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Summary
The growing availability of various disease registry data has brought precious opportunities to
epidemiologists to understand the natural history of the registered diseases. It also presents
challenges to the traditional data analysis techniques due to complicated censoring/truncation
schemes and temporal dynamics of covariate influences. In a case study of the Cystic Fibrosis
Foundation Patient Registry data, we propose analyses of progressive symptoms using temporal
process regressions, as an alternative to the commonly employed proportional hazards models.
Two end points are considered, the prevalence of ever positive and currently positive for
Pseudomonas aeruginosa (PA) infection in the lungs, which capture different aspect of the disease
process. The analysis of ever PA positive via a time-varying coefficient model demonstrates the
lack of fit, as well as the potential loss of information, in the standard proportional hazards
analysis. The analysis of currently PA positive yields results which are clinically meaningful and
have not previously been reported in the cystic fibrosis literature. Our analyses demonstrate that
prenatal/neonatal screening results in lower prevalence of PA infection compared to traditional
diagnosis via signs and symptoms, but this benefit attenuates with age. Calendar years of
diagnosis also affect the risk of PA infection; patients diagnosed in more recent cohort show
higher prevalence of ever PA positive but lower prevalence of currently PA positive.
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1. Introduction
Disease registries for progressive chronic illnesses are unique resources for evaluating the
natural history of the diseases at the population level. Such population based registries have
existed in Europe for much of the 20th century, with recent emergence in North America
oriented towards study of the life history of chronic diseases. Statistical analyses of registry
data aid clinical researchers searching for patterns of progressive symptoms, which might
lead to better treatments and patient management. Nevertheless, due to lack of appropriate
methods and unawareness of key statistical issues, standard techniques, which may be
inappropriate or may waste valuable information, are often employed. We investigate some
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of the issues in a case study of the Cystic Fibrosis Foundation Patient Registry (CFFPR) data
maintained by the Cystic Fibrosis Foundation (CFF).

Cystic Fibrosis (CF) is one of the most common lethal inherited disorders in Caucasians,
affecting an estimated 30,000 people in the US (Cystic Fibrosis Foundation, 2008). Chronic
lung infections and obstructive lung diseases, eventually leading to respiratory failure, are
the primary causes (about 80%) of death in patients with CF (Cystic Fibrosis Foundation,
2008). Pseudomonas aeruginosa (PA), a ubiquitous environmental bacterium, is the most
important pathogen that accelerates lung disease and shortens survival of CF patients (Aebi
et al., 1995; Liou et al., 2001). Because PA infections can be transient/intermittent, and can
be eradicated by treatment with antibiotics, PA culture results often switch between positive
and negative states at different visits within a patient. Both the timing of the initial infection,
which we denote ever PA positive, and the extent to which infection persists over time,
which we denote current PA positive, are important in treatment decisions. Characterizing
PA infection patterns is particularly important for pediatric CF patients in their first decade
of life because PA infections begin early in life (Cystic Fibrosis Foundation, 2008) and are
very difficult to eradicate once they become chronic (Treggiari et al., 2007).

The prevalence of a progressive symptom, whether transient, intermittent, or persistent,
provides information for planning health services, allocating health resources, and assessing
the relative burden of the disease on mortality and quality of life. The prevalence denotes the
proportion of patients in the surviving population either having or having had a symptom.
Although ample discussion on statistical analyses of prevalence exists in the literature and
some has been based on registry data (e.g., Gail et al., 1999; Verdecchia et al., 2002), there
are issues shared by many registry data that are not appropriately addressed by standard
techniques commonly employed in the existing analyses. When analyzing the CFFPR data,
we address these issues in the context of the prevalence of two symptom measures, ever
having PA infection and currently having PA infection, assessing both cumulative and local
disease burdens at different ages.

The special features of the CFFPR data, such as nonstandard double censoring schemes and
time-varying covariate effects (see Section 2 for more details), require appropriate statistical
methods. Prevalence analyses of both ever PA positive and currently PA positive can be
situated in a unified framework of the temporal process regression (Fine et al., 2004), which
models the prevalence as the mean of a stochastic process of symptom indicator. Compared
to the standard survival analysis techniques, this framework is valid under milder
assumptions and provides further insights into the covariate effects, owing to the unspecified
time-varying covariate coefficients. The proposed model for the prevalence of ever PA
infection accommodates double censoring where left-censored cases are typically excluded
in standard techniques. It also enables a test of the proportional hazards assumption in
analyzing the onset age of first PA infection, which, as will be illustrated, is not appropriate.

