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Summary
For competing risks data, the Fine–Gray proportional hazards model for subdistribution has gained
popularity for its convenience in directly assessing the effect of covariates on the cumulative
incidence function. However, in many important applications, proportional hazards may not be
satisfied, including multicenter clinical trials, where the baseline subdistribution hazards may not
be common due to varying patient populations. In this article, we consider a stratified competing
risks regression, to allow the baseline hazard to vary across levels of the stratification covariate.
According to the relative size of the number of strata and strata sizes, two stratification regimes
are considered. Using partial likelihood and weighting techniques, we obtain consistent estimators
of regression parameters. The corresponding asymptotic properties and resulting inferences are
provided for the two regimes separately. Data from a breast cancer clinical trial and from a bone
marrow transplantation registry illustrate the potential utility of the stratified Fine–Gray model.
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1. Introduction
Competing risks data arise when subjects may fail from several distinct types including
disease and nondisease related causes. The observed data consist of a failure time and a
failure type. In this setting, the cumulative incidence (also referred to as the subdistribution)
may be of prime interest as it quantifies the absolute risks of different failure types. The
focus of this article is evaluating covariate effects on the cumulative incidence across levels
of a stratifying variable using the popular Fine–Gray regression model.
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To compare the cumulative incidence of a particular type of failure among different groups,
Gray developed a class of K-sample tests based on weighted averages of the subdistribution
hazards for that particular failure type of interest (Gray, 1988). Pepe (1991) proposed a
nonparametric two sample test for group effects. No covariates other than the group factor
can be considered in these tests. A semiparametric proportional hazards model was proposed
by Fine and Gray (1999) to assess the effect of covariates or prognostic factors on the
cumulative incidence function. The Fine–Gray model captures the cause-specific failure
probabilities after adjusting for patient-specific risks and provides a way to directly examine
the influence of risk factors on the absolute risks. Alternative models and methods of
estimation for cumulative incidence regression have been studied in, for example, Klein and
Andersen (2005); Scheike and Zhang (2008); and Scheike, Zhang, and Gerds (2008),
including nonproportional hazards models and goodness-of-fit methods for assessing the
proportional hazards assumption. In this article, we focus on a simple extension of the Fine–
Gray model, which is currently the most widely used cumulative incidence regression
methodology in practice, adapting techniques that are widely employed with proportional
hazards modeling under independent censoring.

In real applications, the proportional subdistribution hazards assumption may not hold for
certain covariates. In these scenarios, naive application of the Fine–Gray model, either
omitting such covariates or including them assuming they satisfy the proportional hazards
assumption, could lead to biased estimation and tests, and potential loss of power. We
propose a stratified Fine–Gray model that adjusts for such discrete factors, without
estimating their effects on the sub-distribution hazard. The main idea is to allow the baseline
hazard function to vary across levels of stratification variables.

In classical survival analysis, stratifying is a common data analytic strategy. For instance, in
proportional hazards regression with independent censoring, there are frequently important
factors, the different levels of which produce hazard functions that differ markedly from
proportionality. Stratification on these factors may yield a simpler and more flexible analysis
than modeling interactions parametrically with functions of time defined through time-
dependent covariates (Kalbfleisch and Prentice, 2002). Notably, stratification is a standard
approach to account for varying patient populations such as in multicenter clinical trials,
where baseline hazards vary across centers (Therneau and Grambsch, 2000). Both Splus and
SAS statistical software offer the strata option in fitting the Cox (1972) regression model,
but these functions may not be suitable for the Fine–Gray model.

We consider two typical data sets that exhibit different stratification regimes where
cumulative incidence is a primary endpoint. We say data are regularly stratified if there are a
small number of large groups (strata) and that data are highly stratified if the number of
groups (strata) is large compared to the strata sizes.

