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Summary
For analyzing longitudinal binary data with nonignorable and non-monotone missing responses, a
full likelihood method is complicated algebraically, and often requires intensive computation,
especially when there are many follow-up times. As an alternative, a pseudo-likelihood approach
has been proposed in the literature under minimal parametric assumptions. This formulation only
requires specification of the marginal distributions of the responses and missing data mechanism,
and uses an independence working assumption. However, this estimator can be inefficient for
estimating both time-varying and time-stationary effects under moderate to strong within-subject
associations among repeated responses. In this article, we propose an alternative estimator, based
on a bivariate pseudo-likelihood, and demonstrate in simulations that the proposed method can be
much more efficient than the previous pseudo-likelihood obtained under the assumption of
independence. We illustrate the method using longitudinal data on CD4 counts from two clinical
trials of HIV-infected patients.
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1. Introduction
In many longitudinal studies, individuals are observed repeatedly at a fixed number of time
points. For example, longitudinal data are often collected in AIDS, cardiovascular, and
cancer clinical trials as well as in observational studies. Here we focus on the case where the
response variable over time is binary, and we are interested in modeling the marginal means
or success probabilities. There is an extensive statistical literature on methods for the
analysis of longitudinal binary data (e.g., Cox, 1972; Liang & Zeger, 1986; Le Cessie & Van
Houwelingen, 1994; Molenberghs & Lesaffre, 1994; Meester & MacKay, 1994; and many
others). The modeling of longitudinal binary data is often complicated by the fact that the
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outcome variable is not always observed at all assessment times. This missingness often
depends on the unobserved value of the outcome at that time. In such cases, the missing data
mechanism is referred to as nonignorable (Little & Rubin, 1987). In clinical trials, an
individual’s response is often missing at one follow-up time but observed at the next follow-
up time, resulting in a large class of “non-monotone” missingness patterns. In this article, we
assume that all individuals in a study have complete data on the response obtained at the
first measurement occasion; for example, this is commonly the case in many longitudinal
studies that require a baseline measure of the response as an inclusion criteria.

An example of a data set with this structure comes from two similar longitudinal clinical
trials of HIV-infected patients (Kahn et al., 1992; Gallant et al., 1992). The two clinical
trials were randomized phase III double-blind trials, designed to compare two treatments,
zidovudine (AZT) and didanosine (DDI); they have been used in several combined analyses
(Finkelstein et al., 1996). The response of interest is a binary CD4 cell count variable
(dichotomized at > 200 versus ≤ 200 cells per cubic millimeter), measured at baseline (week
0), and every week for up to 5 weeks from baseline. The cutoff of 200 was chosen because
of its strong predictive value for development of opportunistic infections, and has been
adopted as a standard threshold of clinical importance (Phair et al., 1990). In this analysis,
we consider the 431 patients with AIDS at baseline. The main question of scientific interest
is the effect of treatment on changes in CD4 cell count sufficiency over time. As with most
longitudinal studies, missing outcome data over time complicates the analysis. Although
CD4 cell counts were obtained from all 431 patients at baseline, only 383 patients (88.95 %)
had measurements at week 1, only 345 patients (80.0 %) had measurements taken at week 2,
only 324 patients (75.2 %) had measurements taken at week 3, only 306 patients (71.0 %)
had measurements taken at week 4, and only 285 patients (66.1 %) had measurements at
week 6. Even though the overall percentage with an observed response decreases over time,
the missing data pattern is non-monotone, i.e., some patients’ responses are missing at one
occasion and observed at the next occasion. In particular, there are 109 (25.3%) patients who
missed at least one measurement, but returned for a later measurement. Typically, a decline
in CD4 count indicates disease progression, and patients with low CD4 counts are more
likely to make all of the scheduled study visits, as compared to patients with normal CD4
counts, who may not feel the need to make planned all of the scheduled study visits. Thus, in
this setting, it is quite plausible that patients with low CD4 counts are more likely make all
of the scheduled study visits. This would imply that missingness depends on the unobserved
outcome of interest and is “nonignorable.”

