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Summary
This article develops a variety of influence measures for carrying out perturbation (or sensitivity)
analysis to joint models of longitudinal and survival data (JMLS) in Bayesian analysis. A
perturbation model is introduced to characterize individual and global perturbations to the three
components of a Bayesian model, including the data points, the prior distribution, and the
sampling distribution. Local influence measures are proposed to quantify the degree of these
perturbations to the JMLS. The proposed methods allow the detection of outliers or influential
observations and the assessment of the sensitivity of inferences to various unverifiable
assumptions on the Bayesian analysis of JMLS. Simulation studies and a real data set are used to
highlight the broad spectrum of applications for our Bayesian influence methods.
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1. Introduction
There has been extensive research literature on joint modeling of longitudinal and survival
data (JMLS) by using either frequentist or Bayesian methods. For instance, the early
development of joint models for longitudinal and survival data was primarily motivated by
characterizing the relationship between features of CD4 or viral load profiles and time-to-
event in HIV/AIDS clinical trials. JMLS has been further developed in other types of
biomedical applications, such as cancer vaccine (immunotherepy) trials and quality of life
studies. References include Pawitan and Self (1993); De Gruttola and Tu (1994); Tsiatis,
DeGruttola, and Wulfsohn (1995); Faucett and Thomas (1996); Wulfsohn and Tsiatis
(1997); Henderson, Diggle, and Dobson (2000); Wang and Taylor (2001); Xu and Zeger
(2001); Law, Taylor, and Sandler (2002); Song, Davidian, and Tsiatis (2002); Chen,
Ibrahim, and Sinha (2002, 2004a); Brown and Ibrahim (2003a; Brown and Ibrahim (2003b);
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Brown, Ibrahim, and DeGruttola (2005) and Chi and Ibrahim (2006, 2007) among many
others. Nice overviews of JMLS are given in Tsiatis and Davidian (2004) and Yu et al.
(2004) from a frequentist perspective, and in Ibrahim, Chen, and Sinha (2001) as well as
Hanson, Branscum, and Johnson (2011) from a Bayesian perspective.

Recent advances in computation and prior elicitation have made Bayesian analysis of these
“complex” JMLS feasible. For instance, some Bayesian semiparametric approaches for
longitudinal profiles include Gaussian processes, and functional Dirichlet processes among
others. Nonparametric prior processes for the baseline cumulative hazard function, include
the gamma process prior, the correlated gamma process, and the Dirichlet process prior
among others. However, very little has been done on developing a general Bayesian
influence approach to detect influential points and to assess various unverifiable
assumptions underlying the JMLS, which is the focus of this article.

Bayesian local and global influence (or robustness) approaches have been widely used to
perturb the data, the prior and the sampling distribution and assess the influence of these
perturbations on the posterior distribution and the associated posterior quantities. However,
these Bayesian local and global influence approaches are not directly applicable to complex
JMLS. Although there are some frequentist diagnostic tools (Dobson and Henderson, 2003;
Rizopoulos, Verbeke, and Molenberghs, 2008; Rizopoulos and Ghosh, 2011) developed
specifically for some JMLS, they are not sufficient for carrying out sensitivity analysis (e.g.,
prior) of complex Bayesian analysis of JMLS.

The development of the proposed methodology was primarily motivated by a clinical trial
conducted by the International Breast Cancer Study Group (IBCSG) (Chi and Ibrahim,
2006). A subset of the IBCSG data set contains the longitudinal measurements for quality of
life (QOL) measured at baseline and at months 3 and 18 after randomization. In addition, we
have bivariate failure times, including disease-free survival (DFS) and overall survival (OS),
which were collected from n = 832 patients from Switzerland, Sweden, and New Zealand/
Australia. The covariates are different therapeutic procedures, age, estrogen receptor (ER)
status (negative/positive), and the number of positive nodes of the tumor. Although a
Bayesian analysis of joint longitudinal and bivariate survival models have been used to fit
this data set (Chi and Ibrahim, 2006), a general diagnostic framework for assessing such a
model fit to the IBCSG data is completely lacking. There is a great need to develop various
diagnostic measures for the detection of outliers and/or influential observations, and the
assessment of the sensitivity of inferences to the prior distributions and other unverifiable
assumptions on the JMLS.

