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Summary

We propose Bayesian case influence diagnostics for complex survival models. We develop case
deletion influence diagnostics for both the joint and marginal posterior distributions based on the
Kullback-Leibler divergence (K-L divergence). We present a simplified expression for computing
the K-L divergence between the posterior with the full data and the posterior based on single case
deletion, as well as investigate its relationships to the conditional predictive ordinate. All the
computations for the proposed diagnostic measures can be easily done using Markov chain Monte
Carlo samples from the full data posterior distribution. We consider the Cox model with a gamma
process prior on the cumulative baseline hazard. We also present a theoretical relationship between
our case-deletion diagnostics and diagnostics based on Cox’s partial likelihood. A simulated data
example and two real data examples are given to demonstrate the methodology.
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1. Introduction

The importance of identification of influential observations in a statistical analysis is a well-
recognized methodological problem, and the development of diagnostic measures to detect
influential observations is of interest to many researchers. Influential observations in a given
dataset can have a strong impact on statistical inference and conclusions. In these situations,
such influential observations are an important part of the data, and hence require the most
careful examination. A common way of assessing the influence of an observation on model fit
is through case deletion. In Bayesian analysis, the Kullback—Leibler divergence (K-L
divergence) based on case deletion is a measure of discrepancy between the posterior
distributions with and without a particular case, and it is a popular Bayesian diagnostic measure.
Another popular Bayesian diagnostic measure is the conditional predictive ordinate (CPO)
(Gelfand et al., 1992; Geisser, 1993), which is defined as the predictive density of the ith case
given the data without the ith case. A large value of the K-L divergence for the ith case implies
more influence of the ith case on estimation, hypothesis testing, and model fit. A large value
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of CPO for the ith case implies better concordance of the ith case with the rest of the data, and
hence a better model fit.

In Bayesian analysis, considerable research has been done for developing case influence
diagnostics using the K-L divergence under various parametric models (Johnson and Geisser,
1985; Pettit, 1986; Carlin and Polson, 1991; Weiss and Cook, 1992; Peng and Dey, 1995;
Weiss, 1996; Christensen, 1997; Weiss and Cho, 1998). Pettit (1986) suggested the use of the
K-L divergence in detecting influential observations in his review of Bayesian diagnostics.
Carlin and Polson (1991) proposed an expected utility approach using the K-L divergence as
a utility function to define the influence of a set of observations in a parametric modeling
framework, considering the normal linear model and mixed models. Weiss and Cook (1992)
introduced the K-L divergence to assess the divergence between posteriors in the context of
case deletion in generalized linear models. Weiss (1996) and Weiss and Cho (1998) proposed
assessing the influence of case deletion using model perturbations as well as establishing its
relationship to the K-L divergence and CPO. Bayesian influence measures for assessing
marginal posterior distributions have also been developed for the multivariate linear model and
normal random effects models (Johnson and Geisser, 1985; Weiss and Cho, 1998).

Despite the extensive literature on Bayesian diagnostic methods for parametric models, very
little has been developed for semiparametric models, including survival models. Due to the
potential advantages of fitting a vast array of complex survival models posed by modern
survival data, semiparametric Bayesian methodologies in survival analysis have been getting
enormous attention in biomedical research. Bayesian case influence diagnostics for survival
models pose both theoretical and computational challenges, which are discussed here.

The objective of this article is to propose Bayesian case-deletion influence diagnostics for
survival models. First, we develop diagnostic measures to assess the influence of a case on
both the joint and marginal posterior distributions based on the directed K-L divergence. In
this development, we derive a novel and simplified expression for computing the K-L
divergence, which facilitates efficient computation of the proposed diagnostic measures using
Markov chain Monte Carlo (MCMC) samples from full data posterior distribution. This avoids
the burden of sampling from each of the n posterior distributions, each based on deletion of
the ith case, i = 1, ..., n. Second, we apply the proposed methodology to Bayesian survival
models with continuous survival time data. The survival model we consider is the Cox model
with a gamma process prior on the cumulative baseline hazard (Sinha, Ibrahim, and Chen,
2003). In addition, we investigate a theoretical connection between the proposed diagnostics
based on the K-L divergence and CPO, as well as a connection between diagnostics based on
Cox’s partial likelihood.

