of male versus female
are estimated at 0.866 and 1.9932 with standard error estimates of 0.147 and 0.367, both
leading to p-values less than 0.0001. As expected, SNP rs1972373 appeared to have no
short-term effect but significant long-term effect on the age-at-onset of alcoholism. The
short-term log-hazard ratio of allele type ‘2’ versus allele type ‘1’ is estimated at −0.06 with
a p-value of 0.479 whereas the long-term log-hazard ratio is estimated at 0.683 with a p-
value of 0.015. One copy of allele type ‘2’ in the genotype at SNP rs1972373 is expected to
increase the long-term hazard of alcoholism by 98% with a 95% confidence interval of
(14%, 243%). Figure 1 plots the separate Kaplan-Meier and the model-fitted survival curves
for each genotype group. The model-fitted survival function is calculated as the empirical
average of the predicted survival functions. That the predicted survival functions agree well
with the nonparametric Kaplan-Meier estimates of the survival curves indicates a good fit of
the model. In contrast, the Cox model failed to detect the long-term effect of SNP
rs1972373. The log-hazard ratio estimated from the Cox model is 0.083 with a standard
error estimate of 0.058, corresponding to a p-value of 0.153.

We also fit the CoxPHt model incorporating time by gender and time by gene interaction
terms and the TimeCox model to the COGA data. The CoxPHt model failed to detect the
main genetic effect or the time by gene interaction effect with p-values of 0.279 and 0.094.
The test of the proportional hazards assumption for gender using the CoxPHt was also non-
significant with a p-value of 0.509. The TimeCox detected patterns of the time-varying
covariate effects similar to the proposed model, however, the Kolmogorov-Smirnov tests of
the proportional hazards assumption were not significant for gender or the major gene with
p-values 0.160 and 0.216, respectively, based on 10,000 resampling samples. To compare
the fits of different models, we define six strata according to the different combinations of
gender and genotype score and calculated the CMC. The proposed model fit the COGA very
well with a CMC value of 0.388, compared to the CMC values of 1.515 and 0.777 for the
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CoxPHt and the TimeCox model. The standard Cox proportional hazards model fit the data
extremely poorly with a large CMC value of 19.482.

4.2 Gastrointestinal tumor study
As mentioned in the Introduction section, the gastrointestinal tumor study compared
chemotherapy with the combined chemotherapy and radiotherapy on the treatment of locally
unre-sectable gastric cancer. There were 45 patients randomly assigned to each treatment
arm. Two observations were censored in the chemotherapy group and six were censored in
the combined therapy group. Under the two-sample proportional hazards model, the log-
hazard ratio of chemotherapy versus the combined therapy is estimated at 0.106 with a
standard error estimate of 0.223, yielding a p-value of 0.635. The use of proportional
hazards model failed to capture the phenomenon of crossing survival curves shown in Figure
1 and the results were meaningless in this situation.

We fit the proposed model (4) by letting Xi = 0.5 for the combined therapy group and Xi =
−0.5 for the chemotherapy group. The test of the proportional hazards assumption is highly
significant with a p-value of 6.0 × 10−4. The new method successfully captured the
phenomenon of crossing hazards. The short-term log-hazard ratio β and long-term log-
hazard ratio γ are on opposite directions and estimated at 1.76 and −1.59 with standard error
estimates of 0.582 and 0.509, leading to p-values of 0.0025 and 0.0018, respectively. The
95% confidence intervals are (0.62, 2.90) for β and (−2.59, −0.59) for γ. The estimated
short-term and long-term hazard ratios are 5.81 and 0.20 with 95% confidence intervals
(1.86, 18.17) and (0.075, 0.553). As evident in Figure 2, the model fitted survival curves
agree well with the nonparametric Kaplan-Meier survival estimates very well indicating a
good model fit. Our results are also consistent with the results from the two-sample model of
Yang and Prentice (2005) using the pseudo-likelihood approach.

For comparison, we also fit the CoxPHt model incorporating the time by treatment
interaction term and the TimeCox model. Both the CoxPHt and the TimeCox models
detected the short-term and long-term treatment effects in the right direction. The CoxPHt
detected significant time by treatment interaction effect with a p-value of 0.0035, whereas
the Kolmogorov-Smirnov test of proportional hazards assumption in the TimeCox model
was not significant with a p-value of 0.334 based on 10,000 resampling samples. To
compare the fits of different models, we define two strata based on the treatment assignment
and calculate the CMC defined in the Models and Inference Section. The proposed model fit
the data the best with a CMC value of 0.037, compared to the CMC values of 0.141 and
0.106 for the CoxPHt and the TimeCox models, respectively. The standard Cox proportional
model without time-dependent covariates fit the data very poorly, with a CMC value of
0.542.

