
A Partial Linear Model in the Outcome Dependent Sampling
Setting to Evaluate the Effect of Prenatal PCB Exposure on
Cognitive Function in Children

Zhou Haibo1,*, Qin Guoyou1,2,3, and P. Longnecker Matthew4

1Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599-7420, U.S.A.
2Department of Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China
3Key Laboratory of Public Health Safety, Ministry of Education of China (Fudan University)
4Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle
Park, North Carolina, 27709, U.S.A.

Summary
Outcome-dependent sampling (ODS) has been widely used in biomedical studies because it is a
cost effective way to improve study efficiency. However, in the setting of a continuous outcome,
the representation of the exposure variable has been limited to the framework of linear models,
due to the challenge in terms of both theory and computation. Partial linear models (PLM) are a
powerful inference tool to nonparametrically model the relation between an outcome and the
exposure variable. In this article, we consider a case study of a partial linear model for data from
an ODS design. We propose a semiparametric maximum likelihood method to make inferences
with a PLM. We develop the asymptotic properties and conduct simulation studies to show that
the proposed ODS estimator can produce a more efficient estimate than that from a traditional
simple random sampling design with the same sample size. Using this newly developed method,
we were able to explore an open question in epidemiology: whether in utero exposure to
background levels of PCBs is associated with children’s intellectual impairment. Our model
provides further insights into the relation between low-level PCB exposure and children’s
cognitive function. The results shed new light on a body of inconsistent epidemiologic findings.
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1. Introduction
Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental pollutants. PCBs
were once made in large quantities for use in capacitors, transformers, carbonless copy
paper, and other applications (Dobson and van Esch, 1993). Although production has been
banned worldwide due to persistence and toxicity, low-level human exposure to these
ubiquitous environment contaminants continues via diet (Syracuse Research, 2000). Early
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life exposure has been associated with cognitive deficits among children (Schantz et al.,
2003). Exposure to PCBs in utero has been implicated as neurotoxic more often than has
subsequent exposure (Patandin et al., 1999). In vitro and in vivo models demonstrate that
PCBs cause altered synaptic transmission in the central nervous system, reduction in the
striatum dopamine concentration, and decreased thyroxine levels (e.g., Gilbert and Liang,
1998). Although it has been demonstrated in rodent and primate studies that perinatal PCB
exposure is usually associated with impairment of learning and cognition, human
observational studies of perinatal exposure to background level PCBs in relation to cognitive
functioning in children, on the other hand, have given inconsistent results. For example, a
Michigan study of children followed from birth found that prenatal PCB exposure was
associated with lower performance on the verbal and memory scales for children at 4 years
of age and with lower full-scale and verbal intelligence quotient (IQ) scores at age 11 years
(Jacobson and Jacobson, 1996). In a North Carolina birth cohort (Rogan and Gladen, 1991),
however, performance on similar tests at ages 3, 4, and 5 years was unrelated to PCB
exposure. These and other studies (Patandin et al., 1999; Schantz et al., 2003) suggest that in
order to improve assessment of risks associated with PCB exposure, a better understanding
of the relation between low-level PCB exposure and performance on examinations of
cognitive function is needed. A more flexible and powerful statistical approach could play a
critical role in understanding the risks associated with PCB exposure.

Our research was motivated by addressing the above scientific question through taking
advantage of a large study conducted by the NIH and reanalyzing the data of Gray et al.
(2005), where the maternal third trimester serum PCB levels were obtained in an outcome-
dependent way for a subgroup of children born in the Collaborative Perinatal Project (CPP).
The CPP study was a prospective study designed to identify determinants of
neurodevelopmental deficits in children. Pregnant women were recruited from 1959 to 1965
from 12 US study centers resulting about 55,908 pregnancies recruited into the study
(Longnecker et al., 2001). Gray et al. (2005) employed the outcome-dependent sample
design (ODS) design developed by Zhou et al. (2002) based on eligible children who met
the following criteria: 1) they were liveborn, 2) they were singletons, and 3) a 3-ml third
trimester maternal serum specimen was available. From the 43,628 eligible children, 1,256
subjects were selected at random. An additional 207 children were randomly selected from
eligible children whose 7-year full scale IQ score was either one or more standard deviations
below the mean or one or more standard deviations above the mean. The mother’s third
trimester’s blood specimen for the subgroup of subjects selected in the above ODS fashion
were then thawed and the PCB levels were assessed at the US Centers for Disease Control
and Prevention laboratory in Atlanta.

