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Summary
In a case–cohort design, covariates are assembled only for a subcohort that is randomly selected
from the entire cohort and any additional cases outside the subcohort. This design is appealing for
large cohort studies of rare disease, especially when the exposures of interest are expensive to
ascertain for all the subjects. We propose statistical methods for analyzing the case–cohort data
with a semiparametric accelerated failure time model that interprets the covariates effects as to
accelerate or decelerate the time to failure. Asymptotic properties of the proposed estimators are
developed. The finite sample properties of case–cohort estimator and its relative efficiency to full
cohort estimator are assessed via simulation studies. A real example from a study of
cardiovascular disease is provided to illustrate the estimating procedure.
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1. Introduction
The case–cohort design (Prentice, 1986) provides a more efficient solution for large cohort
studies that involve rare diseases and/or expensive exposures. It is especially useful when
multiple outcomes are of interest. Under the classical case–cohort design, expensive
covariates are assembled only for a randomly selected sample, subcohort, from the entire
cohort at the beginning of the study, and any additional cases or failures outside the
subcohort. The case–cohort design is feasible when the outcome can be known and the
covariate history is potentially accessible for each cohort member. There have been
variations of the basic case–cohort sampling scheme to improve the efficiency of the design
(e.g., Borgan et al., 2000; Kulich and Lin, 2000). For instance, the Atherosclerosis Risk in
Communities study (ARIC Investigators, 1989) used a stratified sampling of the subcohort
to investigate the association between genetic risk factors and development of coronary
heart disease (CHD) due to the low incidence rate of CHD and expensive bioassay of blood
specimens.

Parametric models for case–cohort studies have been studied in Kalbfleisch and Lawless
(1988). Statistical methods for fitting case–cohort data with semiparametric survival models
have also been developed for the Cox hazards model (e.g., Prentice, 1986; Self and Prentice,
1988; Wacholder et al., 1989; Lin and Ying, 1993; Barlow, 1994; Chen and Lo, 1999), the
additive hazards model (Kulich and Lin, 2000), the proportional odds model (Chen, 2001a)
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and the semiparametric transformation models (Chen, 2001b; Kong, Cai, and Sen, 2004).
These semiparametric models either model the hazard function or survival function of
failure time. However, it may be more attractive to model the failure time directly in some
applications. The accelerated failure time model naturally fulfils this purpose by linearly
relating the natural logarithm of the failure time T to the covariates as

(1)

where β is an unknown p × 1 vector of regression parameters, β′ denotes the transpose of β,
Zi is a p-vector of covariates for the ith individual, εi’s are independent and identically
distributed random errors with an unspecified distribution function F. In addition, model (1)
is equivalent to Sz(t) = 1 − F{log(t) − β′z}, implying that the survival probability Sz(t) for the
subjects with a particular covariate vector z at time t is the same as the survival probability
for the subjects with z = 0 at time t exp(−β′z). Kalbfleisch and Lawless (1988) showed how
to perform the case–cohort analysis with parametric accelerated failure time model when the
distribution of error term was known. The accelerated failure time model provides an
important alternative to the Cox proportional hazards model in that the assumption of
proportionality of hazards is not required. It also specifies that the covariate has a
multiplicative effect on the failure time rather than the hazard function as in the Cox relative
risk models. The role of covariate is to alter the rate at which an individual proceeds along
the time axis (Kalbfleisch and Prentice, 2002, p. 44). Note that we only consider the time-
invariant covariates in this model, although the time-dependent covariates can be
incorporated in the accelerated failure time models (Cox and Oakes, 1984, chapter 5, pp.
64–65; Robins and Tsiatis, 1992;Lin and Ying, 1995).

The least-square based Buckley–James estimator (Buckley and James, 1979) and the rank-
based estimators (e.g., Prentice, 1978; Ritov, 1990; Tsiatis, 1990; Wei, Ying, and Lin, 1990;
Lai and Ying, 1991; Ying, 1993) have been developed for the accelerated failure time
model. Chen and Jewell (2001) considered the accelerated failure time model as a special
case of a general class of semiparametric hazards regression models. However, the practical
use of this model is rare due to the lack of efficient and reliable computational methods.
Recently, Jin et al. (2003) provided and justified rigorously a simple method for
implementing the rank estimators through a linear programming approach and estimating the
corresponding variance with a resampling technique. It is now important to develop the
corresponding methodology for case–cohort data. As model (1) is a natural generalization of
parametric log-linear models, our methods for case–cohort data are applicable for the usual
linear models as well. In Section 2, we propose the estimating procedures for the regression
parameters, and study the asymptotic properties of the proposed estimators. We also conduct
simulation studies to investigate the performance of case–cohort estimator under practical
sample sizes, as well as its efficiency relative to the full cohort estimator in Section 3. A real
case–cohort data set from the ARIC study is used for illustration in Section 4.