Our results generate several findings regarding PA infections in young children with CF.
The prevalence of current PA infection is significantly lower, and the onset age of first PA
infection is significantly older, in children diagnosed early through prenatal/neonatal
screening (SCR) than in those diagnosed later through signs and symptoms of CF. The
beneficial effect of SCR on PA infection, however, attenuates with age, and is most evident
during the first several years of life. Children diagnosed more recently (1994-2000), when
compared to those diagnosed during 1986-1990, acquire first PA infection at earlier ages
(i.e., higher prevalence of ever PA positive) but have lower PA positive rates at older/current
ages (i.e., lower prevalence of currently PA positive). Further, both differences evolve with
age.
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The rest of the paper is organized as follows. Section 2 describes the CFFPR data in detail
and presents a Cox model with time-varying coefficients for the onset age at first PA
positive. Section 3 sketches the temporal process regression method with emphasis in the
context of the CFFPR data. Section 4 presents analyses on the two prevalence models, ever
PA positive and currently PA positive, the first of which is compared to the time-varying
coefficient Cox model. The two PA prevalence models are also contrasted. A discussion
concludes in Section 5.

2. CFFPR Data and Preliminary Analysis
The CFFPR is a major data source for epidemiological studies on CF (e.g., Lai et al., 2004;
van den Akker-van Marle et al., 2006; Comeau et al., 2007). Currently, data on more than
24,000 people who receive care at CFF-accredited CF Centers are reported to the CFFPR
every year (Cystic Fibrosis Foundation, 2008). This paper uses the CFFPR reported during
1986-2005 to investigate several risk factors that influence PA infections in CF patients
younger than 10 years of age, a period with greatest potential to benefit from early diagnosis
and new therapies and hence, improved health outcomes (Campbell and White, 2005). In
addition, to capture a complete follow-up for PA infection after the diagnosis of CF, only
patients diagnosed after 1986 were included in the analysis (Lai et al., 2004).

Three risk factors are considered based on their associations with survival and lung disease
outcomes demonstrated from previous epidemiological studies (Rosenfeld et al., 1997; Liou
et al., 2001; Assael et al., 2002; Lai et al., 2004, 2005): gender, method of CF diagnosis, and
calendar year of diagnosis. Methods of CF diagnosis, classified according to common
clinical practices that lead to the identification of CF, include four diagnostic categories:
patients identified at birth because of an intestinal obstruction known as meconium ileus
(MI), patients identified shortly after birth via prenatal/neonatal screening (SCR), patients
identified at variable ages because of positive family history (FH) without symptoms, and
patients identified at variable ages because of symptoms (SYMP) other than MI. Calendar
year of diagnosis is classified into 3 cohorts, 1986-1989, 1990-1993, and 1994-2000,
denoted as DX [86-89], DX [90-93], and DX [94-00], respectively; the cutoff years are
chosen to reflect medical advances in the diagnosis and treatment of CF, i.e., discovery of
the most common gene mutation in 1989 and FDA approval of pulmozyme in 1994.

The onset ages of first PA infection in the CFFPR are characterized with various truncation
and censoring schemes. PA infections are evaluated during clinic visits to the CF Centers,
which typically occur every 3-6 months. Therefore, the ages at which PA tests are positive
or negative are both interval-censored. As is standard in analyses of most symptom data, PA
result from the previous visit is carried forward until the next visit. Therefore, the observed
indicator process of PA infection jumps only at visit times.

Right and left censoring, as well as left truncation on mortality, are also present in the PA
infection data. These patterns are different than those for the usual left truncated right
censored data. The left and right censoring times are always observed and the left truncation
of infection is indirect, via mortality. The presence of right censoring is obvious, as a patient
may not have acquired any PA infection by the age at the end of 2005, or by the age of
death. The effect of right censoring at death is small in the analysis for age under 10,
because the mortality rate is very low prior to age 10 (Grosse et al., 2006). Left censoring
occurs when a patient enters the CFFPR with a positive PA infection, either due to very
early acquisition (e.g., positive at time of diagnosis) or delayed entry into the registry. The
left truncation occurs due to the delayed diagnosis (thus delayed entry into the CFFPR) and
mortality prior to diagnosis. The mortality truncation is universal in registry data because of
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the intrinsic nature of data collection. The models proposed in Section 3 deal explicitly with
these unique features of the data.