In the remainder of this section we give brief overviews of the two statistical areas that play
a key role in this paper: the ODS design and the partial linear model (PLM).

To understand the determinants of diseases in humans, epidemiologic observational studies
are conducted to characterize the relation between individuals’ exposure and a disease
outcome. As large cohort studies are usually very costly to conduct, small studies using the
case-control design are often preferred, especially for rare diseases, because they can include
equal number of individuals with a rare disease in a smaller overall study. The case-control
design (Cornfield, 1951) is a binary special case of a general ODS design where
investigators can observe the exposure or covariates with a probability that depends on an
outcome variable where the outcome can be either continuous or discrete. The principle idea
of ODS is to concentrate resources on the parts of the studied population having the greatest
amount of information. By allowing selection probability of each individual in the ODS
samples to depend on the outcome, the investigators can improve the efficiency and reduce
the cost of the studies. Historically, the ODS design has been implemented in the binary case

Haibo et al. Page 2

Biometrics. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(White, 1982; Rathouz et al., 2002; Wang and Zhou, 2006; Haneuse and Wakefield, 2007;
Schildcrout and Heagerty, 2008), while development of the ODS design with a continuous
outcome has lagged behind until recently. For example, Zhou et al. (2002) considered a
semiparametric empirical likelihood method for a continuous ODS design. Chatterjee et al.
(2003) considered a pseudoscore estimation method and Weaver and Zhou (2005) proposed
an estimated likelihood method for inference based on data from the two-stage ODS design.
The gains in statistical power and the reduction in sample size for a given budget relative to
a traditional simple random sample is shown in Zhou et al. (2007).

All models considered in the literature are limited to the framework of a linear model. The
PLM for continuous outcomes (He et al., 2002; Wang et al., 2005), where the outcome is
assumed to depend on some covariate X nonparametrically and some other covariates Z
parametrically, is an important inference tool and has been widely applied in many fields. It
would be a particular advantage in the Gray et al. (2005) study to have a more flexible PLM
approach to investigate the relation of low level PCB exposure and children’s cognitive
development. In this article, we consider the PLM for data from an ODS design. The
functions offered by standard commercial software for the PLM were generally developed
under the simple random sample setting, therefore can not be directly applied to our case.
We propose a semiparametric maximum likelihood estimation method to achieve the
inference of the PLM using penalized splines (P-spline).

The rest of this article is organized as follows. In section 2, we propose the PLM and derive
the penalized likelihood for the data from an ODS design. In section 3, we propose a
semiparametric empirical likelihood estimator and present its asymptotics. Some simulation
studies are conducted in section 4 to investigate the performance of the proposed method,
and in section 5 we show that with our new method, we identified some new findings in the
data from the Gray et al. study that will shed some light on the ongoing debate on the
relationship of PCB and children’s cognitive development.

2. Models and Likelihood Function for PLM with ODS Data
2.1 PLM Model and ODS Data Structure

Let Y denote a continuous outcome, X an exposure variable and Z a p-dimensional covariate
vector. The notation AT denotes the transpose of the matrix or vector A. The conditional
mean of Y given the X and Z is assumed to be

(1)

where g(·) is an unknown smooth function of X and γ is a p-dimensional vector of unknown
regression coefficients. Model (1) is the PLM considered in our ODS design. The
introduction of the g(·) is a key difference with the previous literature on the ODS design.