2. Methods
We first present the method for simple case–cohort design, where the subcohort is sampled
by simple random sampling without replacement. We then extend our approach to the
stratified case–cohort design where the subcohort is sampled using a stratified simple
random sampling scheme. The asymptotic properties of case–cohort estimators are
discussed, whereas the technical details are given in the Appendix.
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2.1 Case–Cohort Design with Simple Random Sampling
Let {T i, Ci, Zi} be N independent replicates of {T, C, Z}, where C is the potential censoring
time and is independent of T conditionally on Z. As a result of censoring, we observe the
data (Xi, Δi, Zi), where Xi = min(T i, Ci), Δi = I(T i ≤ Ci) with I(.) being the indicator
function. Define ei(β) = log(Xi) − β′Zi, N i(β; t) = ΔiI{ei(β) ≤ t} and Y i(β; t) = I{ei(β) ≥ t}
for i = 1, …, N. In full cohort design, the regression parameters can be estimated from the
weighted log-rank estimating function (Ying, 1993; Jin et al., 2003)

(2)

where φ is a possibly data-dependent weight function, Z ̄(β; t) = S(1)(β; t)/S(0)(β; t) with

. The choices of φ(β; t) = 1 and φ(β;
t) = S(0)(β; t) correspond to the log-rank and Gehan statistics, respectively. The estimating
function involves a comparison of the covariate of the observed failure versus the mean of
those at risk at that time, this fact reveals intuitively why the case–cohort design may remain
efficient by sampling the censored observations.

Let β0 be the true value of regression parameter vector, and β ̂φ be a root of estimating
function (2). Under certain regularity conditions, it has been shown that the random vector
N1/2(β ̂φ − β0) is asymptotically normal with mean zero and covariance matrix

 (Tsiatis, 1990;Lai and Ying, 1991;Ying, 1993), where

λ(.) is the common hazard function of the error terms, λ ̇ (t) = dλ(t)/dt and for any column
vector a, a⊗2 = aa′.

In the case–cohort studies, the covariate vector Z is not completely available for each
individual. Suppose we select a subcohort of size n by simple random sampling without
replacement from a cohort study that consists of N independent subjects. Let N0 and n0 be
the numbers of censored observations in the cohort and subcohort, and N1 and n1 be the
corresponding numbers of failures. We observe the failure status Δi for the entire cohort.
However, we only observe complete covariates information for the subcohort members and
additional failures outside the subcohort. Let e(β) = log (X) − β′Z. By virtue of the
convergence result in Appendix 1 of Wei et al. (1990), we have that for β ∈ ℬ, a compact set
of β0, N −1U φ(β) converges almost surely to

(3)
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as N → ∞, where μr(β; t) = E[Z⊗rI{e(β) ≥ t}], τr(β; t) = E[Z⊗r I{e(β) ≤ t, Δ = 1}] (r = 0, 1)
and Z⊗0 = 1, Z⊗1 = Z. The quantity τ r(β; t) (r = 0,1) can be estimated in the same way as in
the full cohort analysis because only the failures contribute to this term and the covariate
information of failures are complete in the case–cohort studies. By the conditional
probability principle, we can express μr(β; t) as

where γ = Pr{Δ = 1} is the failure rate. Then we can estimate the first term using all the
failures and second term using the nonfailures in the subcohort. This strategy has been
presented in Chen and Lo (1999) for case–cohort analysis with Cox models. Let γ ̂ be an
estimator of γ, estimating the expectations in equation (3) with their empirical counterparts
from the case–cohort data yields the estimating function

(4)

where R1 and R̃0 denote the index sets of failures in the cohort and nonfailures in the
subcohort, respectively. In this article, we assume the cohort is well defined, i.e., N and N1
are known. With γ estimated by N 1/N and the assumption that n0/N 0 converges to the same
limit as n/N does when n0, N 0, n, and N go to infinity, we have an estimating function that is
equivalent to equation (4) as