5. Discussion
We have extended the two-sample semiparametric hazards rate model of Yang and Pren-tice
(2005) to incorporate short-term and long-term effects of potentially time-dependent
covariates. We have studied the nonparametric maximum likelihood estimation for the
proposed model (4) and established the asymptotic properties for the NPMLEs. Unlike
existing varying-coefficient Cox model, the estimation and inference procedures are
likelihood-based and statistically efficient. Numerical studies and the applications to the
Gastrointestinal tumor study and the COGA study demonstrate that the proposed inference
procedures perform well in practical situations.

There are two inexplicit assumptions under the proposed model. First, the log-hazard ratios
are assumed to be monotonic over time and it can be shown that the log-hazard ratios at any
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time point are are between β and γ. The proposed method may not work well when the
covariate effects are not monotonic. In such situations, a variety of alternative approaches
described in the Introduction section can be explored. Secondly, under the proposed model,
all subjects will eventually experience the event of interest given sufficiently long follow-up.
This assumption, however, may not be true in several applications. In particular, a stable
plateau at the tail of each curve in Figure 1 suggested that a fraction of individuals may
never develop alcoholism, i.e., they were cured. The proposed model can evaluate the long-
term hazard ratios between two sets of covariates but is not applicable to evaluating the
covariate effects on the long-term survival probability in the presence of a cured
subpopulation. To evaluate the covariate effects on the cured probability, cure rate models
developed by Taylor (1995), Sy and Taylor (2000), Tsodikov (1998, 2002), Tsodikov et al.
(2003), Mao and Wang (2010), and Diao and Yin (2012), among others, are recommended.
To account for the presence of a cured subpopulation, we describe an extension of the
proposed model such that population survival function takes the form

where Z is a set of covariates, π(Z) is the uncured fraction, and S(t|X̄(t)) is the survival
function for the uncured subpopulation under the proposed model in this manuscript. The
uncured fraction can be modelled through a logistic regression model

Under this cure rate model, we allow for time-varying covariate effects in the uncured
population. We are currently investigating the properties of this new cure rate model and
comparing its performance with existing cure rate models.

We have implemented the new method in C language using the quasi-Newton algorithm
described in Press et al. (1992). The convergence of the quasi-Newton algorithm is very fast
and it takes less than 0.2 second to analyze one data set with 400 subjects on a Dell
PowerEdge 2900 server. The efficiency of our computer program makes it feasible to apply
our method to gene expression data and genome-wide association studies. Our user-friendly
computer program is freely available on the website: http://mason.gmu.edu/~gdiao/
software/. While the quasi-Newton algorithm works well for the proposed model, alternative
algorithms, such as the EM-based algorithm (Tsodikov et al., 2003), the weighted Breslow-
type algorithm (Chen, 2009), and the majorize-minimize algorithm (Mao and Wang, 2010),
are available for nonparametric maximum likelihood estimation. It would be interesting to
explore these algorithms in the proposed model.

For the purpose of illustration, we assume that observations in the COGA study are
independent. Although the failure times within the same family tend to be correlated, the
NPMLEs θ̂n can be shown to be consistent for θ and asymptotically normally distributed
provided that the marginal model is corrected specified. However, the naive covariance
matrix estimator for θ̂n using the inverse of the observed Fisher information matrix, is no
longer valid in the presence of within-family dependence. To account for within-family
correlations, one option is to fit marginal models and then use the robust sandwich
estimators of covariance matrix. For the COGA data, the naive and robust covariance
estimates were very close suggesting weak within-family correlations. Currently we are
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investigating the extensions of the semiparametric hazards rate model (4) to correlated
failure time data by using random effects.

We also note that the COGA study sampled families with alcoholism cases and involved
retrospective ascertainment of family members of the probands. Consequently, the results
from the proposed approach may only be applicable to a severely alcohol-dependent
population and under the assumption that no latent dependence exists within families. More
robust approaches to take into consideration the study design can be based on the
conditional likelihood approach (de Andrade and Amos, 2000) or the retrospective
likelihood approach (Li and Zhong, 2002; Zhong and Li, 2004). It would be interesting to
develop conditional likelihood and/or retrospective likelihood-based approaches using the
proposed model. Future research is warranted.

We have described a Cramér-von Mises type criterion to assess the goodness-of-fit of the
proposed model. Alternatively, following the idea of Lin et al. (1993) for the Cox model, we
can develop a goodness-of-fit procedure for assessing the adequacy of the proposed model
(4) based on martingale residuals. Details are given in Web Appendix G. The theoretical
justification of this procedure, however, is challenging since the partial likelihood function
is not available under model (4). We are currently investigating this type of goodness-of-fit
procedures for general semiparametric survival models including model (4).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Kaplan-Meier and model-fitted survival curves from the COGA study.
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Figure 2.
Kaplan-Meier and model-fitted survival curves from the Gastrointestinal tumor study.
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