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Summary
This article examines group testing procedures where units within a group (or pool) may be
correlated. The expected number of tests per unit (i.e., efficiency) of hierarchical- and matrix-
based procedures is derived based on a class of models of exchangeable binary random variables.
The effect on efficiency of the arrangement of correlated units within pools is then examined. In
general, when correlated units are arranged in the same pool, the expected number of tests per unit
decreases, sometimes substantially, relative to arrangements that ignore information about
correlation.
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1. Introduction
Group testing is a method used to reduce the average number of tests needed to identify
cases of a disease in a population. The first use of group testing was proposed by Dorfman
(1943). Dorfman proposed pooling blood samples of groups of men inducted into the
military, and testing the combined samples for antigens to identify the presence of syphilis.
If the combined samples tested negative for the antigens, the men were declared syphilis free
with only one test. Otherwise, samples from each man were tested individually. Specimen
pooling or group testing has been applied to screening for various infectious diseases and
has also found broader application in many other areas (see Kim et al., 2007, and references
therein). Group testing can also be used to reduce the average number of tests needed to
estimate the prevalence of a disease, but this article focuses on case identification.

Dorfman’s two-stage procedure has been generalized to three or more stages. If the initial
(or “master”) pool tests positive, the specimens may be pooled into smaller nonoverlapping
subpools. If a subpool tests positive, individuals can be tested, or subpools can be divided
further into smaller nonoverlapping subpools nested within the previous subpool. This is
known as a hierarchical procedure (Johnson, Kotz, and Wu, 1991). Another common group
testing algorithm is an array-based procedure (Phatarfod and Sudbury, 1994). In the simplest
scenario, a group of n2 units (specimens) is arranged into an n × n matrix, and pools of size
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n are constructed from units in each row or column. The 2n row and column pools are then
tested, and positive units are identified by testing the units at the intersections of positive
row and column pools.

Prior research regarding group testing procedures typically assumes individual units are
independent. This assumption may not be reasonable in certain situations. For example, in
the infectious disease setting, responses to a screening test may be positively correlated for
individuals from the same geographical area or the same household. A second example
arises in HIV vaccine development, where group testing methods are used to detect T-cell
responses to specific epitopes induced by a candidate vaccine (Malhotra et al., 2007a,
2007b; Yan et al., 2007). T-cell responses to one or more peptides are identified by using
ELISpot, intracellular cytokine staining, or other assays. Li et al. (2006) developed a
potential T-cell epitope peptide set designed to contain epitopes found in commonly
circulating strains of HIV. The peptide set is made of 15-mer peptides, some of which
overlap by 10 or more amino acids. It is reasonable to expect T-cell responses from the same
individual to be correlated for overlapping peptides. Indeed, Malhotra et al. (2007a)
observed that T cells of HIV infected individuals can recognize multiple peptides containing
variants of the same epitope. Roederer and Koup (2003) evaluated possible group testing
procedures for this setting using Monte Carlo simulation, but did not consider that T-cell
responses may be correlated. Below we show that accounting for this correlation when using
group testing for case identification can reduce the average number of tests needed to
identify all peptides that elicit a T-cell response.

Some group testing models allow for the probability a unit tests positive (the “prevalence”)
to vary between units. Typically these models assume individual responses are independent
conditional on the unit-specific prevalence (e.g., see Bilder, Tebbs, and Chen, 2010). The
unit-specific prevalences will not generally be known but in some settings may be estimated
with reasonable accuracy and precision based on observed covariates. In the absence of
knowledge of the unit-specific prevalences, heterogeneity in the prevalences can induce
correlation between units. Below we consider an approach to modeling correlation that does
not require (i) (estimates of) unit-specific prevalence or (ii) assuming conditional
independence.

2. Preliminaries
Suppose that a unit is either positive or negative with respect to some binary trait. For
example, the unit could represent an individual with or without disease, or a peptide to
which T cells respond or do not respond. Also suppose there is a test that attempts (perhaps
with error) to classify units or pools of units as positive or negative, where a pool is
considered positive if at least one unit in the pool is positive. The efficiency of a group
testing procedure is defined as the expected number of tests per unit required to classify all
units as either positive or negative. To evaluate the efficiency, one must calculate the
probabilities that pools of units do not have any positive responses. These calculations
require knowledge about correlation among units within each pool. Suppose there are n units
total which can be partitioned into l clusters of size m and the following assumption holds:

Assumption 1
Units in different clusters are independent, and the joint distribution of the true classification
of units in the same cluster is the same for all clusters.