Numerous approaches for analyzing incomplete binary data with nonignorable missingness
have been proposed (e.g., Baker, 1995; Baker & Laird, 1988; Ibrahim et al., 2001). To
define a full likelihood for nonignorable and non-monotone missing responses over time,
one needs to specify a joint distribution for the repeated binary outcomes as well as a model
for the missing data mechanism. Although various likelihood approaches have been
proposed, e.g., models based on bivariate and higher-order correlations (Bahadur, 1961;
Zhao and Prentice, 1990), models based on bivariate and higher-order odds ratios
(McCullagh and Nelder, 1989; Lipsitz et al., 1991; Molenberghs and Lesaffre, 1994), none
of these likelihood-based models have proven to be of real practical use unless the number
of repeated measures is relatively small (i.e., less than or equal to 3). As the number of
repeated measures increases, the number of parameters that need to be specified and
estimated proliferates rapidly for any of these models for the joint distribution, and a
solution to the likelihood equations quickly becomes intractable. Thus as an alternative to
the full likelihood, a pseudo-likelihood (Gong & Samaniego, 1981; Liang & Self, 1996)
approach has been proposed by Troxel et al. (1998) under minimal parametric assumptions.

Sinha et al. Page 2

Biometrics. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Troxel et al.’s (1998) pseudo-likelihood is based on a working assumption that the
longitudinal binary measurements are independent over time. Specifically, their pseudo-
likelihood uses a marginal logistic regression model for the response at each time point, and
assumes that the missingness probability at a given time depends only on the missing
response at that time and the covariates (the covariates are assumed to be fully observed).
This pseudo-likelihood approach is attractive in that it substantially eases the numerical
complexities of the full likelihood approach. Further, it alleviates the need to specify and
estimate many nuisance parameters involved in a full likelihood.

Although the pseudo-likelihood approach of Troxel et al. (1998) yields asymptotically
unbiased estimators of the regression parameters when the marginal model for the response
at each time point and the model for missingness have been correctly specified, these
pseudo-likelihood estimators can be highly inefficient, especially when there is moderate to
strong associations among the repeated responses over time. In this article, we propose a
new pseudo-likelihood that uses a bivariate Bahadur (1961) distribution for all possible
pairings of the first (or baseline) binary response with all subsequent binary responses. A
limited simulation study suggests that our proposed bivariate pseudo-likelihood is much
more efficient than the “working independence” pseudo-likelihood of Troxel et al. (1998).

The paper is organized as follows. In Section 2, we introduce the model and notation to
define a pseudo-likelihood for incomplete binary longitudinal data. In Section 3, we review
the existing pseudo-likelihood of Troxel et al. (1998), and then describe our proposed
pseudo-likelihood as a robust alternative to the full likelihood. Section 4 presents an
application of the proposed method using longitudinal data on CD4 counts from the two
clinical trials of HIV-infected patients described earlier. In Section 5, we present results
from our simulation study of efficiency, and demonstrate that our proposed method can
provide much more efficient estimators than that of Troxel et al. (1998). Section 6 concludes
the paper with some remarks.

2. Model and Notation
Suppose N individuals are observed at a fixed set of T time points, t = 1,…, T. For the ith
individual (i = 1,…, N), we can form a T × 1 vector, Yi = (Yi1,…, YiT)t of binary random
variables, Yit. Each individual also has a J × 1 vector of covariates, xit, and we assume that
all the covariates are fully observed. The marginal distribution of Yit is assumed to be
Bernoulli with the probability of success

(1)

Here the goal is to draw inferences about the regression parameters β, whereas the within-
subject association among the responses is regarded as a nuisance characteristic of the data.
The association between a pair of binary outcomes is typically measured in terms of
marginal odds ratios or marginal correlations. Marginal odds ratios can be used to derive a
multivariate Plackett (1965) distribution. Also, marginal correlations can be used to derive a
multivariate Bahadur (1961) model.

In a typical longitudinal study, individuals are not observed at all T occasions on account of
some stochastic missing data mechanism. We assume that all individuals are observed at
baseline (t = 1). However, subjects can be missing at any post-baseline follow-up time. We
introduce (T − 1) binary random variables, Rit, (t = 2,…,T), with Rit equal to 1 if Yit is
observed, and 0 if Yit is missing. The pseudo-likelihood of Troxel et al. (1998) assumes that
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the marginal distribution of the binary random variable Rit is Bernoulli, with the probability
of being observed,

(2)

Note that if γ1 ≠ 0, then the missing data mechanism is non-ignorable since the probability
of missingness depends on possibly unobserved data Yit. In the next section, we discuss the
pseudo-likelihood of Troxel et al. (1998), and then describe our proposed bivariate pseudo-
likelihood.