The article is organized as follows. In Section 2, we introduce a general model for jointly
modeling multivariate longitudinal and survival data. In Section 3, we discuss various
perturbation models and then calculate their associated Bayesian influence measures to
quantify the effects of perturbing the data, the prior, and the sampling distribution on
possible posterior quantities of interest. We present a detailed analysis of the IBCSG data in
Section 4.

2. Joint Models of Longitudinal and Survival Data
Consider data from n independent subjects. For each subject, we observe a K × 1 vector of
multiple longitudinal responses and an M × 1 vector of multivariate time-to-event outcomes.
For the ith subject, let yik (tijk) be an assessment of the kth longitudinal response measured
at time tijk and let Yik = (yik (ti1k), …, yik (tinikk))T denote the observed longitudinal process
for the kth response for i = 1, …, n, j = 1, …, nik, and k = 1, …, K. Moreover, for the ith
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subject, we observe the event time  and the event indicator

for the mth time-to-event outcome for m = 1, …, M, where 1(A) is an indicator function of
an event A and  and Cim denote the true event time and the censoring time, respectively.

We consider a general shared parameter model for jointly modeling the longitudinal and
survival data as follows. Let bi = (bi1, …, biK) be time-independent random effects
underlying both the longitudinal and survival processes for the ith subject. Conditional on bi,
all components of the longitudinal outcomes and the time-to-event outcomes are
independent. Let Yi = (Yi1, …, YiK), Ti = (Ti1, …, TiM)T, and δi = (δi1, …, δiM)T. The
shared parameter model is defined by

(1)

where p(… | …) and p(…) denote the appropriate conditional density and density functions,

respectively, and  is the vector containing all unknown parameters
corresponding to each of the submodels. Moreover, corresponding to the partition of

 can be further decomposed as a finite-dimensional parameter

vector  and a vector of infinite-dimensional parameters ,
such as the baseline hazard function or cumulative baseline hazard function, for each of the
submodels. This class of shared parameter models in equation (1) includes most JMLS in the
existing literature as a special case (Ibrahim et al., 2001; Tsiatis and Davidian, 2004; Hanson
et al., 2011).

We specify each of the submodels in equation (1) as follows. First, we consider a
multivariate generalized linear mixed model for the longitudinal process. Specifically, all
components of Yik conditional on bik are independent and the conditional distribution of
each yik (tijk) given bik is a member of the exponential family with a nonlinear link function
given by

(2)

where gk (·) is a known monotonic link function and ηik (t, bik) is a parametric or
nonparametric function of the random effects and t. Also, ηik (t, bik) may depend on other
covariates of interest, such as gender. Furthermore, we consider a general form of ηik (t, bik)
given by

(3)

where Rik (t) and Wik (t) are, respectively, the fixed effects and random effects design
matrices, and βk and bik are vectors of the corresponding fixed and random effects
parameters.

For the specification in equation (3), we may consider a random varying-coefficient model
as follows:

Zhu et al. Page 3

Biometrics. Author manuscript; available in PMC 2012 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(4)

where xi = (xi1, …, xip)T is a vector of covariates and fs (t) are known basis functions, such
as B-splines. If θikl,s = βkl,s + bikl,s with E(bikl,s) = 0, then βk includes all coefficients βkl,s
and bik includes all bikl,s for all k, l, and s.

Second, we consider a general multivariate survival model for the survival process as
follows. Let S(t1, …, tM |zi, Hi (t, bi), bi) be the joint survivor function of (Ti1, …, TiM)
given (zi, Hi (t, bi), bi), where Hi (t, bi) = {ηik (t̃, bik) : t̃ ∈ [0, t), k = 1, …, K} and zi is a
vector of time-independent covariates. It is assumed that S(t1, …, tM |zi, Hi (t, bi), bi) takes
the form

(5)

where F (…) is a known function, φ is a vector of unknown parameters for characterizing
the dependence or association structure, and Sm (t|zi, Hi (t, bi), bi) for m = 1, …, M are the
marginal survival functions given (zi, Hi (t, bi), bi). For bivariate time-to-event outcomes,
Chi and Ibrahim (2006) have proposed a joint survivor function that is a special case of (5).