Clinical trial E1178 conducted by the Eastern Cooperative Oncology Group compared 2
years of treatments tamoxifen therapy to placebo in elderly (⩾ age 65) breast cancer patients
with positive auxiliary nodes. The cumulative incidence of breast cancer recurrence is of
great interest. Nonproportional hazards of the treatment effect has previously been observed
using time-dependent covariates (Fine and Gray, 1999), suggesting stratification on
treatment when testing effects of other risk factors. Within each treatment arm, there are a
large number of patients, as with regularly stratified data.

A bone marrow transplant registry is maintained by the European Blood and Marrow
Transplant Group. The primary endpoint is time from graft to first occurrence of acute or
chronic graft-versus-host-disease (GvHD) whereas death and relapse (free of GvHD) are the
competing events. This is a multicenter design. Katsahian et al. (2006) proposed a frailty
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model for the subdistribution hazard to assess the heterogeneity across clusters and to
incorporate such an effect when testing other risk factors. A stratified competing risks
regression can be applied here to account for correlation within center due to unobserved
center effects without estimating those effects. The number of centers is much larger than
the number of patients from each center, yielding highly stratified data.

Existing work on the cumulative incidence function for clustered and/or stratified data
includes, but is not limited to modified nonparametric Gray type tests (Chen et al., 2008),
mixed proportional hazards models (Katsahian et al., 2006), and introducing interactions
using time-dependent covariates to the Fine-Gray (1999) model. The modified tests focus on
formally testing group effects, which limits the introduction of continuous covariates and the
quantification of covariate effects. The mixed proportional hazards model is a frailty
regression model tailored to competing risks data. Although the approach seems promising,
the statistical properties of the resulting analysis are unclear (Katsahian et al., 2006).
Moreover, if the main goal is to investigate covariate effects, introducing a dependence
parameter in modeling the joint distribution within each cluster does not seem to have much
advantage. Stratified (Gross and Huber, 1987) and marginal proportional hazards
approaches (Lee, Wei, and Amato, 1992) have been advocated for such scenarios with
independent censoring. Such models avoid introducing time-dependent covariates to capture
cluster effects, simplifying the explanation of the noncluster covariate effects.

In Section 2, we introduce the stratified Fine–Gray model. In Section 3, we discuss partial
likelihood inferences for the stratified model in the absence of independent censoring, along
with inverse weighting estimation equations, which permit additional independent
censoring. Inferential issues are presented in Section 4, with results for the two stratification
regimes in separate subsections. Prediction of the cumulative incidence is discussed in
Section 5. Section 6 discusses some simulation studies, with the analysis of the two
motivating data sets following in Section 7. We conclude with a few remarks. Technical
details are included in the Web Appendices.

2. Data and Model
Let T, C be the failure and censoring times, ε ∈ {1,…, m} be the cause of failure, and Z be a
I × 1 vector of covariates. For right censored data, one observes {X = T ≤ C, Δ = I(T ≤ C),
Δε, Z}, where a ∧ b = min(a, b). Here, as in Fine and Gray (1999), we permit Z to include
time-varying covariates that are known, deterministic functions of time and time-
independent covariates, and hence are fully observed. In the sequel, we suppress the
dependence on time, when there is no loss of clarity. We are interested in assessing the
effect of covariates on the cumulative incidence function for failure from cause 1,
conditional on the covariates: F1(t; Z) ≡ Pr(T ≤ t, ε = 1|Z). We assume (T, ε, Z) and C are
independent given Z; assumptions for the dependence of C on stratum are described below.

Fine and Gray (1999) proposed a proportional hazards model for the subdistribution hazard
λ1(t;Z) = dF1(t; Z)/{1 − F1(t; Z)}. The model relates the covariates with λ1(·) for
independent and identically distributed (i.i.d.) observations {Xi, Δi, Δiεi, Zi}i=1,…, n by

, where λ10(·) is an unspecified, nonnegative function denoting
the baseline subdistribution hazard when covariate Z = 0; β0 is a l × 1 vector of unknown
regression parameters.