The study population in this paper included 12,822 patients diagnosed between 1986 and
2000, the same population investigated by Lai et al. (2004), but with 5 more years of follow-
up data, i.e., 1986-2005. Of those patients, the onset ages of first PA infection of 3,348 were
left-censored, 2,426 were right-censored and 413 deaths occurred. Zooming in to the first
decade of life, 11,375 patients entered the registry prior to age 10, among which, 2,735 were
left-censored, 2,284 were right-censored, and only 21 died prior to age 10. To avoid
assuming proportional hazards as in the earlier analysis of Lai et al. (2004), a Cox model
with time-varying coefficients (Martinussen and Scheike, 2006) was fitted to examine the
association between the three risk factors and the onset age of first PA infection for age
period before 10. Note that, as in Lai et al. (2004), the left-censored patients were not
included in the fitting.

Figure 1 presents the estimated cumulative coefficients and the 95% pointwise confidence
intervals as well as the Hall-Wellner confidence bands for ages before 10. The results were
obtained using the companion R package timereg of Martinussen and Scheike (2006), with a
start age 0.5 and max age 10. The DX (SCR), male, and DX [86-89] are used as the
reference levels for the method of diagnosis, gender, and calendar year of diagnosis,
respectively. These results are qualitatively consistent with those of Lai et al. (2004): MI and
SYMP patients have greater risks of acquiring PA infection compared with SCR patients;
females are at greater risk than males; and patients diagnosed after 1994 have greater risks
of acquiring PA infection than those diagnosed before 1989. Figure 1 also suggests that the
proportional hazards assumption may not be valid since the cumulative coefficients for DX
(SYMP), DX (MI), and DX [94-00] do not seem close to straight lines. Unfortunately,
although the timereg package allows for a resampling based significance test and a
goodness-of-fit test for each coefficient, these numerical results could not be obtained for
the CFFPR data due to the computational burden with large sample sizes and large number
of events.

In addition to the less intuitive interpretation of cumulative coefficients, the results in Figure
1 are further limited as approximately a quarter of the data are wasted due to the exclusion
of left-censored observations. The limitation can be overcome by modeling prevalence
instead of hazard, of ever PA positive using the temporal process regression method with an
appropriate link function. The temporal process regression method can also be used to
model the prevalence of currently PA positive, which is particularly relevant to the burden
of present infection and can not be modeled by the standard and time-varying coefficients
Cox models. The prevalence model implicitly conditions on a patient being alive and having
CF, hence can appropriately handle the PA infection data which feature complicated
sampling and censoring schemes, as described next.

3. Temporal Process Regression in the Context of CFFPR
We now apply the temporal process regression method (Fine et al., 2004) to the prevalence
of ever PA positive and currently PA positive. Two temporal processes are constructed
whose expectations give, respectively, the prevalence of ever PA positive and the prevalence
of currently PA positive. Let Ye,i(t) = 1 if patient i has ever had PA positive by time t and 0
otherwise. Let Yc,i(t) = 1 if patient i has currently PA positive at time t and 0 otherwise.
Both temporal processes are continuously observed for patient i during the age interval [Li,
Ui], where Li is the age at first visit and Ui is the age at last visit in the registry before
December 31, 2005. The time window [Li, Ui] is always observed for each patient. For
patients with PA positive at the first visit, Ye,i(t) = 1 for all t ∈ [Li, Ui] and Yc,i(t) = 1 for all
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t from Li until the age at the next visit where it may or may not switch back to 0. These data
contain information about the prevalence and will not be thrown away.

The truncation and censoring by death are addressed by the time window [Li, Ui]. If TD,i is
time to death for individual i, then individual i is sampled if TD,i > Li, so-called left
truncation on mortality. The death time TD,i is also right censored by Ui, which is always
observed. Such truncation and censoring of mortality are explicitly dealt with in the models
for the prevalence of PA infection in surviving patients discussed below.