Without loss of generality, let X̃ = (X1, …, Xm) be a vector of binary random variables
representing the true classification of units in a particular cluster, where Xi = 1 if unit i in
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that cluster is positive, and Xi = 0 otherwise. Let , let x̃ be a possible realization

of X̃, and let ẋ be the sum of the values of x̃. Let  be a subvector of any m′

elements of X̃ where m′ ∈ {1, …, m} and let . Deriving the efficiency of a
group testing procedure requires assumptions about the distribution of X̃. A class of models
for X̃ is defined below by Assumptions 2 and 3 below via the factorization pr(X̃ = x̃) = pr(Ẋ
= ẋ)pr(X̃ = x̃ ∣ Ẋ = ẋ).

Assumption 2
Units within a cluster are exchangeable in the sense that

for any permutation (γ1, γ2, … , γm) of the set of integers {1, 2, …, m}.

Because the Xi’s are binary, Assumption 2 implies  for ẋ = 0, …, m,
so the distribution of X̃ is fully identified by the distribution of Ẋ.

Assumption 3
The distribution of Ẋ can be expressed as a mixture of binomial distributions such that for ẋ
= 0, …, m

(1)

where  for any function g, and π is a random variable with support
[0, 1] and cumulative distribution function F.

Note there are connections between Assumption 3 and de Finetti’s Theorem. In particular, if
the cluster X̃ can be viewed as a subset of an infinite sequence of exchangeable binary
random variables, then Assumption 3 and Lemma 2, below, follow immediately from de
Finetti’s Theorem (de Finetti, 1975). In settings motivating this work, such as the epitope
mapping studies, the focus is on clusters of finite size, in which case (1) does not hold in
general. Nonetheless, (1) is not a particularly strong assumption in settings where X̃ can be
viewed as subset of a finite sequence of exchangeable binary random variables of length k ≥
m, for in that case the distribution of Ẋ can be approximated by a mixture of binomial
random variables with error going to zero at rate k−1 (Diaconis, 1977). For example, in
epitope mapping studies, a set of m exchangeable peptides might be envisaged as a subset of
a larger set of k exchangeable peptides.

The lemmas below establish certain properties about the family of distributions under
Assumptions 2 and 3 that are used in evaluating the efficiencies derived in Sections 3 and 4.
Let E(Xi) = p be the probability that any unit i is positive and let cor(Xi, Xj) = σ be the
pairwise correlation between any two units i and j for i ≠ j. We refer to p as the prevalence.
Lemma 1 shows that any distribution of exchangeable binary random variables approaches a
known limiting distribution as σ approaches one. Lemma 2 shows that the distribution of a
subset of units from an exchangeable cluster where (1) holds is of the same form as the
distribution of the units in the cluster. By specifying a distribution for π where the first and
second moments are p and σ p (1 − p) + p2, respectively, the distribution of a vector of
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exchangeable binary random variables with specified marginal means and pairwise
correlations is defined by Lemma 3. Proofs of the lemmas are given in the Web Appendix
A.

Lemma 1
Under Assumption 2, as σ approaches 1 the distribution of Ẋ converges to a two-point
distribution, where pr(Ẋ = 0) → 1 − p and pr(Ẋ = m) → p.

Lemma 2
Under Assumptions 2 and 3, the distribution of Ẋ′ is a mixture of binomial distributions of
the same form as Ẋ, such that

(2)

for ẋ′ = 1, …, m′.

Lemma 3
Under Assumptions 2 and 3, if E(π) = p and E(π2) = σ p(1 − p) + p2, then E(Xi) = p for all i
and cor(Xi, Xj) = σ for all i ≠ j.

The models defined by Assumption 3 can be viewed as random effect models where units
within the same cluster are positive with (unknown) probability π, with π varying between
clusters according to distribution F. In the sequel, three particular models are considered to
examine how the efficiencies of group testing procedures are affected by correlated
responses. The first is a beta-binomial model where π has a beta distribution with mean p
and variance σ p(1 − p). The second model is from Madsen (1993) who described multiple
distributions that can be used to model exchangeable binary data. One of those models can
be constructed by letting π = p with probability 1 − σ, π = 0 with probability σ(1 − p), and
π = 1 with probability σp; this will be referred to as the Madsen model. This model can be
thought of as arising from a situation where there are two types of clusters: one type where
units are independent, and another type where units all perfectly correlated and behave
exactly the same, either all positive or all negative. In both types of clusters, the probability
of a particular unit being positive is p. A cluster is of the first type with probability 1 − σ and
is of the second type otherwise. A third model, described in Morel and Neerchal (1997), can
be constructed by letting  with probability p and  with
probability 1 − p. In the comparisons described below, the Morel–Neerchal model tended to
yield efficiencies between the beta-binomial and Madsen models (results not shown).