To mativate the proposed methodology, we consider a well known dataset, the Stanford heart
transplant data (Miller and Halpern, 1982). The dataset contains 184 transplant cases with the
following variables: time measured from the date of the transplant in days; status code (dead
or alive); patient age at first transplant in years; and T5 mismatch score (missing for 27 of the
cases). This dataset has been analyzed by many, illustrating frequentist diagnostic measures
(Pettitt and Daud 1989; Escobar and Meeker, 1992). Here, it is of interest to carry out Bayesian
diagnostic methods not only to compare our results with the frequentist results, but also to
possibly find other influential (or noninfluential) cases not identified by the previous methods.
As shown in Figure 2, our proposed Bayesian diagnostic method identified some cases as
influential in this dataset. More details regarding this example are given in Section 4.2. To
further illustrate the methodology, we also apply the proposed methods to simulated data and
a phase 111 melanoma clinical trial (E1690) discussed in Sections 4.1 and 4.3, respectively.
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The rest of this article is organized as follows. In Section 2, we introduce Bayesian case
influence diagnostics based on the K-L divergence. In Section 3, we derive case influence
diagnostics for the Cox model with a gamma process prior. In Section 4, we examine the
performance of the influence diagnostics using simulated data, the Stanford heart transplant
data, and the E1690 trial. We conclude the article with some discussion in Section 5.

2. The Proposed Method

2.1 General Development

Let D be full data and D_j be the data with the ith case deleted. Let L(#|D) denote the likelihood
based on the full data and L(8|D-;) denote the likelihood based on the data without the ith case.
The posterior distributions for the full data and the ith case deleted can be defined as p(#|D) o
L(BD)x(p) and p(B|D—j) & L(BD—)=(B), respectively, where z(f) is the prior distribution of
B. A typical choice of () is a Np(uo, Xo) distribution or a uniform improper prior.

Let K(P, P_;) denote the K-L divergence between P and P_;, where P denotes the posterior
distribution of g for the full data, and P_; denotes the posterior distribution of g without the
ith case. Specifically,

_ (BID)
K(P.P_)=[ 1’(3|D)1°g{p1w|1)_,->}d'3' ()

K(P, P—;) thus measures the effect of deleting the ith case from the full data on the joint posterior
distribution of #. Note that K(P, P—;) # = K(P—;, P) in general. After some algebra, as shown
in Web Appendix A, we can derive a simplified expression for K(P, P_;) as follows:

K(P,P_)=logEs | {2521D)|

+E1og { 75575 1D @

where Eg [|D] represents the expectation with respect to the joint posterior distribution of g
given D. Equation (2) enables us to compute K(P, P_;) fori=1 ... n, using only samples from
the full data joint posterior distribution of g. Therefore, equation (2) implies that we completely
avoid sampling from p(#|D—;) for the computation of K(P, P_;), and this saves us enormous
computational time and effort.

Now suppose that interest lies in assessing the influence of the ith case on the subset £, of the
parameter vector f = (81, B2). Weiss and Cho (1998), Weiss (1996), and Weiss and Cook
(1992) pointed out that if the goal of an analysis is to assess the influence of the ith case on the
marginal posterior distribution of £, then using the joint posterior of (#1, f,) to assess this
influence may overstate the influence. Hence, in these settings, we need to consider the
influence of a case using the marginal posterior distribution of g.

We can express the marginal influence diagnostics of Weiss and Cho (1998) based on the
directed K-L divergence as

K(P1,p1A_,~)=fp1(ﬂ1ID)10g{Iff}}’f’;igf)}dﬂl, @)
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where p1(f1|D) = [ p(81, f2|D) dB,. The marginal K-L divergence, K(P1, P1-i), in(3) measures
the effect of deleting the ith case from the full data on the marginal posterior distribution of
P1. Using similar derivations as in (2), we can obtain a simplified expression for K(P1, P1 )
as follows:

K(Py,Py_)=logEg | “E521D)

~Ep, |log [ 2550 p(5,181.D)dBID)| “

where p(82|81, D) = p(81, B2|D)/I p(B1, B2|D) dp, and f WD p(B>|B1.D)dp, can be evaluated as
Ep, [ “E521B1.D 1

L(BID)

Following McCulloch (1989), calibration of K(P, P_;) can be done by solving for p; such that
K(P, P-j) = K(B(0.5), B(p;)) = —log{4pi(1 — pi)}/2, where B(p) denotes the Bernoulli
distribution with success probability p. This implies that describing outcomes using p(#|D-;)
instead of p(#|D) is compatible with describing an unobserved event as having probability p;
when the correct probability is 0.5. After calculating K(P, P—;) from (2), we can compute p;

using p;=0.5[ 1+ +/1 — exp{—2K(P,P_)}] . This equation implies that 0.5 < p; < 1. p; » 0.5
implies that the ith case is influential, because deleting the ith case changes the posterior
distribution as much as describing an observed event as having probability p; when the correct
probability is 0.5. In this article, we use pj as the calibration of K(P, P—;) in all of the examples.