Various nonparametric smoothing methods can be applied to estimate the nonparametric
function g(.) such as kernel and spline methods, e.g., Lin and Carroll (2001); Yu and
Ruppert (2002); Huang et al. (2007). Particularly, Yu and Ruppert (2002) studied estimation
of a partially linear single-index model by penalized splines (P-spline) to estimate the
nonparametric function, which is also adopted in this article. P-spline is an extension of
smoothing splines, allowing a more flexible choice of knots and penalty. Following Yu and
Ruppert (2002), under the working assumption that g(.) is a r-degree spline function with T
fixed knots t1, …, tT, we then have g(x) = MT (x)α where

 is a r-degree truncated power spline basis
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with knots ,  and α is a r + T + 1-dimensional vector. A discussion on how
to select the knots can be found in the Supplementary Material (Web Appendix A). Then we
have g(X)+ZTγ = MT (X)α+ZTγ = DTθ, where D = {MT (X), ZT}T and θ = (αT, γT)T.

We consider the Zhou et al. sampling scheme with two components (Zhou et al., 2002).
First, an overall random sample of the population is taken. Second, one or more
supplemental random samples are taken, in which the probability of selection depends on
the level of the outcome variables. Assume that the domain of Y is the union of K non-
overlapping intervals: Ck = (ck−1, ck] with ck being some known constants satisfying c0 < c1
< c2 <, …, < ck = ∞. Thus, {Ck, k = 1, …, K} partition the study populations into K strata.
Then the data structure of the ODS sample consists of a simple random sample (the SRS
sample) and a simple random sample from each of the K intervals of Y (the supplement
samples). The supplement samples can be generated with different, perhaps unknown
selection probabilities. Moreover, we assume that, from the underlying population of
interest, n0 individuals are obtained using a simple random sampling (SRS) and nk

individuals are sampled from the kth stratum. Then the total ODS sample size is .
In summary, the observed data structure for the ODS design is {ykj, xkj, zkj} for k = 0, …, K,
j = 1, …, nk, where k = 0 represents the SRS sample.

2.2 A Penalized Log-Likelihood Function
Denote F(y|x, z; θ) and f(y|x, z; θ) as the conditional cumulative distribution function and
density function for Y given X and Z. Define ψk(x, z; θ) = F(ck|x, z; θ) − F(ck−1|x, z; θ) for k
= 1, …, K. Moreover, we denote the observed data from the kth stratum as (ykj, xkj, zkj), j =
1, 2, …, nk. Let FX,Z(x, z) and FX,Z(x, z) denote the joint cumulative distribution function and
probability density function of X and Z. The likelihood for the observed data from ODS can
be written as

(2)

where f(ykj, xkj, zkj|ykj ∈ Ck, θ) denotes the joint density function of {ykj, xkj, zkj} conditional
on ykj being in the interval Ck. Using Bayes formula, (2) can be written as

Denote πk = ∫ ψk(x, z; θ), k = 1, …, K − 1,  and pkj = fX,Z(xkj, zkj), k = 0, …,
K, j = 1, …, nk. Then the log-likelihood can be written as

(3)

where  is a function only involving θ.

As a P-spline is used to estimate the nonparametric function in model (1), incorporating the
penalty into (3), we obtain the following penalized log-likelihood function,
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(4)

where  and θTΨθ is a common quadratic penalty function.
Here qs is the smoothing parameter.

3. A Semiparametric Empirical Likelihood Approach
To estimate θ through (4), methods for handling fX,Z(x, z) and fX,Z(x, z) are required. We
propose a semiparametric likelihood method to maximize the penalized log-likelihood
without specification of the underlying distribution of X and Z. We first profile the penalized
log-likelihood function (4) over pkj by fixing θ, and obtain the empirical likelihood function
of pkj over all distributions whose support contains the observed values of X and Z. We then
maximize the following resulting profile likelihood with respect to θ.