For the mth time-to-event outcome, we assume that the marginal hazard function of the ith
subject is given by

(6)

where λm0(t) is an unknown baseline hazard function and θm,T contains all unknown
parameters in λm (t|zi, Hi (t, bi), bi) except λm0(t). Moreover, g̃mk (·; ·) for k = 0, …, K are
prespecified functions that characterize the effect of the kth longitudinal profile on the mth
time-to-event outcome. Then, we calculate

. In the literature, it is common to
assume that

(7)

where γm is a vector of unknown parameters for the time-independent covariates and αmk
are unknown parameters.

Third, we consider a multivariate model for the random effects bi as follows. Specifically,
let p0(bi ; θb) be a prespecified density function, such as multivariate Gaussian. The density
of bi, denoted by p(bi ; θb), is assumed to take the form p0(bi ; θb)ψ(bi ; θb), where ψ(·; ·) is
a known and nonnegative function such that ∫ p(bi ; θb)dbi = 1. For instance, ψ(bi ; θb) can
be the square of a polynomial function of individual components of θb and the density of a
copula function. We may further consider nonparametric alternatives to the parametric
model p(bi ; θb), such as a Dirichlet process.

A formal Bayesian analysis of (θ, b) also involves the specification of a prior distribution
p(θ), where b = (b1, …, bn). A typical joint prior specification is to assume p(θ) =
p(θF)p(θI), where p(θF) and p(θI), respectively, denote parametric prior distributions for the
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components of θF and non-parametric prior distributions for the components of θI. Let Do =
{(Yi, Ti, δi): i = 1, …, n}. Then, we use Markov chain Monte Carlo (MCMC) methods to
obtain samples from the joint posterior distribution of (θ, b), which is given by

(8)

We focus on nonparametric priors for the nonparametric components in ηik (t, bik) and the
baseline hazard or cumulative baseline hazard function. We can take different prior
distributions, including a Gaussian prior, zero-inflated priors, and stick-breaking priors
among others, for the coefficients {θikl,s} in model (4). For instance, a Dirichlet process for
{θikl,s }, denoted by DP(αP0), usually clusters all the longitudinal profiles into one of k ≤ n
clusters, where P0 is the base probability measure and α is the confidence parameter. See a
nice review of Bayesian nonparametric methods for functional data in Dunson (2009).

Different prior distributions for the baseline hazard λm0(·) or cumulative baseline hazard
Λm0(·) include a piecewise constant hazards model, Gamma process model, Beta process
model, or a Dirichlet process model. As an illustration, we construct the piecewise constant
hazards model for λm0(·). We start with a finite partition of the time axis, 0 < cm,1 < · · · <
cm,L, with cm,L > Tim for all i and then set λm0(t) = hmℓ for t ∈ Imℓ = (cm, ℓ−1, cm, ℓ].
Furthermore, a first-order autoregressive prior or an independent gamma prior can be taken
for hm = (hm1, …, hmL)T (Sinha, 1993; Arjas and Gasbarra, 1994; Ibrahim et al., 2001). An
important alternative is the gamma process prior for Λm0(·), that is, ,
where c0 is a fixed constant and  is a known increasing function with .

Our aim is to carry out Bayesian inference about parameters of interest, which requires a
reasonably “robust” prior p(θ) and the correct specification of p(Yi, Ti, δi; θ). A nonrobust
prior p(θ), the presence of outliers, and the misspecification of the JMLS may introduce
serious bias in the estimation and inference on θ. Thus, it is crucial to assess the sensitivity
of statistical inference to the prior, the sampling distribution, and outliers. We note that
existing frequentist diagnostic tools are not sufficient for this endeavor (Dobson and
Henderson, 2003; Rizopoulos et al., 2008; Rizopoulos and Ghosh, 2011).