2.2 Independence Model

As an illustration, we consider the proposed diagnostic method for the independence model.
Suppose that given g, y;, i =1, 2, ..., n are independent response variables, not subject to

censoring. Then the full data likelihood is L(ﬂlD)=l_[Z:lf0’k|/3), where f(yy|8) is the density of

yi and the likelihood without the ith observation is L(5|D—i)=nk:1_k¢i/'@k|'3). Therefore, L(f]
D)/L(BID-j) = f (i) and the CPO is given by CPO; = [E4[{f(yil8)} D] (Gelfand et al.,
1992).

Using (2) and the above results, we can therefore show that

K(P,P_;) =logEg[{f(yilB)} ' ID1+Es[loglf(ilB}D]
= — log(CPO;)+Eg[log{fyi|B)}ID]. )

Similarly, using equation (4) we can obtain K(P1, P1 ) for the influence of the ith case on the
marginal posterior distribution of #1 and its connection with CPO as follows:

K(P1, Pi-i)
= logEg[{/(vilB)}'ID]
~Eg, [log [1/G1B)} ' p(BalB1.D)dBID]
= —log(CPO) ~ Eg, [log [/ ilB)}' p(BalBr. D)D) ©

where (82|81, D) = p(B1, B2ID)/] p(B1, B2D) dB2 and Hf(yilA)} *p(B2lB1. D) dB; can be
evaluated as Eﬂz[{f(yi|/)’)}*1|/)’1, D]. Because equations (2) and (4)—(6) are expressed as posterior
expectations with respect to the full data posterior distribution, they can be easily calculated
using only MCMC samples from the full data posterior distribution of g.

Biometrics. Author manuscript; available in PMC 2009 April 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Choetal.

Page 5

3. Cox Model with Gamma Process Prior

3.1 Model

In the Cox proportional hazards model (Cox, 1972), the gamma process is a very commonly

used nonparametric prior process for the cumulative baseline hazard (Kalbfleisch, 1978). The
full data are denoted as D = {y, d, X}, where y = (Y1, ¥, ..., Yn)’ denotes the observed survival
times, where y; may be right censored. We assume that the survival times are all distinct and

ordered, i.e., 0 <y1 <ys < - <y, < 0. = (d1, d9, ..., dy)’ is an indicator vector with 6; = 1 if

the ith subject failed, and d; = 0 if the ith subject was right censored. Also, X is an n x p matrix
of covariates with ith row x/, and D_; = {yj, -j, X_i} denotes the data with the ith subject (i.e.,
(Vi, 0i, x7)) deleted from D. The hazard function is given by a(y;|x;)=ho(y:)exp(x;3), where f is
the p x 1 vector of unknown regression coefficients, and hg(.) is an unknown baseline hazard
function.

Under the Cox model, the joint probability of the survival of n subjects is given by

P(Y>y|B.X,Hp)=exp {— Ho(yk)eXp(XZﬂ)} 5

k=1 (7)

where Hy(y) is the cumulative baseline hazard (Ibrahim, Chen, and Sinha, 2001). We take
Ho ~ GP (cH *(:), c), where GP denotes gamma process, H*(y) is a known differentiable
parametric function that represents a parametric guess for the cumulative baseline hazard
Ho(y), and ¢ = 0 is a confidence parameter. H*(y) is thus the mean of the process. Letting hy
= Ho(yx) — Ho(Yk-1), we take hy ~ Gamma(chgy, ¢), the hy’s are independent, where hgy =
H"(yx) — H"(Yx—1) and Gamma(a, 1) denotes the gamma distribution with mean a/A(a > 0 and
A>0).

The marginal likelihood function of g can now be written as follows (Ibrahim et al., 2001;
Sinha et al., 2003):

L(BID)= kllek(BlD)
& " (x;B)
= k];[lexp [L'H‘(yk)log{l - eiﬂ;‘kﬂ }J

WA | |
xl—ch (yk)log{l _ o0y }J :

where i 0)=%H *(y),Ak=Z[€R(yk)eXP(x,'uB), and ®.(y,) = {l: y; > yi} is the set of subjects at risk
at time yy.

We now derive the likelihood function without the ith subject. If yi <y; then the risk set at time
yk involves the ith subject, otherwise, the risk set at yx does not involve the ith subject.
Therefore, after deleting the ith subject, the risk set changes to ® (yy) = {I: y; = yi, | # i} for
k <i. As the risk set changes, the corresponding Ay in the denominators of (8) changes to Ay —
exp(x'iB) for k <'i, whereas for k > i, the risk set and Ay remain the same (see Web Appendix
A for details). Hence, the likelihood function without the ith subject is given by
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L(ﬂID i)
_HLk ,(ﬁ’ID) H Li(BID)

k=i+1
. exp(x;3)
= I:[exp ch (yk)log{ - m}]

i) ||
x| et otog {1 - Bl |

n . exp(x’B)
xAHlexp[cH (yk)log{ - *jjj;f’ }J
k=i+

% X] )
x[—ch‘(yk)log {1 B L. }] .