(5)

To get (5), it suffices to maximize

(6)

for fixed [θ, {πk}] subject to , i = 1, …, K − 1 and

. Using a similar idea to Qin and Lawless (1994), for a fixed θ, we can
show a unique maximum  in (6) which satisfies the above constraints exists if zero is
inside the convex hull formed by the points {ψi(xkj, zkj; θ) − πi} for i = 1, …, K − 1, k = 1,
…, K, j = 1, …, nk. An explicit expression can be derived by Lagrange multiplier argument:

where ρ and λ′s are Lagrange multipliers. Taking derivatives of H with respect to {pkj} and
solving the score equations, we can obtain that ρ = n and

. We plug  into (4) and get the estimator of θ from
maximizing the resulting profile penalized log-likelihood function. The above procedure
enables us to change an infinite dimension problem into a finite dimension problem at the
expense of introducing 2(K − 1)-dimensional parameters {πi, i = 1, …, K − 1} and {λi, i = 1,
…, K − 1}.

Typically, the true value of the Lagrange multiplier is zero in unbiased sampling problems.
However, due to the nature of the ODS sampling design, the Lagrange multipliers, λ′s are
not centered around zero. To unify the notation, we center them by reparameterizing as
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, k = 1, …, K − 1. Denote ϑ = (πT, vT)T, where π = (π1, …, πK−1)T, v = (v1, …,
vK−1)T and η = (θT, ϑT)T. Then, the total number of the parameters to be estimated is d = T +
r + 1 + p + 2(K − 1). The profile penalized log-likelihood function (5) can be written in an
explicit expression as:

(7)

where h(xkj, zkj) = {h1(xkj, zkj), …, hK−1(xkj, zkj)}T, , i = 1, …,

K − 1 and . Denote  the proposed estimator for η,
where  is the maximizer for the profile penalized log-likelihood function in (7). A Newton-
Raphson algorithm can be used to obtain  with fixed smoothing parameter qs. The
estimation procedure is as follows:

(1) Choose initial values η(0) = (θ(0)T, π(0)T, v(0)T)T. The initial value θ(0) can be selected as
the penalized maximum likelihood estimate based on the SRS sample from the ODS design,
π(0) can be chosen as the estimates of probability P(y ∈ Ck), k = 1, …, K − 1 based on the
population of response y, and v(0) is selected as 0(K−1)×1 where 0(K−1)×1 denote a (K-1)-
dimensional vector with all the components equal to 0. Set j = 0.

(2) Compute . Set j = j + 1.

(3) Continue step 2 until convergence is achieved. Choose η(j+1) as the final estimate.

The following theorem summarizes the asymptotic properties for the proposed estimators of
the PLM from an ODS design.

THEOREM 1: Under conditions A1-A4, (i) If the smoothing parameter qs = o(1),  converges to

η0 with probability one. (ii) If the smoothing parameter . The maximizer

 is asymptotically distributed as a normal distribution as
.

The conditions A1-A4 and a brief proof for Theorem 1 are given in the Supplementary
Material (Web Appendix B). A consistent estimator  of the covariance matrix Σ is

, where  and  are also defined in the Web Appendix. The conditions on
smoothing parameter qs in Theorem 1 are commonly assumed (Yu and Ruppert, 2002; Qu
and Li, 2006). The generalized cross-validation (GCV) method, given in the Supplementary
Material (Web Appendix A), is a very popular method to select a smoothing parameter and
performs quite well in practice. However, it is a challenge to obtain the rate of the
smoothing parameter chosen by the GCV method, which is an important theoretical problem
and deserves further study. We note that the asymptotic properties developed in this paper
are for fixed knots P-spline, which means that the number of the knots does not grow as
sample size grows to infinity.
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From Theorem 1, we can construct a joint confidence region and test hypotheses, e.g., with a
Wald test. For example, if we want to test the null hypothesis H0 : Bθ0 − s0 = 0 where B is a
d1 × {d − 2(K − 1)} matrix with full rank d1 ≤ {d − 2(K − 1)}, then the test can be based on

the Wald test statistic  with  being the consistent
estimate of the covariance matrix of , which has an asymptotic chi-square distribution with
d1 degrees of freedom.