The goal of our study is to introduce stratification to the Fine–Gray model. With
stratification, we observe {Xki, Δki, Δkiεki, Zki}k=1,…,s;i=1,…,nk, where k denotes the

stratum, i denotes the subject within strata, and . For regularly stratified data, we
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assume i.i.d. observations within strata, whereas for highly stratified data, we will assume
that information observed within a cluster is i.i.d. across strata; see condition 3 in Web
Appendix A. When appropriate, the n observations can be denoted using single index: {Xl,
Δl, Δlεl, Zl, Kl}l=1,…,n, where K = k ∈ {1,…,s} gives the stratification information. We
define the cumulative incidence function for stratum k as F1k(t; Z) ≡ Pr(T ≤ t, ε = 1 | Z, K =
k). Correspondingly, the proportional hazards specification for the subdistribution hazard for
kth stratum λ1k (t; Z) = dF1k (t; Z)/{1 − F1k (t; Z)} is

(1)

where λ1k0 is the baseline subdistribution hazard in stratum k(= 1,…, s) and β0 is the
regression coefficient, which is assumed common to all strata. An important point is that no
assumptions are made about the relationships between the baseline hazard functions.

3. Estimation
The estimation procedure is adapted from Fine and Gray (1999). The data are said to be
complete when failure time T and failure cause ε are observed for all individuals; the data
are censoring complete (CC) when the failure time is right censored but potential censoring
time C is always observed. Starting from a modification of the partial likelihood for the
subdistribution for complete or CC data, we then extend the estimation equation to classical
right censored data.

3.1 Complete and Censoring Complete Data
With complete data, the risk set at time of failure of the ith subject in the kth stratum is Rki =
{i′ : (Tki′ ≥ Tki) ∪ (Tki′ ≤ Tki ∩ εki′ ≠ 1)}. When the data are CC, the associated risk set is
modified to Rki = {i′ : (Tki′ ∧ Cki′ ≥ Tki) ∪ (Tki′ ≤ Tki ∩ εki′ ≠ 1 ∩ Cki′ ≥ Tki)}. We will
detail the derivation of the partial likselihood approach for the CC data, because the
complete data are special cases of the CC data by letting the censoring times be larger than
the maximum failure time.

Let Nki = I(Tki ≤ t, εki = 1) and Yki(t) = 1 − Nki(t−) denote the counting process and risk
process for the complete data, respectively. When the data are CC, the risk process is
modified to . Applying the partial likelihood approach to λ1k (t | Z),
we obtain the corresponding partial likelihood

where

with a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT. Differentiating the log partial likelihood in β yield the
following estimating equation:
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(2)

Where . The estimator β̂, which maximizes L*(β) may be

obtained as a solution to .

3.2 Weighted Estimating Equation for Right Censored Data
When classical right censoring is present, we can adapt inverse probability of censoring
weighting techniques (Robins and Rotnitzky, 1992) to construct an unbiased estimating
function, as proposed by Fine and Gray (1999). Let G(·) be the survival function of the
censoring variable with highly stratified data and Gk(·) be the survival function of the
censoring variable in the kth stratum with the regular stratification. The implicit weight I(Cki
≥ t) with the CC data is replaced by wki(t) = I(Cki ≥ Tki ∧ t)Gk (t)/Gk (Xki ∧ t), where Gk (t)
= Pr(Cki ≥ t), i = 1,…, nk, for each k with regularly stratified data, assuming the censoring
distribution is stratum dependent. For highly stratified data, the replacement would be wki (t)
= I(Cki ≥ Tki ∧ t)G(t)/G(Xki ∧ t), and G(t) = Pr(Cki ≥ t), k = 1,…, s; i = 1,…, nk, assuming
random vectors (nk, Ck1,…, Cknk) are i.i.d. across k, but allow the dependence in the
censoring times in a given stratum. That is, arbitrary dependence among Ck1,…, Cknk would
be allowed.

The difference in the assumptions for the two data regimes has to do with the consistency of
the potential estimator of the censoring time distribution. For regularly stratified data, the
size of each stratum goes to infinity. We can afford to allow for the dependence between
censoring time C and strata K. Therefore, Gk(·) is used. If strata sizes are finite, we cannot
consistently estimate the censoring distribution in each strata. Information must be pooled
across strata via the assumption of a single G, as is employed with highly stratified data.