(5)

where Z ̃(β; t) = S̃(1)(β; t)/S̃(0)(β; t) with

and hj = Δj + (1 − Δj)ξj/p, where ξj is a subcohort indicator, p = n/N is the selection
probability of subcohort and converges to a constant α ∈ (0, 1) as n and N go to infinity. The
case–cohort estimating function Ũφ(β) can be considered as a weighted version of the full
cohort estimating function, the weight hj is the inverse of the probability of being selected
into the case–cohort. As in the full cohort analysis, the estimating function Ũφ(β) is
generally neither continuous nor monotone in β. Thus, we obtain the estimator β̃φ by the
linear programming approach as described in Jin et al. (2003). For the Gehan-type weight
function φ(β; t) = S̃ (0)(β; t), the estimating function Ũφ(β) reduces to
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which is monotone in each component of β (Fygenson and Ritov, 1994), and is the gradient
in β of the convex function

with a− = |a|I(a ≤ 0). The minimization of LG(β) can be carried out by linear programming.

The corresponding linear function is  subject to the linear constraints uij ≥ 0
and uij ≥ −{ei(β) − ej(β)}hj(i, j = 1, …, N). Equivalently, we may minimize

where M is an extremely large number. This type of minimization problem can be solved in
the same way as the least absolute deviation regression problem. With Gehan estimator
being the initial value, an iterative algorithm proposed in Jin et al. (2003) can be used for the
general weight functions. The resulting estimator is consistent although the original
estimating equation may contain inconsistent roots.

The case–cohort estimating procedure based on the modification of the full cohort
estimating function creates some new technical challenges. In addition to the theoretical
justifications used in Ying (1993) for the full cohort estimator, we rely on the asymptotic
theory of finite population sampling to address the technical problems arising from the
sampling of subcohort without replacement in case–cohort studies. The key step is to
approximate the case–cohort estimating function by the full cohort counterpart plus an
additional part that is asymptotically uncorrelated to the full cohort part. We show in
Appendix A that N−1Ũφ(β) converges uniformly to the same nonrandom function as the full
cohort counterpart N−1U φ(β) in a compact neighborhood of β0. Subsequently, the case–
cohort estimator β̃φ obtained from equations Ũφ(β) = 0 is consistent following the same
arguments in Ying (1993).

The asymptotic normality of full-cohort estimators of regression coefficients was derived by
establishing the asymptotic linearity of estimating function around the shrinking
neighborhood of true regression parameter vector β0. By similar arguments, it can be shown
that the case–cohort estimating function is asymptotic linear around the neighborhood of
true value β0. Furthermore, the case–cohort estimating function evaluated at β0 can be
represented by the sum of two independently normally distributed random vectors as shown
in Appendix B. The proof is in the same spirit as that of Proposition 1 in Self and Prentice
(1988) and equation (3.9) in Samuelson (1997). Then by virtue of asymptotic linearity of

estimating function around the shrinking neighborhood of β0, we have that  is
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asymptotically normally distributed with mean zero and covariance matrix Σ(β0) + Γ(β0),
where Σ(β0) is the covariance matrix for full cohort estimator, and Γ(β0) accounts for the
extra variability due to the random sampling of subcohort.

The limiting covariance matrix of the case–cohort estimator is as complicated as that in full
cohort analysis. The estimation of the hazard function and its derivative is required.
Although the resampling method of Jin et al. (2003) performed well in estimating the
covariance matrix, it is not expected to be good for case–cohort data because the censoring
rate in case–cohort design is often considerably high. Therefore, we adopt the bootstrap
procedure used by Wacholder et al. (1989, p. 119) in the Cox regression analysis of case–
cohort data. The bootstrap sample is constructed from the original case–cohort sample such
that the size of subcohort, number of cases in the subcohort, and the total number of cases in
the bootstrap sample are the same as those in the original sample. Specifically, we sample
N1 cases from the original N1 cases with replacement and assign the first n1 cases to be in
the subcohort and the rest of the cases to be outside the subcohort, then we sample n0
noncases from the original n0 noncases in the subcohort with replacement. Let β̃ (i) be the
case–cohort estimate obtained from the ith bootstrap sample (i = 1, …, B), we may estimate
the standard error of β̃φ by the square root of sample variance of these B estimates. We
assess the performance of the bootstrap method in the simulation study.