The efficiency derivations in Sections 3 and 4 below rely on the following additional
notation and assumptions. Let q0 = 1 and qm′ = pr(Ẋ′ = 0) denote the probability that m′
units from the same cluster are negative for m′ ∈ {1, …, m}. For the three models above q1
= 1 − p and qm′ is given by (2) with ẋ′ = 0. Let T denote the number of tests required by a
particular group testing procedure to classify n units as positive or negative. To allow for
test error (i.e., false positive or false negative test results), assume pools with at least one
positive unit test positive with probability Se and that pools with no positive units test
negative with probability Sp; we refer to Se and Sp as test sensitivity and specificity. The
special case of no test error corresponds to Se = Sp = 1. Web Appendix B provides further
details regarding assumptions about test error.
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3. Hierarchical Procedures
3.1 Notation and Efficiency of General Hierarchical Procedures

Consider a hierarchical procedure where n1 = n units are combined to form a master pool. In
the first stage, the master pool is tested, and if it tests positive, w2 nonoverlapping pools of
n2 units are each tested in the second stage. In a two-stage procedure, n2 = 1 and each unit in
a master pool that tests positive is tested individually. In a general h stage procedure, for
each pool that tests positive in stage s − 1, ns −1/ns nonoverlapping pools of ns units are
tested. There are a total of ws = n1/ns pools that could be tested at stage s if all of the pools
in the previous stages test positive. At the hth stage each pool is made up of individual units,
so nh = 1. The total number of tests T = T1 + … + Th, where Ts is a random variable
representing the number of tests at stage s. The efficiency of a hierarchical procedure is

. The master pool is always tested, so E(T1) is always one.

Let  if the ith pool in the sth stage has at least one truly positive unit, and 0 otherwise.
For a particular arrangement of clusters, let msik be the number of units from cluster k in
pool i of stage s for k = 1, …, l. In general,

(3)

is the probability that pool i in stage s is truly positive. Let Vsi = 1 if the ith pool in the sth
stage tests positive and let Vsi = 0 otherwise (i.e., if the pool tests negative or is not tested).

For s > 1,  which can be evaluated by noting

(4)

and for s > 1

(5)

where in general, for t < s, it denotes the pool in stage t containing the units from pool i in
stage s. Equation (5) can be evaluated using the following results:

and for s > 2
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where  and

 for s > 1.

To determine the efficiency of a particular hierarchical procedure, (4) and (5) are evaluated
based on the arrangement of clusters. For the cluster arrangements considered in Sections
3.2 and 3.3 below and for any arrangement where the units are independent, the efficiency
calculation is simplified because pr(Vsi = 1) is the same for all i and therefore E(Ts) = ws
pr(V(s−1)i = 1). Johnson et al. (1991) derive the efficiency for a hierarchical procedure with
independent units where sensitivity and specificity can depend on the stage. If units are

independent,  is equivalent to their
equation (6.19) when sensitivity and specificity are constant for all stages.

3.2 Nested Hierarchical Arrangement
Suppose clusters of size m are arranged such that all units from the same cluster are in the
same pool for stages 1 to h′ − 1. Also, suppose for stages h′ to h, all units in the same pool
are members of the same cluster. That is, msik = m or 0 for s < h′, and msik = ns or 0 for s ≥
h′ where h′ ∈ {2, 3, …, h}. Figure 1a shows an example of an h = 3 stage procedure where
m = 6, n1 = 12, n2 = 3, and the numbers 1 and 2 denote cluster membership. At stage 2, all
six units from the same cluster cannot fit in pools of size 3, but all units in the same pool are
from the same cluster, so h′ = 2. Call this a nested hierarchical arrangement. By (3), if 1 < s

≤ h′ then  for all i, and if h′ < s ≤ h then  for
all i.