Because the distribution of the censoring random variable is unknown in either stratification
regime, Gk(·)(G(·)) needs to be estimated: Ĝk(·), the Kaplan–Meier estimate of the survival
function of the censoring random variable in the kth stratum is used with regular
stratification and Ĝ(·), the Kaplan–Meier estimate of the survival function of the censoring
random variable, is used with highly stratified data. Only patients from the kth stratum are
used in the calculation of ŵki(t) for regularly stratified data because the stratum sizes go to
infinity. In contrast, for highly stratified data, patients from all strata are used in Ĝ.

The estimated weights are ŵki (t) = I(Cki ≥ Tki ∧ t)Ĝk(t)/Ĝk (Xki ∧ t) or ŵki (t) = I(Cki ≥ Tki
∧ t)Ĝ(t)/Ĝ(Xki ∧ t) such that ŵki(t) → wki(t) as n → ∞ for both stratification schemes. That
is,

The resulting weighted score function is:
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(3)

where ,

. The estimator of β̂ is obtained by zeroing the
estimating equation (3).

4. Inference
In this section, we consider the asymptotic properties of the estimators for different data
regimes. In each case, the consistency of β̂ comes first. Then the asymptotic normality of

 or  is shown. Asymptotic normality of  is obtained by
Taylor series approximation and the first two results. Variance estimation follows.

4.1 Regularly Stratified Data
In this scenario, the number of strata s is finite. When n → ∞, nk → ∞, for each k = 1,…,
s.

We start from the CC data. Under the regularity conditions stated in Web Appendix A, we
can show that β̂ is consistent by adapting the consistency result of β̂ in Andersen and Gill
(1982). Then by Taylor series expansion and the consistency of

, where Ωr is the limit of the negative of the partial

derivative matrix of the score function  evaluated at β0. Clearly,

, where each component

 and by Fine and Gray (1999), as

 with

where , and

. It follows that , Where pk = nk/n →

πk. Thus, as . Hence,

.
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A consistent estimate of the covariance matrix for the regression coefficients can be
obtained by replacing the unknown quantities with their observed values. We have

When the data are right censored, by applying results of weighted score function for
incomplete data (Fine and Gray, 1999) to each component of

, the asymptotic properties for
right censored stratified data may be established. One may show that as

 goes in probability to 0
uniformly for β in a compact neighborhood of β0. Therefore, β̂, the solution to U1(β, τ) = 0

is consistent for β0. Furthermore, for each , where Σrk = E{(ηki
+ ψki)⊗2}. The details of ηki and ψki for each k are omitted here because they are identical
to ηi and ψi in Fine and Gray (1999), with the added subscript k. Because U1k are

independent,  is asymptotically normally distributed as

N(0,Σr), where . Similar to CC data, ,

where  has the same form as the variance in the CC case. Hence, the distribution of

 is asymptotically normal with covariance matrix .

To estimate the covariance matrix for the regression coefficients, we need to find a

consistent estimator of Ωr and Σr. The estimator of Ωr is Ω̂r with  replacing  for each
k, p = 0, 1, 2. Each component of Σr, Σrk can be estimated with the empirical covariance

matrix . For brevity, we do not show the details of η̂ki and ψ̂ki,
which can be obtained by adding subscript k to η̂i and ψ̂i in Fine and Gray (1999).

Therefore, the distribution of  can be approximated by a normal distribution with

variance .

4.2 Highly Stratified Data
In this scenario, the strata size nk is finite, k = 1,…, s, s → ∞ as n → ∞.

As in the regularly stratified data, we consider the CC situation first. In Web Appendix B,
we show β̂ is consistent under regularity conditions listed in Web Appendix A. We can

further show asymptotic normality of  as follows. Because

 is a martingale for CC data

filtration 

(Fine and Gray, 1999), we can reexpress  as a martingale-type estimation equation:
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Applying the martingale central limit theorem (Rebolledo, 1980),  converges in

distribution to a continuous Gaussian process. At time , where

(4)

Some algebra proves that equation (4) satisfies

Similar to the regularly stratified data, Ωh is equal to the limit of the negative of the partial
derivative matrix of the score function evaluated at β0. In addition,

. Thus, . Note that m̄Ωh equals to
I defined in condition (4) of Web Appendix A, where m̄ is the average strata size as n → ∞.