Let Yi(t) (either Ye,i(t) or Yc,i(t)) be a 0–1 process whose expectation is the prevalence of
interest and Xi be a p × 1 covariate vector. Consider the time window [l, u] = [0.5, 10.0],
where the left end point 0.5 is chosen to avoid numerical problems near age zero caused by
the small number of contributing patients and the right end point 10 is chosen to focus on the
first decade of life of CF patients. We observe n independent copies of {Yi(t), Xi : δi(t) = 1},
i = 1,…, n, where δi(t) = I(t ∈ [Li, Ui]) is the under-observation indicator. Let ξi(t) be the
indicator of being alive, i.e., ξi(t) = 1 if patient i is alive at age t and 0 otherwise. Then, μi(t)
= E{Yi(t)|Xi, ξi(t) = 1} is the prevalence conditioning on the covariate vector Xi and subject
i being alive at time t. The temporal process regression model is a varying coefficient
generalized linear model (GLM) for each t in [l, u]

(1)

where g is a known link function, and β(t) is a vector of completely unspecified time-
varying coefficients. The model is robust in that only the mean of Yi(t) is specified instead
of the full joint distribution of Yi(t), for all t ∈ [l, u].

Note that the proposed prevalence model for PA infection, both current and ever positive, at
a given time point t, conditions on death being larger than t, that is, TD,i > t. To
accommodate the left truncation on mortality, which conditions implicitly on TD,i > Li, one
may instead condition on TD,i > t > Li, which gives the original model conditioning on TD,i
> t, as conditioning on t > Li is redundant. This can be incorporated in the definition of μi(t)
in the model. In the CFFPR data where mortality is rather low, the difference between
conditioning on TD,i > max(t, Li) and TD,i > t > Li is very small and can be ignored.

For the response process Ye,i(t) of ever PA positive, model (1) is intrinsically connected
with hazard models for the onset time Te,i to first PA positive. The connection is subtle
because prevalence at age t is estimated based on all patients who are alive at age t. When
there is no death, the prevalence of ever PA positive μi(t) is the complement of the survival

function of Te,i, Si(t). Therefore, Λi(t) = − log{1 – μi(t)}, where  is the
cumulative hazard function. When g is the complementary log-log (cloglog) link, i.e., g(u) =

log{− log(1–u)}, we have log , which reduces to the Cox (1972) proportional
hazards model for β(t) = β except for the intercept. Consequently, model (1) with the
cloglog link for the prevalence of ever PA positive can be used to check the appropriateness
of the proportional hazards models in Lai et al. (2004). In the CF data, where the mortality
rate is negligible (0.18% before age 10), such check is approximately valid.

For the response process Yc,i(t) of currently PA positive, μi(t) is not directly connected to a
single hazard function as discussed above for ever PA positive. To our knowledge, analysis
of currently PA positive prevalence has not previously been reported in the CF literature; the
results are economically meaningful, and are distinct from those based on ever PA positive.

Under the assumptions of conditional independence {Yi(t) ⊥ δi(t)}|{Xi, ξi(t) = 1} and
positive probability of complete data Pr{δi(t) = 1|Xi(t), ξi(t) = 1} > 0, t ∈ [l, u], the
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parameters β(t) at each time t ∈ [l, u] can be estimated using the nt observations available at

this time, where . In particular, β(t) can be estimated using quasi-likelihood
approach (McCullagh and Nelder, 1989) by solving the quasi-score equation:

(2)

where Di{β(t)} = dμi(t)/ dβ(t), and  is a working weight function, possibly

random. Combining  from estimating equation (2) for all t ∈ [l, u], we obtain an
estimator of the time-varying coefficients β(t) in model (1), without assuming any functional
form; see Fine et al. (2004) for details. In practice, particularly for point processes, there are

only finitely many jump points. Therefore, the estimator  jumps at those M times where

{Yi(t), Xi, δi(t); i = 1,…, n} jump. Since Yi(t)’s are piecewise constant, so too is .

Finding  involves solving (2) at M points. When M is big, as in the CFFPR data,
pointwise estimation can be performed on a fine grid of the interval [l, u].