Example 1
For the purposes of illustration, we consider an example with two longitudinal markers and
bivariate survival times. In this case, K = M = 2. Specifically, each longitudinal response is
given by

(9)

for i = 1, …, 100, k = 1, 2, and j = 1, …, ni, where the ri s represent a baseline covariate in
the longitudinal model. Moreover, it is assumed that tij1 = tij2 for all i and j, εij = (εij1, εij2)T

are independently and identically distributed as N2(0, Σ), and the random effects

 are distributed as N4(0, Φ), where bik = (bik0, bik1)T for k = 1, 2. Here Σ and Φ
for k = 1, 2 are covariance matrices. Conditional on bi, the two event and censoring times
are assumed to be independent and their marginal hazard functions are given by
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(10)

for m = 1, 2, where zi = (zi1, zi2)T is a vector of time-independent covariates. Let Yi (t) =
(yi1(t), yi2(t))T and ηi (t, bi) = (ηi1(t, bi1), ηi2(t, bi2))T. The density of (Yi, Ti, δi, bi) given θ
for the ith subject, denoted by p(Yi, Ti, δi, bi ; θ), is given by

where C0 is a constant independent of θ.

To carry out a Bayesian analysis, we take a joint prior distribution for θ as follows:

(11)

for k, m = 1, 2, where , R0, ρ0, , and ρ0 are prespecified
hyperparameters. For the baseline hazard λm0(·), we take a piecewise constant hazards

model with 250 subintervals with equal lengths such that ,
where the cm, ls are prespecified constants. We take hm l ~ Γ(τ0l, τ1l) for l = 1, …, 250 and
m = 1, 2. We use MCMC methods to conduct our Bayesian influence analysis on θ and b.

3. Bayesian Influence Analysis
We address three issues related to Bayesian influence analysis of JMLS: perturbation
models for perturbing the JMLS, appropriate perturbations, and Bayesian influence
measures.

3.1. Perturbation Models and Appropriate Perturbations
We introduce three classes of perturbation models to formally perturb JMLS. Let ω be a
perturbation vector in a set Ω ⊂ RW, which represents a Euclidean space of dimension W,
where W is an integer. The perturbed model  = {p(Do, b; θ, ω): ω ∈ Ω} characterizes
various perturbations to the assumed density of p(Do, b; θ) such that ∫ p(Do, b; θ, ω)dDo db
= 1 and p(Do, b; θ, ω0) = p(Do, b; θ) for a unique ω0, which represents no perturbation. The
first class of perturbations is to individually perturb a subject’s longitudinal profile, repeated
measures within each subject, covariates, survival time, and censoring indicator. For
instance, we introduce a perturbation vector ωy,i into p(Yi |bi; θy) to perturb Yi such that the
perturbed density is given by

(12)
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in which ω = {ωy,1, …, ωy,n }. This single-case perturbation equation (12) to the
individual’s longitudinal profile is primarily designed to detect one or a few influential
subjects, whose longitudinal profiles differ significantly from the other subjects in the
evolution process. Furthermore, we may introduce a perturbation vector ωi into p(Ti, δi |bi;
θT) to perturb (Ti, δi) such that the perturbed density is given by

(13)

in which . This single-case perturbation equation (13) to the survival data
is designed to reveal influential values of survival times relative to other survival times.

The second class is to perturb the shared random effects that underly both the longitudinal
measurement and survival processes. For instance, we introduce a perturbation vector ωb,i to
simultaneously perturb (Yi, Ti, δi) with the presence of bi such that

(14)

In equation (14), we use the same ωb,i to simultaneously perturb p(Yi |bi ; θy) and p(Ti, δi |
bi ; θT) to delineate large discrepancies between the longitudinal profile and the
corresponding survival time, each of which may not be influential by themselves. This
single-case perturbation equation (14) is primarily designed to detect influential survival
times, whose occurrence is low relative to their subject-specific longitudinal profiles. An
alternative perturbation is to introduce a perturbation ωb,i into p(bi ; θb) such that

(15)

Perturbation equation (15) is designed to detect “influential” random effects bi, whereas
their corresponding Ti and Yi may be not influential. Furthermore, by setting ωb,i = ωb, we
can formally assess the parametric distributional assumptions of the random effects bi and
the amount of such perturbations to statistical inferences, such as their impact on parameter
estimation.