For this PLM, it is of particular interest to test whether the nonparametric function
describing the relation between exposure variable X and response Y is linear. We can use the
previously mentioned Wald test to deal with this problem. To do so, we re-express the T+r

+1-dimensional vector α as , where α1 = (α11, α12)T is a two-dimensional vector and
α2 is a T + r − 1 dimensional vector. We are interested in testing the null hypothesis:

. Under this null hypothesis, we have g(X) = α11 + α12X, i.e. the exposure
variable X is related to response Y in a linear fashion.

4. Simulation Studies
We conducted simulations to investigate the performance of our proposed estimator. For all
simulations, we generated 1000 simulated datasets, each with 500 independent subjects. We
consider two models with different nonparametric functions. The first one is a monotonic
function while the second is a unimode function in threshold regions. In the simulation, we
adopt a three-degree truncated power spline basis and choose ten fixed knots selected as the
equally spaced sample quantiles. The computational aspects of the simulation studies are
given in last paragraph of this section.

Study 1. The data were generated according to the following PLM,

where Φ(.) is a standard normal distribution function, X denotes a continuous exposure

variable of interest, . We assume that X ~ N(0, 0.252) and Z ~ N(0, 0.52). Then

, where g1(x) = 3Φ(3.2x). We take γ = 1, .

In this simulation, we investigated the effect of different cut points for creating the
supplemental samples and the impact on the estimation efficiency through varying the
allocation of the sample size between the SRS and supplemental samples. Similar to Zhou et
al. (2002), our ODS design consists of a SRS sample of n0, a supplemental sample of n1+n3
from individuals with Y values in the two tails of the marginal distribution of Y (n1 = n3, n2
= 0), defined by cut points μY ± aσY where μY and σY are the mean and standard deviation of
Y respectively.

We compared the proposed estimator based on the ODS sample including both the SRS
sample and supplemental samples (P estimator) with two additional estimators: (i) a
penalized maximum likelihood estimator (PMLE) that is based on the SRS samples only
from the ODS sample (V estimator); and (ii) a PMLE (S estimator) that is based on a SRS
sample but the same sample size as the ODS sample. The comparison against the V
estimator will demonstrate the efficiency gain of the P estimator using more information,
and the comparison against the S estimator will demonstrate the efficiency gain of the ODS
design over the SRS design with the same sample size. We computed the averages of the
mean square error(MSE), the absolute value of the bias and the Monte Carlo variance of the
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estimated nonparametric function g1(x) over 501 equal spaced grid points in [−0.75, 0.75]
(the mean of X minus and plus three times standard deviation of X) over 1000 replications.
Moreover, we calculated mean, Monte Carlo standard error, and estimated standard error
using large sample properties and coverage probability of the 95% nominal confidence
interval for the estimator of regression coefficient γ.

For the sample size n0 = 300, n1 = n3 = 100, we summarize the results in Table 1. From
Table 1, we find that the proposed estimator of the nonparametric function is most efficient
with the smallest AMSE (average MSE over 501 grid points) among all the estimators
compared. For the estimation of the regression coefficient γ, the proposed estimator is
generally more efficient than the other two estimators with smaller variance when a is 1.0
and 1.3. It was also found that the nominal 95% confidence intervals based on the proposed
standard errors for the regression coefficient γ provide good coverage. The proposed
estimator is more efficient than the S estimator, which supports the notion that ODS design
can be more efficient than the SRS design.