Two important hypotheses tests are considered in analyzing the CFFPR data: a regression
coefficient is not significant H0 : βj(t) = 0, t ∈ [l, u], and a regression coefficient is constant
Hc : βj(t) = βj, t ∈ [l, u]. Two significance tests are constructed for H0. The first one is an

integral test based on the standardized weighted average of , where

 with some weight function W(t) and  is the variance estimate of T. The

second one is the supremum of the weighted process , whose

distribution can be approximated by bootstrapping the influence functions of . For

the goodness-of-fit test Hc, a time-independent estimate  is

first constructed, where H(t) is a weight function, chosen as  in this analysis to
downweight time points where there are more variability. An integral statistic and a

supremum statistic can then be constructed as in the case of significance test, with 

in place of . The weight function W(t) influences the power of the test statistics; see

Fine et al. (2004) for details. In the supreme test, W(t) is chosen as . In the

integral test, W(t) is chosen as , where  is a subinterval of [l, u].
The analyses in Section 4 use [l, u] or one of its three equally spaced subintervals as . The
latter weight scheme has substantial power to detect linear and quadratic alternatives to Hc.

4. Prevalence Analysis Results
4.1 Ever PA Positive

For prevalence of ever PA positive, as discussed in Section 3, we use the cloglog link

function to formulate , where μi(t) is the conditional
prevalence of ever PA positive at age t given covariate vector Xi. Since the mortality rate
before age 10 is negligible (21 deaths, 0.18%), the time-varying covariate coefficients β(t)
can be used to test the goodness-of-fit of proportional hazards. In contrast to the Cox model
results in Figure 1, patients with PA positive at their first visits are included in this ever PA
positive model. Exploratory analyses with univariate models and two-variate models
stratified by three diagnostic cohorts are performed before including all three risk factors in
a single joint model. They suggest an additive model without interactions.
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The nonparametric coefficient estimates in the three-factor model are graphically presented
in Figure 2(a) with the same scales. The intercept, after being transformed by the inverse
link function of cloglog, corresponds to the estimated prevalence of ever PA positive for
male patients diagnosed via SCR during 1986-1989. The intercept is generally increasing,
although this constraint is not required by the prevalence models and not enforced by the
estimation procedure. Recall that the ever PA positive model reduces to a proportional
hazards model when the hazard ratios are time-independent, given that the mortality before
age 10 is negligible. The plots in Figure 2(a) suggest that proportional hazards may not hold
since coefficients such as DX (SYMP), DX [90-93], and DX [94-00] are highly nonconstant
over age. These results are similar qualitatively to those in Figure 1.

The significance test results for each coefficient using integral test statistic T* and
supremum statistic S are summarized in the upper panel of Table 1. The integral test
statistics are computed on the whole interval [l, u] and on every one of the three equally
divided subintervals (i.e., approximately 0.5-4, 4-7 and 7-10, respectively). Their signs
suggest directions of the covariate effects. The p-values of the supremum test statistic are
computed from 1000 bootstrap samples (Fine et al., 2004). These results suggest that all
coefficients, except that for the DX (FH) group, are significantly nonzero, and the levels of
significance differ among the three subintervals. For example, the risk differences between
DX [90-93] and DX [86-69] are highly significant and positive in the 3rd subinterval,
moderately significant and positive in the 2nd subinterval, and negative albeit insignificant
in the 1st subinterval.

Table 2, upper panel, summarizes the fitted constant parametric submodels for each of the
covariates and the associated goodness-of-fit test results. The integral and supremum
goodness-of-fit tests suggest that the gender effect is age-independent but the coefficients of
DX (SYMP), DX [90-93], and DX [94-00] are time-varying instead of constant, confirming
the visual impression from Figure 2(a). The protective effect of SCR on ever PA positive
over SYMP is highly significant at earlier ages but attenuates at older ages. Attenuation is
also observed for the DX (MI) and DX (FH) groups in Figure 2(a), but such attenuation is
not statistically significant.

4.2 Currently PA Positive
For prevalence of currently PA positive, we fit the model with both logit link and cloglog
link. Since the results are similar in nature, only results with logit link are reported here. In

particular, the model is expressed as , with μi(t) interpreted as the
conditional prevalence of currently PA positive at age t given covariate Xi. Each component
of β(t) can be interpreted as a log odds ratio at age t per unit increase in the corresponding
covariate, as in a logistic regression model. As with ever PA positive, exploratory analyses
for currently PA positive also suggest an additive effects model without interactions.