The third class includes perturbations to the prior p(θ) and the simultaneous perturbations to
all three components of the Bayesian model. A fundamental issue associated with any
Bayesian analysis is how much posterior quantities, such as the Bayes factor, parameter
estimates, and credible (or highest posterior density) intervals, are sensitive to changes in the
prior distribution. Thus, it is important to assess both Bayesian semiparametric assumptions
for the longitudinal profiles and perturbations regarding the nonparametric prior processes
for the cumulative baseline hazard function. For instance, we consider a prior perturbation to
Λm0(t) ~ P (c0Λ*(t), c0) by assuming Λm0(t) ~ P (c0Λ*(t, ωP), c0) such that

 and Λ*(t, 0) = Λ*(t). Combining the first two classes with the
third class, we can obtain various simultaneous perturbations to the prior, the sampling
distribution, and the data, which allows us to assess the simultaneous sensitivity of all
components of a Bayesian analysis.

Example 1 (continued)—We consider some simultaneous perturbations as follows:
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(16)

Thus, the perturbed (unnormalized) log-posterior is given by

(17)

In this case, ω contains (ωy,1, …, ωy,n, ωb,1, …, ωb,n, ωα1, ωα2, ωγ1, ωγ2)T and ω0 = (0,
…, 0, 1, …, 1, 1, 0, 1, 0)T represents no perturbation.

After perturbing the JMLS, we need to quantify the amount of perturbation introduced by
each perturbation, the extent to which each component of a perturbation vector contributes
to, and the degree of orthogonality for the components of a perturbation vector (Amari,
1990; Zhu, Ibrahim, and Tang, 2011). This is very critical for us to properly pinpoint the
cause (e.g., prior) of a large effect. Specifically, we regard the perturbed model p(Do, b, θ;
ω) as the probability density of (Do, b, θ) for ω and then calculate its score function ∂ωhℓ(ω),
where ∂ωh = ∂/∂ωh, ℓ(ω) = log p(Do, b, θ; ω), and ωh is the hth component of ω. Thus, the
Fisher information matrix with respect to ω, denoted by G(ω) = (gh s (ω)), is a W × W

matrix with its (h, s) element given by , for h, s
= 1, …, W, where Eω denotes the expectation taken with respect to p(Do, b, θ; ω).

We call p(Do, b, θ; ω) an appropriate perturbation model if G(ω0) equals cIW, where c is
any positive scalar and IW is a W × W identity matrix (Zhu et al., 2007). Specifically, ghh
(ω) can be regarded as the amount of perturbation introduced by ωh, whereas the correlation

 indicates an association between ωh and ωs. The diagonal structure of
G(ω) implies that all components of ω are orthogonal to each other. Orthogonal
subcomponents of ω allow for easy detection of the cause of a large effect. If G(ω0) is not
diagonal, then we choose a new perturbation vector ω̃, defined by

(18)

Based on ω̃, we can obtain a new perturbation model p(Do, b, θ; ω̃) such that G(ω̃)
evaluated at ω0 equals IW.
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Example 1 (continued)—Let  for i = 1, …, n. It follows
from the definition of G(ω0) that

. The diagonal structure of
G(ω0) indicates that all components of ω are orthogonal to each other. However, because
G(ω0) does not take the form of cIW, this indicates that different components of ω introduce
different amounts of perturbations. For instance, a large gy,ii indicates that ωy,i introduces a
large perturbation for a subject with more repeated measures (ni). In practice, we can always
choose the appropriate perturbation scheme in equation (18).

3.2. Local Influence Measures
Let f(p(Do, b, θ; ω)) = f (ω) be a real objective function (e.g., Bayes factor) of the perturbed
model, which defines the aspect of inference of interest for sensitivity analysis. We use f(ω)
to measure the effect of a small perturbation ω to a JMLS around ω0. Specifically, we
consider a smooth curve of the perturbed model p(Do, b, θ; ω(t)) such that p(Do, b, θ; ω(0))
= p(Do, b, θ). Then, the score function of ℓ(ω (t)) with respect to t is equal to ∂t ℓ(ω(t)) =
hT∂ωℓ(ω(t)), where ∂t = ∂/∂t, ∂ω = ∂/∂ω, and ∂t ω(t)|t =0 = h ∈ RW. Then, we quantify the
effects of introducing ω(t) to perturb the JMLS by using {f (ω(t)) − f (ω(0))}2 relative to the
Kullback–Leibler divergence between p(Do, b, θ; ω(0)) and p(Do, b, θ; ω(t)), denoted by
S(ω(0), ω(t)).