3. Estimators
3.1 Independent Pseudo-Likelihood

In this section, we briefly review the pseudo-likelihood approach of Troxel et al. (1998) who
use a working assumption that the repeated responses are independent over time. To
describe this pseudo-likelihood, let f(yit, rit|xit, β, γ) be the marginal distribution of (Yit, Rit)
at time t, which can be expressed as

where f(yit|xit, β) is Bernoulli with probability of success pit as given in (1), and f(rit|yit, xit,
γ) is Bernoulli with probability of being observed as given in (2). Troxel et al.’s (1998)
pseudo-likelihood, which treats the observations at different times as independent, is defined
as

The pseudo-likelihood estimator of Troxel et al. (1998) is obtained by maximizing this
pseudo-likelihood function, derived under a “working independence” assumption.

Although the pseudo-likelihood estimator of Troxel et al. (1998) is consistent, it can be
highly inefficient, especially when there is strong within-subject associations among the
repeated responses. In the next section, we propose a new pseudo-likelihood approach,
which generally provides more efficient estimators than that of Troxel et al. (1998).

3.2 Proposed Bivariate Pseudo-Likelihood
Recall that we assume Yi1 is observed for all subjects. The marginal distribution of Yi1 (i = 1,
…,N) for all subjects is the product of Bernoulli distributions over N subjects, denoted by
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Since Yi1 is observed for all subjects, for all t > 1 we can consider the conditional
distribution of f(yit, rit|yi1, xit, β, α, γ), where α denotes a vector of pairwise association
parameters between Yi1 and Yit for all t > 1. We can write this conditional distribution as

(3)

where f(yit|yi1, xit, β, α) can be easily obtained by first specifying the bivariate distribution
f(yi1, yit|xit, β, α). There are many potential candidates for the bivariate distributions, f(yi1,
yit|xit, β, α), such that the marginal logistic model for yit holds. When the pairwise
associations between Yi1 and Yit are specified in terms of marginal odds ratios, one could
adopt the bivariate Plackett (1965) distribution. When the pairwise associations between Yi1
and Yit are specified in terms of marginal correlations, one could adopt the bivariate Bahadur
(1961) model. Specifically, if (Yi1, Yit) follows the bivariate Bahadur (1961) distribution,
then

(4)

where αi1t = Corr(Yi1, Yit|xit). For the bivariate distribution in (4), it can be shown that the
conditional distribution of Yit given Yi1 is Bernoulli, with success probability

so that

The density of the missing data mechanism f(rit|yi1, yit, xit, γ) can be specified by using a
logistic regression model similar to (2), except that yi1 is included as an additional
‘covariate’ in the model.

To obtain estimators of (β, α, γ) we propose maximizing a pseudo-likelihood formed by
treating the density f(yit, rit|yi1, xit, β, α, γ) as independent over the t’s:

(5)

Note that this pseudo-likelihood approach uses bivariate distributions between yit and yi1,
and is expected to be more efficient than the independent pseudo-likelihood approach of
Troxel et al. (1998). The bivariate pseudo-likelihood estimator θ̂ = (β̂, α ̂, γ̂) can be obtained
as the solution to S(θ̂) = 0, where S(θ) is the pseudo-score function
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Heuristically, using method of moments ideas, the bivariate pseudo-likelihood estimator θ̂ is
consistent since it is the solution to S(θ̂) = 0, and it can be shown that E[S(θ)] = 0 at the true
θ as long as (3) is correctly specified, even though the terms f(yit, rit|yi1, xit, β, α, γ) in (5) are
not truly independent. The the bivariate pseudo-likelihood estimator θ̂ is also asymptotically
normal, with asymptotic variance described below. General proofs of the consistency and
asymptotic normality of pseudo-likelihood estimators are given in Gong & Samaniego
(1981), White(1982), and Lindsay (1988). The proof of the consistency of the independent
pseudo-likelihood estimator is given in the Appendix of Troxel et al. (1998), and the proof
of our pseudo-likelihood estimate is similar.