The nonparametric coefficient estimates in the three-factor model are plotted in Figure 2(b).
The intercept, after being transformed using the inverse link function of logit, is interpreted
as the prevalence of currently PA positive for male patients diagnosed via SCR during
1986-1989. Under the cloglog link, the estimated intercept is lower than that in Figure 2(a)
at all age points, which is expected since Yc(t) ≤ Ye(t). The differences between the
diagnosis method groups and the reference SCR group and the gender difference exhibit
similar patterns to those in the ever PA positive model in Figure 2(a). A striking difference,
however, in the coefficient estimates of the diagnostic cohort groups was observed between
Figure 2(a) and Figure 2(b), which is described in greater detail below.
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The lower panels in Table 1 and Table 2 summarize the significance tests, constant fit, and
goodness-of-fit tests for modeling the prevalence of currently PA positive. The difference
between the diagnostic groups to the reference SCR group are all significant throughout the
age period. The magnitudes of the differences attenuate with age and are more pronounced
than those observed in the ever PA positive model. This is especially obvious for the DX
(SYMP) and the DX (MI) groups. Specifically, the gap between SCR and SYMP narrows
continuously between age 6 and 10, and so does that between SCR and MI. These time-
varying phenomena are statistically significant, as indicated by strong rejections by the
goodness-of-fit of the constant fit, except for the DX (FH) effect. The elevated risk of
females is confirmed by the significance tests, and a constant fit seems to adequately
describe the effect. The advantages of the diagnostic cohort groups DX [90-93] and DX
[94-00] compared to the reference group DX [86-89] are both significant. Their constant fits
are strongly rejected.

Unlike the ever PA positive model, the DX [90-93] and DX [94-00] groups showed a
significantly lower, instead of a higher, prevalence of currently PA positive compared to the
DX [86-89] group. The opposite trend in PA prevalence comparing DX [94-00] to DX
[86-89] between the ever PA positive model and currently PA positive model may be
explained by the change in clinical practice toward more aggressive identification and
treatment for PA (Treggiari et al., 2007). Compared to patients diagnosed prior to 1990 (i.e.,
DX [86-89]), patients diagnosed more recently (i.e., DX [94-00]) are likely to be cultured
more frequently (e.g., every 3 rather than 6 months), resulting in earlier detection of the first
PA infection and hence, a higher prevalence of ever PA positive at earlier ages.
Nevertheless, compared to the DX [86-89] group, the DX [94-00] group is also more likely
to receive earlier and more aggressive antibiotic therapy for PA, which increases the chance
to eradicate PA (Valerius et al., 1991; Frederiksen et al., 1997), leading to a lower
prevalence of currently PA positive at older ages. Similar but less marked patterns are
observed for patients diagnosed in DX [90-93] versus the reference group.

5. Discussion
This paper has explored two notions of prevalence in the early respiratory development of
CF patients using a national registry database. Two complementary prevalence definitions
were employed, which describe the cumulative and current risks of infection in the surviving
population. A unifying temporal regression framework was employed which illuminated the
underlying dynamics of infection in CF patients and the evolving differences amongst
diagnostic method and cohort groups. The framework addresses limitations in the default
survival analyses and provides some new insights not available with the existing approaches.
It subtly differs from the recent approaches for marginal mean functions accommodating
terminal events such as death (Ghosh and Lin, 2000, 2002) because the prevalence of
interest implicitly conditions on being alive.

Inferences about time-varying effects are the cornerstone of the analyses presented in
Section 4. Testing may be carried out globally after explicitly averaging across time, or
locally, via pointwise tests which control for multiple testing, as with simultaneous
confidence bands. Temporal process regression permits a formal evaluation of time-
dependence, with confidence bands pinpointing those times at which a significant effect is
present and profiling the magnitudes of the effects over time. In a survival analysis
framework for the onset age of first PA positive, which defines the ever PA positive
outcome, existing Cox models with time-varying coefficients can be applied, but in a
somewhat artificial way, with left censored observations excluded due to the lack of readily
available software. Recent regression methods for doubly censored survival data (Zhang and
Li, 1996; Ren and Gu, 1997; Cai and Cheng, 2004), with time-independent coefficients,
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have not been implemented in standard statistical packages. Temporal process regression
accommodates left censored observations naturally, taking advantage of the additional
information on the observation window which is generally available in registry data. One
might expect substantial increases in power to detect covariate effects in scenarios similar to
the CF registry, where roughly 25% of observations are left censored. More rigorous
numerical and theoretical studies are needed to demonstrate these efficiency gains.