For small t, it follows from a Taylor’s series expansion that S(ω(0), ω(t)) ≈ 0.5t2hT G(ω0)h

and f (ω(t)) − f (ω(0)) = ḟh(0)t + O(t2), where , in which ∇f = ∂ωf(ω0). If ∇f ≠ 0,
we use a quantity FIf,h called the first-order influence measure (FI) in the direction h ∈ RW

for the objective function f (ω), which is given by

(19)

where G = G(ω0). For the appropriate perturbation ω̃(ω) given in equation (18), FIf,h

reduces to  with the constraint hT h = 1.

We use the maximum value of FIf,h and its associated eigenvector, denoted by hmax, as
influence measures to quantify the largest degree and influential direction of local influence

of ω̃ to the JMLS. It can be easily shown that FIf,hmax equals  and

. In particular, hmax can be used to detect robustness of priors or
identify influential observations and incorrect sampling distributional assumptions for
single-case and global perturbations (Cook, 1986). Following Zhu and Lee (2001) and Zhu
et al. (2007), we also suggest inspecting FIf, ei to identify the most significant components of
ω̃, where ei is a W × 1 vector with a 1 for the ith element and 0 otherwise. For instance, we
consider the Bayes factor given by f(ω) = log p(Do; ω) − log p(Do; ω0), where p(Do; ω) = ∫
p(Do, b, θ; ω)dbdθ. Thus, under some smoothness conditions, it can be shown that ∇f =

Eω<sup>0</sup>[∂ωlog p(Do, b, θ; ω0)|Do ] and . To calculate
the local influence measures associated with f(ω), we just need to compute ∇f and G. In
practice, we can use MCMC methods to draw samples {(θ(s), b(s)): s = 1, …, S0} from p(θ,

b; Do, ω0) to approximate ∇f via .
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We can also carry out Bayesian local influence when ∇f = 0. Because f (ω(t)) = f (ω(0)) +

0.5hT Hf ht2 + O(t3), where , we introduce a second-order influence measure
(SI) in the direction h ∈ RW, given by

(20)

For ω̃ (ω) in equation (18), SIf,h reduces to hTG−1/2HfG−1/2h, where hT h = 1. Moreover,
we also use SIf,ei and the eigenvalue–eigenvector pairs of G−1/2Hf G−1/2 as our influence
measures. We use the eigenvector of the largest eigenvalue of G−1/2Hf G−1/2, denoted by
hmax, as influence measures to quantify the influential direction of local influence of ω̃ to
the JMLS.

Finally, we examine the influence measures associated with three common objective
functions, these being the φ–divergence, the posterior mean distance, and the Bayes factor,
and include the detailed formulas in the supplementary document. Although all three
objective functions can assess the local influence of a perturbation vector ω to the JMLS,
there is a conceptual difference among these measures. The φ–divergence and the Bayes
factor quantify the effects of introducing ω on the overall posterior distribution, whereas the
posterior mean distance quantifies the effect of ω on the posterior mean of θ. Because the
perturbation vector ω may influence various characteristics of the posterior distribution,
such as the shape, mode, and mean, the φ–divergence, and the Bayes factor can be more
sensitive to some perturbations of the posterior distribution compared to the posterior mean
for certain perturbation schemes ω. In contrast, the posterior mean distance may be more
sensitive to perturbations which have a dramatic effect on the posterior mean.

4. Application to the IBCSG Data
We applied our proposed methodology to both simulated data and the IBCSG data discussed
in the Introduction Section. For the sake of space, we only present some influence analysis
results for the IBCSG data here. We refer the reader to the supplementary document for
further details.