Replacing the unknown quantities in Ωh with their observed values gives

an analogous formulation to that for Ω̂r.

When the data are right censored, β̂ is consistent as shown in Web Appendix C.1. We also

establish that , where

We show in Web Appendix C.2 that  is
asymptotically normal with co-variance matrix Σh = E{(ηk + ψk)(ηk + ψk)T}, where
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, and

Here, Z˜k(β0,·) is Ẑk(β0,·) with ŵki(·) being replaced by wki(·), and  is the martingale
associated with the censoring process.

It follows that  is asymptotically normal with covariance matrix

.

The estimator of Ω˜h is Ω̂h with  replacing  for all k and p as in the regularly stratified
case. The inner matrix in the variance, Σh, can be estimated empirically by

, where
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and Âkj is defined analogous to Akj with Z˜ replaced by Ẑ and S˜ replace by Ŝ.

This variance estimator can be unstable in small sample sizes, owing to variability in Ĝ in
the tails and the small within cluster sample sizes. As an alternative, bootstrap variance
estimation is introduced for highly stratified right censored data. Adapting the simple
bootstrap sampling for censored data (Efron, 1981), we have the following scheme:

1. Draw a bootstrap sample by independently sampling s times with replacement from
the s strata. This corresponds to drawing repeated from the empirical distribution of
the strata, which puts equal mass, 1/s, on each stratum;

2. Let data* represent this artificial data set, calculate β̂*;

3. Independently repeat the above steps B times, obtaining B regression coefficient

estimates, denoted ;

4. Calculate the sample standard deviation of the , and use this as an
estimate of the standard error of β̂.

This resampling approach is valid under the assumption that data within cluster are i.i.d.
across clusters.

5. Predicting Cumulative Incidence
To predict cumulative incidence at time t for a patient with covariates Z = z, we need an
estimator of the baseline cumulative subdistribution hazard. This estimator can be obtained
using a variation of Breslow's (1974) estimator for regularly stratified data, but is infeasible
for highly stratified data due to finite strata sizes. In this section, we will briefly discuss the
estimators of the cumulative subdistribution hazard for regularly stratified data and the
associated cumulative incidence estimators for individuals with certain covariate values.

With CC data, for each stratum k, the Breslow type estimator is

where β̂ is defined in Section 4. Thus, the cumulative subdistribution hazard for a patient
with covariates Z = z at time t is estimated by
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When the data are right censored, our estimator of the baseline cumulative subdistribution
hazard for stratum k is

(5)

This is essentially the Breslow estimator, after incorporating the inverse probability of
censoring weights to account for independent right censoring. The corresponding cumulative
subdistribution hazard is estimated by

Now that we have obtained the estimators of the cumulative subdistribution hazards at time t
for a patient with covariates z, we can predict the cumulative incidence by

 for CC data, or F̂1k (t, z) = 1 − exp{−Λ̂k (t, z)} for right

censored data. Confidence intervals and bands for  can be
constructed along the lines of Fine and Gray (1999). They are easily obtained by adding
stratum information k to the earlier results. The details are omitted.

As stated previously, we are not able to predict cumulative incidence using highly stratified
data. We can only evaluate the effect of risk factors on the cumulative incidence.

6. Simulation Experiments
Numerical investigations were conducted to assess the performance of the proposed
weighted estimation approach. We compared the estimators from the stratified weighted
score function (3) to the stratified censoring complete (CCS) estimators (described in
Section 3.1) and the CC estimators (described in Section 3.2 of Fine and Gray, 1999). The
objective is to assess potential biases in ignoring the stratification information when naively
using the unstratified analyses versus the stratified analyses, which appropriately account for
such stratification.