For currently PA positive, disease prevalence may be considered as a transit state in a
multistate model. Standard approaches to multistate models, like those in Andersen et al.
(1995), model the transition intensities instead of the prevalences associated with the states.
It may be difficult to interpret covariate effects on the transition intensities in terms of the
prevalences, owing to the complicated relationships between these quantities. Other recent
work aims at directly modelling such prevalence type quantities to ease the model
interpretation. Ghosh and Lin (2002) model the marginal means for recurrent events using
survival type models, while Pepe and Couper (1997) consider longitudinal data models for
prevalences. The former methods are not applicable to PA prevalence in CFFPR. Temporal
process regression (Fine et al., 2004) permits survival type analyses of prevalence with more
flexible assessments of covariate effects than the longitudinal data analyses in Pepe and
Couper (1997), generalizing the latter methods to continuous time set-ups with time-
dependent coefficients.

Care is needed in interpreting the pointwise results in the CF registry analysis. For example,
at very young ages, the prenatal/neonatal screening program evidences highly significant
differences relative to traditional diagnosis via naturally occurring symptoms, with respect
to both ever PA positive and current PA positive. By age 10, however, these differences
have substantially attenuated and are not significant. From a clinical point of view, the
reduction in disease burden at early ages is meaningful, potentially leading to better long
term mortality and morbidity outcomes. Nevertheless, further analysis is needed to elucidate
this issue, that is, to quantify the extent of the long term benefits of early detection, which
has important policy implications. The interpretation of the temporal effect of diagnostic
cohort is also rather subtle, given that the effects on ever PA positive and current PA
positive are in opposite directions; see Section 4.2.

In the CF community, there is interest in distinguishing short transient infections from
chronic persistent infections. Persistent infections reflect a more advanced disease state than
do transient infections (Lee et al., 2004; Treggiari et al., 2007), and are most costly to
manage. While the focus of this paper has been on all infections combined, understanding
the effects of risk factors on infection patterns is also of interest. For example, in a
univariate analysis for the SCR group, the prevalence of ever PA positive is roughly 0.20 at
age 2 and 0.40 at age 4, while the prevalence of current PA positive is roughly 0.12 at age 2
and 0.16 at age 4. This gives that roughly 60% of ever positive patients at age 2 are currently
infected while 40% of ever positive patients at age 4 are currently infected. These
percentages vary across diagnostic method. Further work is needed to formally analyze such
differences using the temporal regression methodology. This is a topic for future research.

It is worth pointing out that the different frequency in collecting the data can influence the
determination of the disease onset age. Had the tests been taken more frequently in certain
patient groups, for example, as a result of more severe symptoms, then biases in the analyses
might arise. In the CFF registry, this is not an issue, as per protocol, the monitoring scheme
is the same for all patients. Regarding the interpretation of the analyses, more frequent
monitoring would yield more accurate determination of PA onset and remission times and
hence the prevalence endpoints would be more accurately profiled. Given that visits occur
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fairly regularly (2 to 4 times per year), however, the monitoring scheme would seem to have
a relatively minor impact on the analyses.

Last observation carried forward method is used to obtain the information on PA infection at
each visit date. This is an approximation of the true indicator process, but is clinically
relevant because treatment is based on the observed indicator process and one is interested
in modeling the clinical process. Nevertheless, changes in observation schemes may result in
different observed indicator processes, therefore, the modeling of the observed process does
not necessarily reflect the true underlying event process.
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Figure 1.
Estimated cumulative coefficients, with 95% pointwise confidence interval and 95% Hall-
Wellner confidence band in a time-varying coefficient Cox model.
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Figure 2.
Estimated regression coefficients in the prevalence model of ever PA positive and currently
PA positive. Solid lines are the nonparametric estimates. Dotted lines are pointwise 95%
confidence intervals. Dashed lines are 95% confidence bands.
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