Figure 1 presents curves of the true function and the average P-spine estimates of g1 by the
P, V and S estimators over 1000 simulations. The difference between the true function g1
and its estimates is barely visible, which shows good fit of the P-spline estimates. Figure 1
also gives the confidence bands obtained by the P estimator, V estimator and the S estimator
for comparison. The confidence bands are based on a normal approximation using the
Monte Carlo standard error with the sample size n0 = 300, n1 = n3 = 100 and n0 = 200, n1 =
n3 = 150, and the cut point equal to 0.7 and 1.3. In Figure 1, we see that in the tail of the
distribution of X, the confidence bands by the S estimator are wider than those by the P
estimator, and this is more apparent when the cut point is further out or the proportion of the
SRS samples in the ODS is decreased. This is because, compared with SRS design, more
individuals in the tails of the distribution of X can be sampled in the ODS design, which
leads to improvement of the estimation efficiency of the P estimator. In addition, the
confidence bands by the V estimator are the widest ones and the bands become wider when
the proportion of the SRS sample is decreased.

Under the same simulation model, we study the relative efficiency of the P estimator of
nonparametric function over the S estimator for the proportion of the SRS sample in the
ODS (ρ = n0/n). Table 2 shows the relative efficiency  comparison
across ρ = n0/n under a = 0.7, 1 and 1.3, where  and  denote the P and S estimators of g
respectively. The total sample size is n and the sample size of n1 and n3 are determined by (1
− ρ)n/2. We can find that the proposed estimator is more efficient than the S estimator and
the efficiency can generally be further improved when the proportion decreases and the cut
point is selected to be further out.

Study 2. The data were generated according to the following PLM,

where X denote a continuous exposure variable of interest, . We assume that X

~ N(1, 0.52) and Z ~ N(0, 0.52). Then , where g2(x) =
sin(1.5x). We take γ = 1, . The results are calculated over 501 equal spaced grid
points in [−0.5, 2.5] (X ±3SDX) over 1000 replications. The corresponding results are similar
to Study 1, and similar conclusions to Study 1 can be drawn.
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In the setting of our simulation, convergence is relatively fast and the number of iterations
required for convergence is generally less than 25. Non-convergence may arise occasionally,
e.g., when the sample size is small and the cut points are selected further out (a=1.3 in our
case), but this problem can be avoided by increasing the sample size. At a sample size of
1000, we do not have any problem with the CPP data analysis. The codes for simulation and
real data analysis were written in Matlab and can be downloaded from
http://www.bios.unc.edu/~zhou/software/Zhou-Qin-Longnecker-Biometrics/.

5. Analysis of the Collaborative Perinatal Project Data Set
As introduced in the beginning of the paper, we hope a more flexible partial linear approach
in the ODS setting could provide additional insights into the relationship between the low
dose maternal pregnancy serum level of polychlorinated biphenyls (PCBs) and children’s
subsequent IQ test performance based on the CPP data set. Among the 1463 subjects
selected by the ODS design (Gray et al., 2005), only 1038 subjects were observed during
pregnancy and at age 7 years and had complete data on all covariates used in the analysis.
The details of the data structure available to us are such that, in the data set, there is a simple
random sample (SRS) of 849 subjects and two supplemental subsamples. The first
supplemental sample is a simple random sample of the children in the CPP population
whose IQ scores were at least one standard deviation (14) above the mean (96). The second
subsample is a simple random sample from those whose IQ scores were at least one standard
below the mean. In all, we have 81 subjects in the low IQ subsample and 108 subjects in the
high IQ subsample.

The Weschler Intelligence Scale for children at 7 years of age (IQ) was the outcome variable
and the prenatal PCB level, measured in μg/liter, was the exposure variable. We built a
partial linear model of these data using our proposed method. In addition to PCBs, other
covariates include socioeconomic status of the child’s family (SES), the gender (SEX) and
race (RACE) of the child and the mother’s eduction (EDU). The covariate EDU is the
highest education level obtained by the mother at the child’s birth divided into 18 levels
from the lowest level 1 (EDU=1) to the highest level (EDU=18). Here we introduced two
dummy variables EDU1 and EDU2 to replace the original covariate EDU in our analysis to
achieve a reasonable fit because the relationship between IQ and EDU is nonlinear. These
two dummy variables are coded as: (EDU1,EDU2)=(0,0) corresponds to (EDU≤8)
representing low education level; (EDU1,EDU2)=(1,0) corresponds to (9 ≤EDU ≤12)
representing middle education level and (EDU1,EDU2)=(0,1) corresponds to (EDU≥13)
representing high education level. The covariate SEX was coded 0 for males and 1 for
females and the covariate RACE was coded 1 for Black and 0 for others. Table 3 describes
the basic characteristics of the data in these three samples.