3.3 Random Hierarchical Arrangement
Suppose units are arranged in a way that is independent of their cluster membership. Let
M̃si· be the random vector of length l of the number of units from each cluster 1, …, l in pool
i in stage s. Let each possible arrangement of the n1 units have the same probability, so M̃si·
has a multivariate hypergeometric distribution such that

(6)

where m̃si ·t = (msi1t, …, msilt) is the tth possible value of M̃si· for . Then

(7)

and therefore

(8)
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When n1 is large, the number of possible arrangements  becomes very large, and the
exact calculation for (8) is computationally difficult. Monte Carlo simulation can be used to
approximate (8). First values of M̃(s−1)i· are repeatedly sampled from a multivariate
hypergeometric distribution according to (6). Then the conditional probability (7) is
evaluated for each sample. Finally, one minus the sample mean of the conditional
probabilities will approximate (8).

3.4 Comparison of Hierarchical Arrangements
For a two-stage hierarchical procedure with a nested arrangement, if Se = Sp = 1, the

expected number of tests is E(T) = 1 + E(T2), where . If σ = 0 then

 and the efficiency for all models equals  as in Dorfman (1943).
Figure 2 illustrates the efficiency of a two-stage hierarchical procedure for the beta-binomial
and Madsen models for different values of σ as a function of m when Se = Sp = 1. For large
clusters the expected tests per unit is reduced substantially as σ increases. When σ = 0.99,
the efficiencies for both models are almost identical, which is consistent with Lemma 1. See
Web Figures 1 and 2 for similar results when Se and Sp are less than 1.

For a three-stage hierarchical procedure with a nested arrangement where all units from the
same cluster fit into the same pool in stages 1 and 2 (i.e., h′ = 3) and Se = Sp = 1, the
expected number of tests for stage 2 has the same form as in the two-stage procedure above.

Similarly, the expected number of tests for the third stage is  so

. Figure 3 compares the efficiencies of three-stage
hierarchical nested and random arrangements by stage two pool size, n2, as a function of σ.
Efficiencies for the random arrangements were obtained by Monte Carlo simulation. In all
cases in Figure 3 the nested arrangements have better efficiency than random arrangements
for σ > 0. Similar results when Se and Sp are less than 1 are given in Web Figures 3 and 4.

4. Matrix Procedures
4.1 Notation and Efficiency of General Matrix Procedures

Consider a matrix-based procedure where n = rc units are arranged in a matrix with r rows
and c columns. First, r row pools and c column pools are tested. If any rows and columns
test positive, then units at the intersections of positive rows and columns are tested. Let Yij
be 1 if the unit in the ith row and the jth column is truly positive and 0 otherwise, let

, and let  for i = 1, …, r and j = 1, …, c. Let Ri and
Cj denote the observed responses for the tests corresponding to the ith row and the jth
column, respectively. If sensitivity or specificity is not one, some columns might test
positive while all rows test negative, or the opposite. If this occurs, assume no further tests
are carried out such that the unit at the intersection of row i and column j is tested only if Ri
= Cj = 1. This is the procedure used in Precopio et al. (2008). In general, for an r × c matrix,
the expected number of tests equals

(9)

Let mi·k be the number of units from cluster k in row i; let m·jk be the number of units from
cluster k in column j; and let mijk be the number of units from cluster k in either row i or
column j. Then (9) can be evaluated by noting

Lendle et al. Page 7

Biometrics. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(10)

where

and

(11)

Let m̃i·· = (mi ·1, …, mi ·l), let m̃·j· = (m·j 1, …, m·j l), and let m ̃i j · = (mi j 1, …, mi j l). If the
ordered values of m̃i ·· and m̃i′·· are equal, the ordered values of m̃·j· and m̃·j′· are equal, and
the ordered values of m̃i j· and m̃i′j′· are equal for all i ≠ i′ and j ≠ j′, then pr(Ri = Cj = 1) is
the same for all i and j, and (9) reduces to

(12)

If Se = Sp = 1 and all units are independent, then σ = 0 and the expected tests per unit is

 as in Phatarfod and Sudbury (1994).