To estimate the asymptotic variance of the proposed bivariate maximum pseudo-likelihood
estimator, we use a sandwich-type variance-covariance matrix (White, 1982) of the form

(6)

An estimate of the asymptotic variance of θ̂ is obtained by evaluating the right-hand side of
(6) at the bivariate pseudo-likelihood estimator θ̂.

4. Application: Analysis of AIDS Data
We present an analysis of the CD4 count data from the AIDS clinical trials described in the
Introduction. The parameters are estimated using the proposed bivariate pseudo-likelihood,
and Troxel et al.’s (1998) independent pseudo-likelihood under the assumption of
nonignorable missingness. The AIDS clinical trials are randomised phase III double-blind
trials, designed to compare two therapeutic treatments: zidovudine (AZT) and didanosine
(DDI). Our study contains 431 patients who were diagnosed with AIDS or AIDS-related
complex. The response of interest is normal CD4 cell count (> 200 cells per cubic
millimeter) versus abnormal CD4 cell count (≤ 200) measured at baseline (week 0), and
every week for up to 5 weeks from baseline; the outcome is defined as Yit = 1 if the CD4
count exceeds 200 and 0 otherwise. As discuss in the Introduction, the cutoff of 200 cells
per cubic millimeter was initially chosen because of its strong predictive value for
development of opportunistic infections, and has been adopted as a standard threshold of
clinical importance. The main question of scientific interest is the effect of treatment on
changes in CD4 cell count sufficiency over time. As is common in many longitudinal
clinical trials, missing responses over time complicate the analysis. The percent of
missingness in CD4 counts ranges from 11% to 44% at the five follow-up occasions.

The probability that CD4 count > 200 at a given time, pit = pr(Yit = 1|xit), is modeled, using
a logistic regression model, as a function of treatment, time and baseline age. Treatment is
defined by the following indicator variable

Because of the stratified randomization, to control for baseline age, we define the indicator
variable
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Specifically, the following logistic regression model was fit to the data,

for t = 0, 1,…,5. Note the exclusion of a main effect of treatment (AZTi). In a model with a
treatment (AZTi) by time (t) interaction, the main effect of AZT corresponds to the
treatment effect at baseline (t = 0). However, due to randomization, it is assumed that there
is no treatment effect at baseline, i.e., the main effect of AZT equals 0.

Recall that the bivariate pseudo-likelihood requires specification of the correlations, α1t. We
estimated the parameters under both banded and exchangeable correlations; the results were
so similar that for simplicity, we present results under an exchangeable assumption. Further,
in terms of goodness of fit, the exchangeable correlation had the largest composite
likelihood (Lindsay, 1988) information criterion (similar to the AIC) proposed for composite
likelihoods by Varin and Vidoni (2005).

For the proposed bivariate pseudo-likelihood, recall that we must also model the probability
of being observed at each time point, given the outcome at baseline. It was conjectured that
CD4 count is nonignorably missing since sicker patients may be more likely to come in for a
further GP visit, e.g., sicker patients may have been hospitalized. We considered the
following missing data mechanism:

for t > 0. Note that to choose a suitable mode for the missing-data mechanism, we again
used a model selection criterion following Varin and Vidoni (2005). The above model
produced the maximum “information criterion” among a number of models considered in
the analysis. In general, the non-ignorable models suggest that subjects with normal CD4
counts and on AZT are less likely to be seen over time. For Troxel et al. (1998)’s pseudo-
likelihood, we also used the above model except that yi1 (and any interaction term that
included yi1) was excluded as a “covariate” from the missingness model, since πit can only
be a function of variables at time t.

Table 1 displays estimates and standard errors for the parameters β for all models and
methods, as well as the estimates of the missing data model. From Table 1, we see that the
estimates from the non-ignorable independent and bivariate pseudo-likelihoods are similar,
but the bivariate pseudo-likelihood yields smaller estimated standard errors. For example,
for the time-stationary age main effect, the estimated relative efficiency (ratio of estimated
variances) is 77% for independent versus bivariate pseudo-likelihood. For the AZT*TIME
interaction, the parameter of primary scientific interest in a clinical trial comparing two
treatments, the estimated relative efficiency (ratio of estimated variances) is 6.3% for the
independent versus bivariate pseudo-likelihood. The estimated exchangeable correlation is
0.60, indicating high correlation among the repeated responses. This highlights the potential
gains in efficiency from use of the bivariate pseudo-likelihood, in particular when the
correlation among repeated measures is relatively high. To examine the finite sample
efficiency of these approaches, in the next section we conduct a a simulation study that
compares their finite sample properties.