Zhou et al. (2002) reported no association between PCB exposure and the children’s IQ
score. Gray et al. (2005), using a probability weighted approach, did not find either a linear
or quadratic association. Here, we consider the following PLM to describe the relation
between PCB and IQ:

where e is a normal error with zero mean. To estimate the nonparametric function g(·), we
adopted a two-degree truncated power function basis

 with ten fixed knots T1, …, T10 selected as the
equally spaced sample quantiles of PCB level, i.e. 1.16, 1.70, 2.17, 2.61, 3.05, 3.52, 4.06,
4.63, 5.54, 6.88. Under these specifications, the above model can be rewritten as IQ =
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MT(PCB)α + β1EDU1 + β2EDU2 + β3SES + β4RACE + β5SEX +e, where α = (α1, …, α13)T

is the parameter vector associated with the nonlinear function g(·). To adopt our proposed
method to fit this model, we chose the smoothing parameter to be 107 by the GCV method.
The selection of such large smoothing parameter may be because the GCV score is not
sensitive to the smoothing parameter qs when qs ≥ 41.75. It is found that the GCV score
values over the grid points which are greater than or equal to 41.75 are almost the same.
This also indicates that the fitting with qs ≥ 41.75 are very close, which is demonstrated by
our reanalyses. The selection of smoothing parameter for this data set has very small
influence on the conclusion. The fitted estimates of the regression coefficients are given in
Table 4 and the resulting estimate of the g(·) is presented in Figure 2.

From Figure 2, it can be seen that the IQ is related to PCB nonlinearly. The detection of this
nonlinear relationship is due to the use of P-splines and has nothing to do with the sampling
design. To formally testing this nonlinear effect, we conduct the proposed Wald test to test
the hypothesis: H0 : α3 = α4 = … = α13 = 0 which is equivalent to testing H0 : g(PCB) = α1 +
α2PCB. The H0 is rejected at the 5% significance level as the Wald statistic

. The corresponding p-value is 0.006.

Next, we test whether the g(·) is a simple quadratic function. The corresponding null
hypothesis is H0 : α4 = α5 = … = α13 = 0. This null is rejected at 5% level with a p-value at
0.029 based on the χ2 distribution with 10 degrees of freedom. This result indicates that
although the relationship in Figure 2 is unimodal, a simple quadratic function is not enough
to describe the relation between the IQ score and the PCB level. Apart from the difference in
the fitted PCB effect, the PLM model (βP ) and the linear model (βL) yields very similar
estimates for other confounding variables in the model. This is because these two estimators
are using the same data and essentially the same method except that the βL models PCB as
linear while the βP models PCB as nonlinear. In particular, mother’s education level and
social economic status were positively related to children’s IQ performance. Blacks tended
to have lower score while gender did not have any impact on the IQ performance. For both
linear and nonlinear components of the model, we can see from Table 4 and Figure 2 that
the proposed method βP yields a smaller variance estimate and corresponding narrower 95%
confidence bounds than the βV estimator.

The fitted relationship in Figure 2 suggests that the level of PCB exposure was positively
related to the children’s IQ performance within the lower range of exposure, which is
possibly due to residual confounding, by either socioeconomic status Gray et al. (2005) or
other factors not captured by the existing covariates. This relation began to diminish as the
level of PCB exposure moved closer to the mean PCB level and then it became detrimental
in the higher range of PCB exposure. The measured PCB level in most of the studies, the
CPP study included, was considered background level exposure, which is low compared
with the PCB exposure levels in the Yucheng poisoning incident, in which the lower IQ
among children exposed at higher levels in utero was clear Rogan et al. (1988). With a large
data set and a more powerful and flexible modeling approach, we were able to obtain further
insight on the relationship of children’s IQ and prenatal PCB exposure.