In all sets of simulations, data were generated repeatedly 1000 times. Within each replicate,
we employed the algorithm used by Fine and Gray (1999) to generate the data for each
stratum. Two competing risks were considered. The subdistribution for type 1 failure was

given by , which is a weibull
mixture with mass 1 − p at ∞ when Zki = 0, and uses the proportional subdistribution
hazards for nonzero covariate values. The subdistribution for type 2 failure was then
obtained by taking Pr(εki = 2 | Zki) = 1 − Pr(εki = 1 | Zki) and using an exponential
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distribution with rate  for Pr(Tki ≤ t| εki = 2, Zki). Censoring times were
generated from the uniform [a,b] distribution.

6.1 Simulation of Regularly Stratified Data
We present two sets of simulations to demonstrate the performance of the weighted
estimation function when the number of strata is fixed. In both sets of simulations, we
considered 3 strata; covariates are i.i.d. given stratum; (ρ1, ρ2, ρ3) = (1,.3,2), (γ1, γ2, γ3) = (.
5,2,1); and p = 0.6.

First, we generated data by assuming the true parameter values (β1,β2) to be (0, −0.5) for
normal covariates, which have unit variance and varying means of 0, 1, or 2; and assuming
(β1,β2) to be (0, 1) for Bernoulli covariates with means of .3, .5, or .7 for the three strata,
respectively. Censoring times were generated from a uniform [a,b] distribution with a and b
being specified to reach the targeted percentage of censored observations. We used two
different percentages of censoring for each. Table 1 gives the empirical sizes of CC, CCS,
and stratified weighted (WS) score tests for sample sizes of 100, 250, 500, and 1000 at the
nominal level of 0.05. As the sample size increases, the empirical size of the unstratified test
(CC) deviates substantially from the nominal level, especially for the normal covariates. The
stratified weighted tests and the CCS tests both achieve close to the nominal level.

Next, we changed (β1,β2) to (0.5, −0.5) for normal covariates; and (1,1) for Bernoulli
covariates, keeping other items unchanged. The sample size was 250 for each replicate.
Table 2 gives E(β̂1), estimated with the average of the β̂1 from the 1000 replicates; var(β̂1),
estimated with the empirical variance of β̂1; and E(var̂), the average of the variance
estimators of β̂1. As expected, the performances of the two stratified approaches are better
than the unstratified approach, which exhibits substantial bias. Both of the stratified
approaches gave very similar results, with small biases and similar variances.

6.2 Simulation for Highly Stratified Data
We assumed that the number of strata was 50; the strata sizes were uniformly distributed
from {3,4,5}; (ρ1,…, ρk,…, ρ50) = (0.1,…, 0.1k,…, 5), (γ1,…,γk,…,γ50) = (5,…, 5 −0.1k,
…, 0.1); and p = 0.6. The covariates were two dimensional. The first component was
independently distributed as a normal or Bernoulli covariate. The mean of the distributions
was strata dependent with three levels as in the regularly stratified case. The second
component was i.i.d. uniformly distributed independent of strata. We considered the true
parameter values to be (β11,β12,β21,β22) = (0, 1, −0.5, .5) and (β11,β12,β21,β22) = (1, 1,
−0.5, .5), respectively.

Table 3 gives the results for β11 and β12 for the various approaches. The weighted stratified
(WS) approach for right censored data and the CCS approach produce very similar and
precise estimators of the parameters and their variances, for both β11 and β12. For right
censored data, both the model based plug-in (WSh) and bootstrap (WSb) variance estimators
(E(var̂)) are provided for the weighted estimating equation. They have correlations of
between 96% and 98% in the four settings. The former leads to slightly lower empirical
coverage than the latter, although both methods, as well as CCS inferences, have coverages
which are close (within 0.02) to the nominal level. In contrast, the approach without
stratification (CC) provides biased results and coverages that are greatly reduced. When β11
= 0,β̂11 departs substantially from the truth; when β11 = 1,β̂12 and β12 are very discrepant.
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7. Real Data Examples
7.1 The Eastern Cooperative Oncology Group Study

In this study, there were 167 eligible patients. Of the 82 patients on placebo, 59 had breast
cancer recurrence, 19 died without recurrence, and 4 were censored; of the 85 patients on
tamoxifen, 42 had breast cancer recurrence, 23 died without recurrence, and 20 were
censored. In addition to treatment group to be considered, there were three prognostic
factors: number of positive nodes, tumor size, and age at treatment. We were interested in
the cumulative incidence function of breast cancer recurrence for the two treatment groups
with the competing event being death without recurrence.