4.2 Rectangular Arrangement
In a rectangular arrangement, clusters of m units are arranged in submatrices of dimension r′
× c′ so m = r′ c′. These submatrices are arranged in a matrix of dimensions r × c. The
number of rows r is assumed to be divisible by r′ and the number of columns c is assumed
to be divisible by c′. Figure 1b shows an example of a 6 × 6 matrix procedure where m = 6,
r′ = 2, and c′ = 3. Again, the numbers in the figure represent cluster membership. In a

rectangular arrangement, clusters are arranged in a way that (12) holds, and ,

, and . If Se = Sp = 1,

4.3 Diagonal Arrangement
In a diagonal arrangement, assume r = c = m. Clusters of size m are arranged on diagonals of
a matrix such that each row and each column have exactly one unit from each cluster. More
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precisely, for any i ∈ {1, …, r − 1} and j ∈ {1, …, c − 1}, the responses Yij and Y(i+1)(j +1)
will correspond to units from the same cluster in a diagonal arrangement. See Figure 1c for
an example where r = c = m = 6. Clusters can wrap such that the last unit in a row of the
matrix is a member of the same cluster as the first unit in the next row of the matrix. In this

arrangement, clusters are arranged in a way that (12) hold and , ,

and . If Se = Sp = 1,

4.4 Random Arrangement
Now consider the case where units are arranged in a matrix randomly in a way that is
independent of cluster membership. Let M̃i·· be the random vector of the number of units
from each cluster 1, …, l in row i, let M̃·j· be the random vector of the number of units from
each cluster 1, …, l in column j, and let M̃i j · be the random vector of the number of units
from each cluster 1, …, l in either row i or column j. Each possible arrangement of n units
has the same probability, so M̃i ·· has a multivariate hypergeometric distribution such that

where m̃i ··t = (mi ·1t, …, mi ·l t) is the tth possible vector of values of m̃i ··t, .

From (11) it follows that , implying

Additionally,  and  can be calculated in an analogous way. Similar

to calculating  in a randomly arranged hierarchical procedure, calculating

, , and  becomes computationally infeasible as n increases,
and Monte Carlo simulation can be used to approximate each of these probabilities. The
efficiency, E(T)/n, can then be calculated by (10) and (12).

4.5 Comparison of Matrix Arrangements
Figure 4 shows the expected tests per unit for a square matrix of size 16 × 16 with clusters of
size 16 for different rectangular arrangements, a diagonal arrangement, and a random
arrangement, where Se = Sp = 1. Efficiencies for the random arrangement were obtained by
Monte Carlo simulation. For rectangular arrangements, the expected number of tests per unit
decreases as σ increases. For the beta-binomial model, the expected tests per unit is lowest
when clusters are arranged in a row, and the expected tests per unit increases as the
arrangement of clusters moves from a single row to a 4 × 4 square. For the Madsen model,
the rectangular arrangements perform about the same. Intuitively, a diagonal arrangement
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will perform worse than a rectangular arrangement, because positive responses in the same
cluster will be in different rows and columns, and therefore more individual testing will be
required. This intuition is supported by Figure 4, where the diagonal arrangement performs
much worse than the other arrangements as σ increases. In the diagonal arrangement, the
most units from the same cluster that are tested together is two. The joint distribution for a
cluster of size two is fully specified by the first and second moments, so the efficiency for
the diagonal arrangement is the same for both models. The efficiency for the randomly
arrangement is worse than the rectangular arrangements, but better than the diagonal
arrangement in this case. Similar results when Se and Sp are less than 1 are given in Web
Figures 5 and 6.

5. Application
Malhotra et al. (2007a) used a 9 × 10 matrix procedure to evaluate T-cell responses to 90
peptides. The matrix algorithm was used to test for peptide responses for each of 23 subjects
in the study, so there were a total of 2030 T-cell responses to classify. The peptides were
made up of 15 amino acids, with some pairs of peptides overlapping by 10 or more amino
acids. To illustrate the potential gain in efficiency when clusters are arranged strategically
for group testing, we consider the efficiency of the 9 × 10 matrix procedure for different
possible peptide arrangements. Assume the 90 peptides can be partitioned into groups of
size 5 or 10 such that T-cell responses to each group of peptides form an exchangeable
cluster with positive pairwise correlations. Such clusters might be formed by grouping
peptides coded by the same gene (e.g., nef) or grouping peptides with similar amino acid
sequences. From Figure 2A of Malhotra et al. (2007a), there were a total of 151 positive
responses to the set of 90 peptides for all subjects. Therefore suppose for this illustration the
probability of a positive T-cell responses is 0.07 (i.e., ≈ 151/2030).