2.2 Case–Cohort Design with Stratified Simple Random Sampling
Stratified simple random sampling is usually more efficient than simple random sampling
when the stratification variables are correlated with the outcome of interest. Suppose the full
cohort consists of K strata of sizes N 1, N 2, …, N K, where N = N 1 + N 2 + ···+ N K. We
select from the kth stratum a random sample of nk subjects into the subcohort. Then the total
subcohort size is n = n1 + n2 + ··· + nK. Let pk = nk/N k be the sampling proportion of the
subcohort in the kth stratum and assume that pk converges to a constant αk ∈ (0, 1) as nk, Nk

→ ∞. For the kth stratum, we define a function  in the same way as the unstratified
estimating function (5), then the estimating function for the stratified case–cohort design can
be written as

where  with

and hkj = Δkj + (1 − Δkj)ξkj/pk, ξkj is a subcohort indicator with . The same
strategies were also used in Kulich and Lin (2000) and Borgan et al. (2000) for stratified

case–cohort analysis. The stratified case–cohort estimator  can be obtained by solving

 via the same linear programming approach as described previously for simple case–
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cohort design. Because the K strata are independent of each other, we may extend the
arguments in Section 2.1 to establish the consistency and the asymptotic normality for the

stratified case–cohort estimator. To estimate the variance of , we first conduct the
bootstrap sampling within each stratum as previously described and use the stratified

bootstrap data along with the estimating function  to obtain a bootstrap estimator.

3. Numerical Studies
We carried out simulation studies to assess the performance of the proposed estimating
procedure with practical sample sizes and to examine the efficiency of the case–cohort
design relative to the full cohort design. First we generated 500 full cohort data sets with
sample size of 1500 according to the failure time model log T = 3 + βZ + ε, where the
covariate Z, following a Bernoulli distribution with a success probability of 0.1, represented
a rare exposure of interest, and the error term ε either followed a standard normal
distribution, which resulted in a log-normal distribution for failure time T, or a standard
extreme value distribution which resulted in an exponential distribution for T. For a
prespecified regression parameter β = −1 or 0, we generated the censoring time from a
uniform distribution on (0, c), where the parameter c was chosen such that the proportion of
censoring was expected to be 0.9. In other words, we expected to obtain 10% failure rate.
We also created a dichotomous stratification variable V based on two parameters η = Pr(V =
1 |Z = 1) and ν = Pr(V = 0 |Z = 0), where η and ν were the sensitivity and specificity of the
surrogate V for the true exposure Z. We chose η = ν = 0.5, 0.7, and 0.9, with 0.5
corresponding to the case when V and Z were uncorrelated and the higher number indicates
the higher correlation between V and Z. We selected the same size of subcohorts from the
two strata by simple random sampling without replacement. We set an overall subcohort
sampling proportion as 0.11 such that the number of controls in the resulting case–cohort
sample was the same as that of cases (i.e., the average case–cohort size is about 300). It is
straightforward to see that each cohort member has the same probability to be selected in the
subcohort when η = ν = 0.5. In other words, we actually have an unstratified case–cohort
design in this case.

We obtained the Gehan-type estimator and the log-rank type estimator for each case–cohort
data set via the linear programming method and estimated the standard errors of the
estimates by bootstrap method based on 200 bootstrap samples. As shown in Table 1, the
proposed estimators of the regression parameters are approximately unbiased for all the
cases. Moreover, the means of the estimated standard errors are in good agreement with the
empirical standard errors, indicating that the bootstrap variance estimator is fairly good. The
empirical 95% confidence intervals also have reasonable coverage rates. The relative
efficiencies show that most of the simple unstratified case–cohort estimators reach about
50% of the efficiency of full cohort estimators when only about 20% (300 subjects) of the
full cohort subjects were included in the case–cohort estimation. The efficiency of the
stratified case–cohort design increases as the correlation between V and Z increases, and can
be as high as above 70% when V is a very good surrogate for true exposure Z (i.e., η = ν =
0.9). As one reviewer pointed out, the censoring mechanism used may be conservative with
respect to case–cohort efficiency. If a fixed follow-up time (e.g., end of study) is used as a
common censoring time, the covariate mean in the estimating equation can be better
estimated, and thus the case–cohort estimator might do even better.