For the IBCSG data, we considered a JMLS for jointly investigating the relationship
between the multidimensional QOL and the bivariate failure time variables DFS and OS. To
satisfy the normality assumption for the four considered longitudinal QOL indicators
(appetite, denoted as y1; perceived coping, denoted as y2; mood, denoted as y3; and physical
well-being, denoted as y4), we transformed their corresponding observed values of QOL to

 (Chi and Ibrahim, 2006). The transformed QOLs decreased over time and were
scaled between 0 and 10 with smaller values reflecting better QOL. There were 832 patients
from Switzerland, Sweden, and New Zealand/Australia with a total of 2154 QOL
observations being included in this analysis.

Let yi1(tij1), …, yi4(tij4) be the observed values of the transformed QOLs for the ith patient
at the jth time point, respectively. We considered the following JMLS:

(21)

for i = 1, …, 832, j = 1, 2, 3, k = 1, …, 4, and m = 1, 2, where xi = (xi1, …, xi6)T includes the
number of initial cycles, reintroduction, interaction of the number of initial cycles and
reintroduction, age, residency for Switzerland, and residency for Sweden. Moreover, zi
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includes the number of initial cycles, reintroduction, interaction of the number of initial
cycles and reintroduction, age, number of positive nodes, and ER status. We assumed that εij
= (εij1, …, εij4)T are independently and identically distributed as N4(0, Σ), and the random
effects bik = (bik0, bik1)T are independently and identically distributed as N2(0, φk) for i = 1,
…, 832, j = 1, 2, 3, and k = 1, …, 4. For the baseline hazard λm0(·), we take the piecewise
constant hazards model with 250 subintervals with equal lengths such that

 with L = 250, where the cm,l s are prespecified constants.

To conduct a Bayesian analysis, we specified the following prior distributions:

(22)

for m = 1 and 2, and k = 1, …, 4, where h = {hml: m = 1, 2, l = 1, …, L}, ,

R0, ρ0, , τ0l, τ1l, , and  are prespecified hyperparameters. Moreover,

, R0, and  were set to their Bayesian posterior means obtained from MCMC
methods based on noninformative prior distributions for αm, γm, Σ−1, β, and φk. We used
MCMC methods, whose key steps are described in the supplementary document, to carry
out the Bayesian analysis.

To illustrate our influence analysis, we considered five different perturbations to the JMLS
and carried out the associated influence analysis. Specifically, for each perturbation ω, we
calculated the metric tensor G and then took the new appropriate perturbation ω̃ (ω) given in
equation (18). Detailed derivations of influence quantities, such as G(ω0), can be found in
the supplementary document. We chose the Bayes factor as the objective function and then
calculated the local influence measure hmax of the Bayes factor for each perturbation scheme
by using the MCMC output. Specifically, a total of 5,000 iterations after 5,000 burn-in
samples were used to compute all local influence measures.

The first perturbation is a single-case perturbation, which is obtained by perturbing each
subject’s longitudinal profile as follows:

In this case, , in which ωij = (ωij1, …, ωij4)T for i = 1,
…, n = 832, and j = 1, …, 3, and ω0 = 0 presents no perturbation. This single-case
perturbation is designed to detect influential transformed QOLs of the longitudinal profiles
in the evolution process. Figure 1 presents the subcomponents of hmax corresponding to all
cases (i, j) for k = 1, 2, 3, and 4, where (i, j) represents the ith patient at the jth time point.
Inspecting Figure 1 reveals the most influential cases as (158,2), (306,1), (619,3), (788,2),
(802,2), and (803,2) for k = 1; (39,2), (541,1), and (625,2) for k = 2; (103,2), (130,2),
(209,1), (331,2), and (331,3) for k = 3; and (53,2), (103,2), (208,2), (306,1), (530,1), (780,2),
and (792,3) for k = 4.

The second perturbation is also a single-case perturbation, which perturbs each marginal
hazard function as follows:
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for i = 1, …, n and m = 1, 2. In this case, ω = (ω11, ω21, …, ωn1, ωn2) with ω0 = 1
representing no perturbation. This single-case perturbation is used to detect influential
disease-free survival and overall survival times in the survival process. Inspecting Figure 2
reveals patients 15, 18, and 28 as most influential for m = 1, and patients 15, 42, 85, 96, 136,
234, 281, and 282 for m = 2 by our local influence measure hmax for the Bayes factor.