5. Simulation Study
We conducted a simulation study to compare Troxel et al.’s (1998) pseudo-likelihood
estimator under independence, the ML estimator under a correctly specified model, and the
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proposed bivariate pseudo-likelihood estimator with T = 5 time points. Even though we
perform simulations with T = 5 times points, we have found in these simulations reported
below that the relative bias is so high for ML that we would advise against using it unless
the sample size is extremely large (say, over N = 1000); thus, as discussed in the
Introduction, ML is only really feasible with T ≤ 3. Therefore, to compare the pseudo-
likelihood approaches to ML in the simulation study, we restricted the number of occasions
to T = 5. The binary outcomes, (Yi1, Yi2, Yi3, Yi4, Yi5), for the ith individual are assumed to
follow a Bahadur (1961) model, with joint probabilities

where  αst = Corr(Yis, Yit) = E[ZisZit|xi]; αstu = E[ZisZitZiu|xi];
αstuv = E[ZisZitZiuZiv|xi]; α12345 = E[Zi1Zi2Zi3Zi4Zi5|xi]; and logit(pit) = β0 + βxxi + βτ(t − 1),
for t = 1, 2,…,5. We consider α = ({αst}, {αstu}, {αstuv}, α12345)t as the vector of association
parameters. We chose β0 = −0.2, βx = 0.6, and βτ = −0.2. The values of the covariate x were
assumed to follow a Uniform(0, 2) distribution. A variety of different correlation structures
were investigated. We present results from two different correlation structures: 1) an
exchangeable correlation structure with αst = α, and 2) a banded correlation structure, with
αst = αt−s, where t > s and t − s = 1, 2, 3, 4.

We assumed the following true non-ignorable missing data mechanism holds

(7)

for t > 1. The true model parameters in (7) were chosen as γ0 = −0.2, γ1 = 1.0, and γ2 = −0.5.
In this mechanism, non-monotone missingness can occur in that an outcome can be missing
at time s (Ris = 0), but observed at time t > s (Rit = 1). Each simulation run was based on
2500 replications, with N = 120 and N = 240 subjects.

For the exchangeable correlation model, Table 2 presents the empirical percent relative
biases, 100 × (β̂ − β)/β mean squared errors, and coverage probabilities of the regression
estimators obtained from ML, the independent pseudo-likelihood of Troxel et al. (1998), and
the proposed bivariate pseudo-likelihood. The coverage probabilities were obtained for 95%
confidence intervals, β̂ ± 1.96 s.e.(β̂), where the standard errors, s.e.(β̂)’s, of the pseudo-
likelihood estimators, β̂’s, were obtained from the sandwich-type variance estimator given in
(6).

It is clear from Table 2 that all of the two pseudo-likelihood methods provide approximately
unbiased estimators of the regression parameters under all simulation configurations;
however, the ML estimate can give appreciable bias (in simulations not shown, this bias
becomes negligible as the sample size increases). However, we are mainly interested in
investigating the efficiency gains of the proposed bivariate pseudo-likelihood (BPL)
estimators over the independent pseudo-likelihood (IPL) estimators of Troxel et al. (1998).
In the following, we assume that any bias makes a negligible contribution to the MSEs. The
BPL estimators appear to provide considerable gains in efficiency over the IPL estimators
for both βτ for correlations greater than 0.10, and for both sample sizes. For all
configurations in Table 2, the MSEs of the BPL estimators are smaller than the MSEs of the
corresponding IPL estimators. In general, for the time effect, the BPL estimator is
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substantially more efficient than the IPL estimator when the correlation is moderate to high.
For example, when N = 240 and α = 0.25, for the time effect, the IPL estimator is only 67%
as efficient as the BPL estimator. Also, when N = 240 and α = 0.40, for the time effect, the
IPL estimator is only 64% as efficient as the BPL estimator.