4. Example
We illustrated the estimating method with a data set from the ARIC study. The ARIC study
is a population-based cohort study of cardiovascular diseases, enrolling 15,792 participants
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aged 45 to 64 years old from 1987 to 1989. A subcohort sample, stratified by gender, age
group (≤55 or >55), and average carotid thickness (thin/not thin), was selected for
ascertainment of genetic risk factors. In the present analysis, we investigated how a genetic
polymorphism of glycoprotein (GP)IIIa, also known as PlA1/A2, was associated with the risk
of developing CHD during the first visit to the end of year 1993. The platelet PlA2 allele has
been proposed to be a potential factor related to platelet aggregation. We estimated the effect
of the allele with accelerated failure time model while adjusting for the covariates such as
age, gender (=1 if female), carotid thickness (=1 if thin), race (=1 if African American; =0
otherwise), cholesterol (mg/dl, natural logarithm) and cigarette years of smoking (i.e.,
average number of cigarettes per day multiplied by number of years smoked/1000). After
excluding the patients with missing values on any of these covariates, we had a stratified
case–cohort sample of size 944. There were 533 patients in the stratified subcohort sample,
and a total of 429 CHD cases (18 cases inside the subcohort and 411 cases outside the
subcohort).

Table 2 presented the analysis results using Gehan and log-rank weight functions. Note that
the positive regression coefficient in the accelerated failure time model (1) implied a longer
survival time and the associated variable had a protective effect. On the other hand, negative
coefficients implied earlier development of CHD. For example, the Gehan estimate of the
coefficient associated with the allele, −0.12, indicated that the subjects who carried the PlA2

allele developed CHD earlier by a factor of exp(0.12) = 1.13 in time as compared to those
who did not carry the allele. However, the effect of the allele was not significant. The ARIC
investigators reported the similar results based on the Cox proportional hazards model
(Aleksic et al., 2000). They found that the hazard ratio associated with the allele was 1.37
with 95% CI=[0.89, 2.11]. Moreover, older African American males with carotid thickness
classified as not thin, with higher cholesterol level and longer years of smoking, were
associated with earlier development of CHD. All the adjusted covariates except race had
statistically significant effects on the time to develop CHD. The estimates of regression
parameters based on the Gehan weight function were similar to those based on the log-rank
weight function. This indicated that the model appeared to be adequate because two rank
estimators with different weight functions should be close to each other if the assumed
model was valid (Wei et al., 1990).

5. Conclusion and Discussion
We developed a rank-based estimating equation approach to fit the failure time data from
case–cohort studies with an accelerated failure time model. Our method was also valid for
the usual semiparametric linear models. We showed that the proposed estimators were
consistent and asymptotically normally distributed. For practical use, we demonstrated that
the estimators had nice performance under the finite sample size. The simulation results
indicated that the efficiency loss of the case–cohort estimator relative to the full cohort
estimator remained acceptable as compared to the sample size reduction. Stratified sampling
design further improved efficiency when the stratification variable was a good surrogate of
the exposure of interest. As stated in Chen and Lo (1999) for the case of Cox model, an
improved case–cohort estimator can be obtained for the accelerated failure time model if the
disease prevalence γ is known from census statistics of a disease registry. It is also of interest
to examine whether or not the time-dependent weighting scheme used in Barlow (1994) may
improve the estimation efficiency. In contrast to the case-cohort estimating function
proposed recently by Nan et al. (2006) for the accelerated failure time model, we also
included failures outside the subcohort in constructing Z ̃ in equation (5) and thus, our
estimators may be more efficient. Although some easily measured covariates are available
for each cohort member, the covariates information of controls outside the subcohort can not
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be incorporated in our estimation procedure. An estimating function taking into account all
the information on these covariates merits further study.
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Appendix

A. Approximation of Estimating Function
We may write

(A.