The third perturbation is to simultaneously perturb the shared random effects bi in both the
longitudinal profiles and the marginal hazard functions:

where ωi = (ωi1, …, ωi4). In this case, ω = {ω11, …, ω14, …, ωn1, …, ωn4) and ω0 = 1
represents no perturbation. This single-case perturbation is used to detect these influential
subjects, whose survival times have a low chance of occurrence given their subject-specific
longitudinal profiles. Inspecting Figures 3 and 4 reveal the following influential subjects.
Specifically, in Figure 3, patients 15, 28, 40, 70, 81, 96, 117, 136, 228, and 282 were
detected to be the most influential for k = 1 and patients 15, 28, 30, 40, 70, 94, 136, 220, and
234 were detected to be the most influential for k = 2. Figure 4 shows that patients 15, 28,
70, 81, 136, and 150 were detected to be the most influential for k = 3 and patients 9, 15, 18,
28, 70, 94, 96, and 136 were detected to be the most influential for k = 4.

The fourth perturbation involves perturbing the prior distributions as follows:

In this case, ω = {ωβ0, ωβ1, ωα0, ωα1, ωγ0, ωγ1, ωλ, ωΣ, ωφ}, and ω0 = {0, 1, 0, 1, 0, 1, 1,
1, 1} represents no perturbation. This perturbation assesses the sensitivity of the Bayes
factor to minor changes in the prior distributions. Based on the local influence measures |
hmax| for the Bayes factor and the diagonal elements of G(ω0), Figures 5(a) and (b) shows
that perturbing the prior of hml has a large impact on the Bayesian analysis.

The last perturbation is a simultaneous perturbation. Specifically, we consider the following
perturbation scheme:
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and a subset of the s and the priors of βk, αm, γm, hml, Σ−1 and  are pertarbed. In this
case, we have

and ω0 = {1, …, 1, 1, 0, 1, 1, …, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1} represents no perturbation. We
are interested in examining the sensitivity of all components of the Bayesian analysis to such
simultaneous perturbations. Based on all the subcomponents of |hmax| and gii, Figure 5(c)

identifies influential perturbations , hml s and the prior distribution of the hml
s as well as the three most influential patients 103, 130, and 780. Finally, we deleted the
three influential subjects 103, 130, and 780 and recalculated the posterior estimates of the
parameters for the IBCSG data (Table 1). Inspecting Table 1 indicates that many
subcomponents of βk and αm are very sensitive to the deletion of these three subjects.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Results of single-case perturbation to longitudinal profiles for the IBCSG data set: Index
plots of the local influence measure |hmax| corresponding to k = 1 (left upper panel), k = 2
(right upper panel), k = 3 (left lower panel), and k = 4 (right lower panel).
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Figure 2.
Results of single-case perturbation to marginal hazard functions for the IBCSG data set:
Index plots of the local influence measure hmax for ωins with m = 1 (left upper panel), and
for ωins with m = 2 (left lower panel), and gii with m = 1 (right upper panel), and m = 2
(right lower panel).
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Figure 3.
Results of perturbing the shared random effects for the IBCSG data set: Index plots of the
local influence measure |hmax| for perturbing bik with k = 1 (left upper panel), and k = 2 (left
lower panel), gii with k = 1 (right upper panel) and k = 2 (right lower panel).
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Figure 4.
Results of perturbing the shared random effects for the IBCSG data set: Index plots of the
local influence measure |hmax| for perturbing bik with k = 3 (left upper panel), and k = 4 (left
lower panel), gii with k = 3 (right upper panel) and k = 4 (right lower panel).

Zhu et al. Page 18

Biometrics. Author manuscript; available in PMC 2012 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 5.
Results of the IBCSG data set. Perturbing the prior distributions: (a) index plot of the local
influence measure |hmax| (the left panel); and (b) index plot of gii (the right panel) for
perturbing priors of the parameters βk, αm, γm, hm l, Σ and Φ1, …, Φ4. The simultaneous
perturbation: (c) index plot of the local influence measure |hmax| (the left panel); and (d)
index plot of gii (the right panel).
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