The data were previously analyzed by Fine and Gray (1999). The model they suggested for
breast cancer recurrence allows the subdistribution hazards ratio of treatment to be quadratic
in time due to substantial lack of fit in the proportional subdistribution hazards model. The
other covariates were considered in the analysis in the form of linear proportional hazards
terms, which did not suggest lack of fit.

Based on the above, we considered model (1) with covariates for ith patient in kth group Zki
= (Z1ki, Z2ki, Z3ki) = (log(nodes),tumor size, age)ki, where k =1, 2 denotes the treatment
group (1 for placebo and 2 for tamoxifen); i = 1,…, 82 for k = 1; i = 1,…, 85 for k = 2.
Instead of being a covariate, treatment was a stratification variable. The estimated
coefficients and standard errors for this model, as well as those from Fine and Gray's
analysis are displayed in Table 4. The coefficient estimates and standard errors of the 3
covariates from the two models agree. The log of the number of nodes and the tumor size
are significant for the subdistribution of the breast cancer recurrence, whereas age is
insignificant.

Using the estimators described in Section 5, we are able to compare the estimated baseline
cumulative subdistribution hazards for the two treatment groups when covariates Z = 0.
Figure 1a depicts the estimated baseline cumulative subdistribution hazards of breast cancer
recurrence for each group using our stratified competing risk regression model described
above. Figure 1b gives the log of the ratio of baseline cumulative subdistribution hazards.
The nonconstancy of the curve in Figure 1b is clear evidence of nonproportionality of the
subdistribution hazards of treatment. One could argue that interpreting the treatment effect is
more intuitive using such plots, as opposed to fitting more complex models with time-
dependent covariates to capture the nonproportional treatment effect.

7.2 Acute Myeloid Leukemia Data
The data arise from an ongoing registry by the European Blood and Marrow Transplant
Group. The event of interest was the time from graft to the first occurrence of either acute
GvHD grade 2 or chronic GvHD. Death and relapse without GvHD are the competing
causes of failure. Katsahian et al. (2006) proposed a frailty model for the subdistribution
hazard to test the prognostic factors while adjusting for the center effect. A subset of the data
was used in their frailty model analyses, with the reference date being 1 January 2002 as
well as the following inclusion criteria for patients: (1) received either genoidentical or
matched unrelated donor (MUD) stem cell transplant; (2) were more than 16 years old at
time of transplant; (3) had acute myeloid leukemia in first complete remission; (4) received
a transplant between 1 January 1994 and 31 December 2004; and (5) did not receive reduced
intensity regimen nor T cell depleted transplant. Centers with only one patient enrolled were
excluded. A total of 1022 patients from 121 clusters was analyzed.

In our analysis, we used the same registry, but with data extracted up to July 2008, while
maintaining the inclusion criteria from Katsahian et al. (2006). The median follow-up was
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1250 days, comprised of patients still alive without relapse and disease. Thus, we have a
total of 2952 patients from 244 centers, with 1385 GvHD events and 629 competing causes
of failure observed. The median patients per center was 6. About 1/3 of centers had only two
or three patients.

Because the patient populations are remarkably different across centers, which was evident
from Katsahian et al. (2006), we consider the highly stratified Fine–Gray model (1),
stratifying on center. The four covariates are specified as in Katsahian et al. (2006). Let Zki
= (Z1ki, Z2ki, Z3ki, Z4ki) for the ith subject in the kth center, where k = 1,…, 244; i = 1,…, ik;
and ik = 2,…, 92. Here, Z1ki = I(female donor to male recipient match), Z2ki = I(source of
stem cells is peripheral blood), Z3ki =I(French-American-British [FAB] classification of
acute myeloid leukemia is M5, M6, or M7), and Z4ki = I(type of transplant is matched
unrelated donor). We first considered univariate models (1), similarly to Katsahian et al.
(2006), followed by a multiple covariate analysis. Unstratified Fine–Gray models were also
applied.