For weak correlations (α = 0.10, for example), both BPL and IPL estimators are nearly as
efficient as the ML estimators, as might be expected. But for stronger correlations, unlike
the IPL estimators, the proposed BPL estimators appear to be competitive to the ML
estimators for the time trend. For example, when N = 120 and α = 0.40, for the time effect,
the IPL estimator is only 47% as efficient as the ML estimator, whereas the BPL estimator is
86% as efficient as the ML estimator. When comparing the BPL to the ML, we observe that
the BPL has at least 85% efficiency for any simulation configuration. For this configuration,
we found the sample size needs to be at least N = 3000 for the ML to have bias under 5% for
all parameters.

We next describe the results of the simulation for the banded correlation structure, i.e.,

and |t − s| = 1, 2, 3, 4. We specified three sets of α’s. In the first set, we have (α1, α2, α3, α4)
= (0.20, 0.14, 0.06, 0.00); (α1, α2, α3, α4) = (0.35, 0.29, 0.21, 0.15); and (α1, α2, α3, α4) =
(0.50, 0.43, 0.37, 0.30). The constraints on the Bahadur are such that we could not specify a
range of more than 0.2 for any of the configurations. In the first set, we have, on average,
weak correlation; in the second set, we have, on average, moderate correlation; in the last
set, we have approximately the highest correlation possible for the Bahadur.

The results for Table 3 are similar to those in Table 2. First, it is striking the relative bias in
the MLE, much higher than in the exchangeable simulation. This is due to the constraints on
the parameter space of the Bahadur model for a banded correlation, i.e., the joint
probabilities for the Bahadur probabilities must be between 0 and 1, but the possible values
of β and α are highly constrained in order for these probabilities to be in (0,1). We used the
Newton-Raphson algorithm to find the maximum, and we found it always converged to a
stationary point, but we also found that there were typically many different sets of parameter
values that gave similar values of the likelihood as the MLE. We advise against using the
likelihood approach here, unless the sample size is large (in simulations not shown, we
found that the sample size should be at least N = 700,000 for the MLE to have at most 5%
bias in these simulations. Thus, for these simulations, we will only compare BPL to IPL. For
weak correlations on average (α1, α2, α3, α4) = (0.20, 0.14, 0.06, 0.00), IPL is at least 98%
efficient versus BPL, as might be expected. For moderate correlations (α1, α2, α3, α4) =
(0.35, 0.29, 0.21, 0.15), IPL is at least 83% efficient versus BPL. For strong correlations (α1,
α2, α3, α4) = (0.50, 0.43, 0.37, 0.30), IPL is approximately 69% efficient versus BPL. Thus,
for this type (banded) of correlation, IPL is more efficient than it was for an exchangeable
correlation; however, as the correlation increases, it again loses efficiency.

We also performed another simulation with five time points to explore the robustness with
respect to bias of the BPL approach with a mis-specified correlation model. In particular, we
let the true model be banded as above, but we fit an exchangeable correlation model when
using BPL. We used the same marginal model as before with N = 120, 240, and let α = 0.01,
0.25, 0.40. Each simulation run was based on 2500 replications. The IPL approach will be
asymptotically unbiased for any correlation structure, and ML will be asymptotically
unbiased when the correlation model is correctly specified. In the simulations, we found that
IPL and ML have a relative bias very similar to that in Table 2. We found the relative bias of
BPL to be slightly higher than that in Table 2, but never larger than 5%. This simulation, as
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well as other simulations not shown, suggests that the BPL estimates of the marginal
regression parameters have minimal bias when the correlation is mis-specified.

6. Conclusions
The purpose of this research was to provide a better alternative to the independent pseudo-
likelihood approach for analyzing longitudinal binary data with possible nonignorable and
non-monotone missingness. For the proposed pseudo-likelihood, we need to model only the
bivariate density of (yi1, yit), for t > 1. Unlike the full likelihood approach, our proposed
bivariate pseudo-likelihood is computationally less expensive. Also, when compared to the
independent pseudo-likelihood of Troxel et al. (1998), we have observed in the simulations
that the proposed bivariate pseudo-likelihood can be much more efficient under moderate to
strong within-subject association among the repeated responses. We advise against using the
likelihood approach for more than just 3 time points, unless the sample size is at least 3000.
In particular, in our simulations, even for the simplest correlation structure (exchangeable),
we found that the sample size should be at least N = 3000 for the MLE to have at most 5%
bias.
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