Figure 5 shows the efficiency of the 9 × 10 matrix procedure if the clusters are in a
rectangular arrangement compared to a random arrangement when Se = Sp = 1. Efficiencies
for the random arrangements were obtained by Monte Carlo simulation. For the rectangular
arrangements, the clusters of size 5 are arranged in submatrices of size 1 × 5 and the clusters
of size 10 are arranged in submatrices of size 1 × 10. For both of these cluster sizes, the
rectangular arrangements have a substantial gain in efficiency over the random
arrangements. For example, at σ = 0.4 for m = 5, the efficiency for the rectangular
arrangement is 0.39 versus 0.48 for the random arrangement from the beta-binomial model,
resulting in 0.09 fewer tests per peptide on average. For each of the 23 subjects, 90 peptides
are evaluated, so there is a potential savings of about 186 tests by strategically arranging
peptides within a matrix. In the presence of test error similar but slightly less savings would
be expected (Web Figures 7 and 8). Malhotra et al. (2007a) only examined peptides
associated with the Nef gene, but other studies evaluate a much larger number of peptides
across the HIV genome (Russell et al., 2003; Koup et al., 2010). For such large scale studies,
the savings from a strategic arrangement of peptides can be substantial.

6. Discussion
This article provides closed form expressions for hierarchicaland matrix-based group testing
procedures when units within clusters are correlated. These results allow investigation into
the effect of correlation and the arrangement of clusters on a procedure’s efficiency. For the
three models of exchangeable binary random variables considered, we found that if units
from the same cluster are tested together, then the efficiency of a particular procedure can be
improved, sometimes substantially, relative to random arrangements, which ignore
information about cluster membership.
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The feasibility of incorporating information on correlation into the design of particular
group testing studies will depend on the setting. In the epitope mapping example, pools of
peptides are typically constructed in a single or few large batches. Then epitope mapping
studies are conducted by repeating a standard deconvolution algorithm over various sets of
specimens (one at a time), e.g., individual sera from participants in an HIV vaccine trial.
Because the peptide pools are constructed in batches ahead of time, information on
correlation between peptides can easily be utilized when deciding which peptides to
combine into pools. Correlation estimates can be obtained through prior experiments in
similar settings, public databases (Taylor and Flower, 2007) or prediction models for T-cell
epitopes (Lin et al., 2008). In infectious disease screening applications, individual level
covariate information can be incorporated into pooling algorithms to improve efficiency
(e.g., see Bilder et al., 2010). In such settings where individual level covariates are used to
design the pooling algorithm it should be feasible to account for correlation between
individuals as well. To facilitate such designs, an R package gtcorr, available at
http://cran.r-project.org/, has been developed, which calculates the efficiencies of
hierarchical and matrix group testing procedures for the beta-binomial, Madsen, and Morel–
Neerchal cluster models.

Throughout this article clusters were assumed to be of equal size with the same distribution
(Assumption 1), contain exchangeable units (Assumption 2), and have a distribution within
a particular class (Assumption 3). Assumption 1 is helpful for ease of presentation but in
fact the efficiency derivations in Sections 3.1 and 4.1 are sufficiently general that this
assumption is not required. For instance, (9)-(11) can be used to evaluate the efficiency of
any matrix algorithm with varying cluster sizes and different prevalences between clusters.
To account for cluster-specific prevalences, the terms qmi ·k, qm·j k, and qmi j k in (11) should
be computed using (2) for ẋ′ = 0 and π equal to the prevalence for cluster k. The R package
gtcorr allows for clusters of various size and different prevalences between clusters. As
discussed in Section 2, Assumption 3 is not a particularly strong assumption. In future
research, models that do not assume exchangeable units within clusters (Assumption 2)
could be considered. Some empirical investigation regarding violations of Assumption 2 is
given in Web Appendix C. These results demonstrate that efficiency estimates obtained
when incorrectly assuming an exchangeable correlation structure may be fairly accurate in
some settings.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustrations of the construction hierarchical and matrix procedures.
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Figure 2.
Efficiencies for a two-stage hierarchical procedure where Se = Sp = 1, n1 = 64 and p = 0.001
by cluster size m, pairwise correlation σ, and model.
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Figure 3.
Efficiencies for three-stage hierarchical procedures where Se = Sp = 1, n1 = 256, p = 0.001,
and m = 32 by pairwise correlation σ, stage two pool size n2, arrangement, and model.
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Figure 4.
Efficiencies for a 16 × 16 matrix procedure where p = 0.05, Se = Sp = 1 and clusters are of
size m = 16 by arrangement, pairwise correlation σ, and model.
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Figure 5.
Efficiencies for a 9 × 10 matrix procedure where p = 0.07, Se = Sp = 1 by pairwise
correlation σ, cluster size m, arrangement, and model.
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