1)

where  is a martingale process and 

with . The first term of (A.1) is the estimating function for full
cohort data. It follows from the asymptotic convergence result of finite population sampling
and some algebraic manipulation that for r = 0, 1,

when N 1/N and n1/n converge to γ as n1, n, N 1, and N go to infinity, where R0 denotes the
index set of all the censored observations in the cohort, and R̃0 denotes the corresponding set

in the subcohort. Define  and , we
have that
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(A.2)

where s(r)(β; t) is the limiting function of S(r)(β; t) for r = 0, 1 and v(β; t) = s(1)(β; t)/s(0)(β;
t). The last equality results from the asymptotic property of finite population sampling, i.e.,
the average of a certain quantity based on a random sample selected without replacement
from a finite population converges in probability to its population counterpart. In addition,
equation (A.1) implies that

(A.3)

It follows from the similar conditions and arguments in Lemma 1 of Ying (1993) that

 converges uniformly in t to a nonrandom function within a compact region ℬ of β0.

Moreover, by the asymptotic result of finite population sampling,  converges to the
same limiting function as their population counterpart. Thus, the last two terms of (A.3)
converge to zero uniformly for β ∈ ℬ in view of equation (A.2). This result implies that the
case cohort estimating function N−1Ũφ(β) converges uniformly in β ∈ ℬ to the same
nonrandom function as the full cohort counterpart N−1U φ(β).

B. Normality of N−1/2Ũφ(β0)
It follows from (A.1) that

(B.1)

The integral with respect to the martingale in the second term is no longer a martingale
because the integrand, involving Δi’s, is not a predictable process. However, we may apply
the Skorokhod strong embedding theorem and the Proposition of Kulich and Lin (2000) to
show that the second term converges in probability to zero. Note that the quantity Z ̄ (β0; t)
converges uniformly to v(β0; t) = s(1)(β0; t)/s(0)(β0; t), which is defined in equation (A.2).
The proposition of Kulich and Lin (2000) implies that the case–cohort counterpart Z ̃ (β0; t)

also converges uniformly to the same quantity. Define , we may
write the second term in equation (B.1) as
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By martingale central limit theorem, BN (t) converges weakly to a tight Gaussian process. It
then follows from the same arguments in Kulich and Lin (2000) that

 and  converge in

probability to the same limit . Thus, the second term in (B.1)
converges in probability to zero.

By virtue of (A.2), N1/2{Z ̄ (β0; t) − Z ̃ (β0; t)} converges weakly to a Gaussian process if

 do. Note that  represents
the difference in a certain average between the simple random sample and the corresponding

population counterpart. Also  are monotone in t and bounded if the
covariate vector Z is bounded. It follows from the Proposition of Kulich and Lin (2000) that

 converges weakly to a tight Gaussian process. Combining the
facts that N−1 Λ ̄(.) is a bounded monotone absolutely continuous function and the linear
functional of the Gaussian process is Gaussian, the third term of (B.1) follows a normal
distribution. The first term of (B.1), N−1/2U φ(β0), corresponds to the full cohort counterpart
and is shown to be asymptotical normal. By the characteristic function approach and
extension of Hájek’s (1960) central limit theorem, one can show that the first and third terms
in (B.1) are mutually independent of each other and jointly converge to a normally
distributed random vector. This result also follows from the Proposition 1 of Self and
Prentice (1988). Therefore, N−1/2Ũφ(β0) is asymptotically normal.
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Table 2

Case–cohort analysis of ARIC data with accelerated failure time model

Covariates Estimate SE 95%CI

(a) Gehan weight function

PlA2 Allele (=1 if present) −0.12 0.21 (−0.54, 0.29)

Age −0.07 0.01 (−0.09, −0.05)

Race (=1 if African American) −0.28 0.21 (−0.69, 0.13)

Log(cholesterol) −1.87 0.52 (−2.89, −0.86)

Years of smoking −1.45 0.31 (−2.05, −0.85)

Gender(=1 if female) 1.06 0.11 (0.85, 1.28)

Carotid(=1 if thin) 1.05 0.09 (0.87, 1.22)

(b) Log-rank weight function

PlA2 Allele −0.10 0.25 (−0.59, 0.40)

Age −0.06 0.01 (−0.09, −0.04)

Race −0.24 0.27 (−0.76, 0.29)

Log(cholesterol) −1.88 0.68 (−3.20, −0.55)

Years of smoking −1.24 0.41 (−2.05, −0.44)

Gender 1.02 0.14 (0.75, 1.30)

Carotid 1.02 0.09 (0.85, 1.19)

SE, estimated standard error; CI, confidence interval.
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