6. Discussion
The contribution of this paper is twofold. First we introduced a PLM for ODS data and
developed a semiparametric inference procedure that is based on a penalized likelihood
function. We established the asymptotic properties of the proposed method and most
importantly through simulation, we showed that the proposed ODS design with PLM will
yield more efficient estimates than the design using a SRS with the same sample size. The
advantages of the ODS design is clearly demonstrated in this paper and in practice; this
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advantage will translate into more cost-effective studies, or, for a fixed budget, more
powerful studies.

Second, the application of the proposed method to the analysis of in utero exposure to
background levels of polychlorinated biphenyls (PCBs) with children’s intellectual
development measured by IQ at 7 years of age showed some interesting results.
Epidemiologic studies on in utero exposure to PCBs have been controversial and
inconclusive with some studies suggesting that PCBs cause intellectual impairment among
children and others either not supporting this or suggesting opposite effects. We thought the
reasons for this phenomenon were due to the following: a) the sample sizes in these studies
were usually small (200 to 400); b) the PCB exposure level in Western countries are all
background level and thus primarily within the lower range; and c) the statistical approaches
were relatively simple and may not be the most powerful.

We had an unique opportunity in that 1) we had a large sample size compared with those
published, 2) the study was designed using an ODS strategy such that it is more informative
than a usual study with the same sample size; 3) we have developed a flexible yet efficient
analytical tool (PLM) to take full advantage of the data from the ODS structure. Indeed, our
analysis of the CPP data reveals something that has not been reported before. The nonlinear
curvature of the fitted model helps to explain why in the previous smaller studies some find
an effect while others do not.

Our simulation results demonstrate the efficiency improvement of the ODS design over
some alternative methods that can be used in these situations such as the traditional SRS
design with the same sample size. Generally, the efficiency gain from the ODS design is
higher with a low proportion of subjects in the SRS sample and high concentration of
sampling at the extreme tails of the outcome. In practice, the choice of ρ and cut points may
be affected by other considerations such as study purpose. Some detailed discussion about
this is in Zhou et al. (2002).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Simulation results in Study 1. Confidence band comparison with sample size allocation of
[300, 100, 100] and [200, 150, 150]. The plots from the first and second lines correspond to
cut point a = 0.7 and 1.3 respectively. In each plot, the dotted curve in the middle is the true
function. The solid, dashed and dot-dashed curves in the middle are the average P-spline fits
over 1000 simulation respectively by the proposed method (P), the method based on a SRS
sample with the same sample size as the ODS sample (S) and the method based on the SRS
samples from the ODS design (V). For the confidence bands, the solid, dashed and dot-
dashed curves are the confidence bands obtained by the P, S and V methods respectively.
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Figure 2.
Analysis results of CPP data. The estimated function g on PCB. Thicker solid and dashed
curves correspond to estimates obtained by the P and V methods, and the thicker dot-dashed
line corresponds to the linear fit using Zhou et al. (2002) method. And the solid, dashed
curves and dot-dashed lines correspond to estimated confidence bands obtained by the
corresponding methods respectively.
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Table 2

Relative efficiency (RE) comparison over 1000 replications

a ρ = 0.8 ρ = 0.6 ρ = 0.4

Study 1 0.7 1.2143 1.2500 1.3980

1.0 1.3725 1.3400 1.5976

1.3 1.4947 1.7051 1.8143

Study 2 0.7 1.1219 1.3077 1.3158

1.0 1.2410 1.4247 1.5303

1.3 1.3378 1.6875 1.9636

NOTE 2: ρ = the proportion of the SRS sample in the ODS design (ρ = n0/n); ;  and  denote the P and S
estimators of g respectively; a: the cut-points for the ODS design are μY ± aσY.
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