The coefficient estimates are reported in Table 5. In all cases, sex matching between donor
and recipient (female donor to male recipient versus others) is a significant prognostic factor
in the subdistribution hazard of GvHD occurrence, whereas the other three factors are not
significant. Despite similar overall conclusions from the unstratified and stratified analysis,
attention needs to be paid to some of the covariate estimates. For source of stem cells
(peripheral blood or bone marrow), the coefficient estimates from the two approaches have
opposite sign, suggesting an interaction between stem cell transplants and centers. We note
that the univariate model (called simple stratified regression) and the model with multiple
covariates (called multiple stratified regression) give very similar results from both an
unstratified and stratified approach. This suggests that there is modest confounding of the
covariate effects under consideration by heterogeneity across centers.

8. Concluding Remarks
Recently, Ruan and Gray (2008) proposed a generic Kaplan– Meier multiple imputation
method that recovers the missing potential censoring information for the analysis of
cumulative incidence functions using standard analysis, which can potentially be applied in
the setting of stratified analysis. Although the methods performed well empirically, the
statistical properties of the approach were not established. Such imputation-based
procedures have not been used very often in survival settings, in part because of the ad hoc
nature of the resulting inferences and a lack of understanding regarding when such
inferences are valid. A goal of this article was to develop rigorous methodology for stratified
Fine–Gray models, similar to that for stratified Cox models for independently censored data.

We proposed both bootstrap and plug-in formulas to obtain variance estimators for the
highly stratified situation. The closed form variance estimator does not require estimation of
the baseline hazard in each stratum, unlike for regularly stratified data and the original Fine
and Gray (1999) model. This is accomplished by employing an alternative derivation of the
influence function, which is not applicable in the other settings. In the simulation studies, we
find that with realistic sample sizes, the bootstrap variance estimator slightly outperforms
the closed form estimator. General bootstrap theory should be valid with highly stratified
data, assuming the data within cluster (including cluster size) are i.i.d. across strata. A
rigorous proof would entail more careful consideration of the regularity conditions.

There are alternative modeling strategies to tackle the same inferential problem. In our
applications, the covariate effects are of primary interest, with the correlations within
clusters serving as a nuisance. For situations where the correlations are of genuine interest,
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the random effects model introduced by Katsahian et al. (2006) might be of greater utility,
where the frailty is introduced on the stratum level hazard. Scheike et al. (2010) proposed a
closely related frailty model, which implies a semiparametric additive model for the
marginal cumulative incidence function. Another possibility is to model the covariate effects
unconditionally on stratum, without specifying the correlation structure. The model
proposed by Chen et al. (2008) assumes common baseline subdistribution hazards within
strata but different subdistribution hazards across covariate groups instead of across strata.
The goal is to test the equivalence of such hazards nonparametrically in the two sample set-
up, adjusting for correlations within clusters. Such marginal approaches require further
development to accommodate general regression models. This work is beyond the scope of
the current article but merits further research.

The implementation of the proposed methodology may, in some cases, be carried out using
existing software. For complete censored competing risks data, one can perform a stratified
Cox regression analysis of a modified data set where individuals observed to fail from
causes other than the cause of interest (say 1) are given a censored observation at the time of
the observed censoring time (Andersen, Abildstrom, and Rosthøj, 2002). The R function for
standard Cox regression, COXPH with the option STRATA, can be applied to this modified
data set. For censored competing risks data, we have designed a R function stratified
competing risks regression (CRRS) for the weighted estimating equation procedures
described in Section 4; see Supplementary Materials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Estimated baseline cumulative subdistribution hazards for tamoxifen (k = 1) and placebo
groups (k = 2).
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