9

The posterior distributions based on the full data and the data without the ith subject are thus
given by p(p|D) o L(B|D)z(p) and p(B|D—j) o L(B|D—j)x(p), respectively.

3.2 Diagnostic Measures

For the Cox model in general, the likelihood function cannot be written as a product of n
independent terms because the risk set for the kth subject involves observations other than the
kth subject. Because of this dependency, we use (8) for the likelihood function. Another
advantage of (8) is its computational feasibility. Because the hazard, hy, has been integrated
out from (8), itis only a function of g. Therefore, sampling the h’s is not necessary for Bayesian
inference and diagnostics, and thus only samples from the posterior distribution of g are needed.

After some algebra, the ratio of likelihoods for the full data and the data without the ith subject
can be written as L(#|D)/L(8|D—;) = gi(#)L;(#|D). Thus, we can get a simplified expression for
computing the influence of the ith subject on the joint posterior distribution of £ as follows:

K(P,P_)=logEgl {g:(BLBID)} "D}
+Ep(log{g:(B)Li/(BID)}D]
= —log(CPO)+Eg[logLi(BID)|D]

+log[ Egl {g:(B)} ' D11+ Egl loggi(B)ID]. (10)

where

LipID)=exp | et log(1 - 22|

ol l_exp(xm]
x| et log(1 - 2252 )

i—1 i—1
gf(ﬁ)=ﬂk:,Lk(ﬁlD)/nk:lLk.—f(ﬂlD), which can be simplified as

i—1 Hx(y .
exp(xB) | k) exp(x; ) Ok
I_[[l - L'+A‘k J _log 1 - L‘+A‘k

exp(yp) |00 expp) | |%*
1—”1 c+Ar—exp(¥, ﬁ)J —log )1 - c+Ar—exp(Xp)

&i(B)=-

(12)
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In addition, CPO; can be written as,

Egl{2:(3)) 1D
CPO,~ 8[{gi(B)} I,]l .
Egl{gi(B)L;(BID)} " |D] (13)

Because (10) is expressed as a posterior expectation with respect to the full data, computation
of (10) can be done using MCMC samples from the full data posterior p(f|D). The samples
from p(p|D) can be easily obtained using adaptive rejection Metropolis sampling (ARMS;
Gilks, Best, and Tan et al., 1995) within Gibbs. Specifically, we have

K(P,P_)=log ;ﬁl{g,-(ﬂ‘”)Lf(ﬂ(f)ID)}*'
fa

J . .
+1 ¥ log{gi(B)Li(B|D)},
J=1 (14)

and
2 1
7218}
cPO=—
33 (B LD
J=1 (15)
where J is the number of Gibbs samples after burn-in and Y= (lj), 5043 ;,j))’ is the jth Gibbs

sample,j=1, ..., J.

Similarly, we obtain

K(P1,P1-i)

=logEg[ {g/(BL/BID)} ' |D]

~Ep, [log [1g:(ALBID) ' p(BalB1.D)dBoID)
= — log(CPO;)+logEg| {g:(8)}~'ID]

~Ep, [1og [1BLAD) ™" p(B21B1.D)dB D). o)

Monte Carlo evaluation of Eg, [log Hai(B)Li(BID)} 1 x p(B,|p1, D) dp,|D] in (16) can be
obtained using the following steps:

Step 1: We use Gibbs sampling to obtain the samples 8=(8'” 8") for j = 1, ..., J from p(8]
D) and record (8", ... ,8") as J Gibbs samples from the marginal posterior of g1, p1(81/D).

Step 2: We use Gibbs sampling to obtain the samples ﬁ("):(ﬂ(l")ﬂ(z")) forr=1, ..., R from p(f|
D) and record (8)",.... ,85) as R Gibbs samples from the marginal posterior of g, given 1, p

(82|81, D).
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Step 3: For each 5}, use A as nested Gibbs samples from p(82|8'” D) to get the Monte Carlo
approximation of Eg, [log [{gi(8)Li(8ID)} 'p(B2lB1, D) dpID] as
 § R . R 4 E _
b loel 1) (eiB BB B D)

Note that the Gibbs samples in the first and second steps need to be sampled independently.
Now, we can get the MCMC approximation of (16) as

K(Py,P1-)
J s o . 1
7 2 (88 BLBY B 1D)) |

Jj=1

=log

] S ) or N or =l

After computing K(P, P_;) or K(P1, P1 ;) for all subjects, we can plot K(P, P_;) or K(P1,
P1 ;) across subjects to identify influential cases.

Because K(P, P_;) measures the effect of deleting the ith case on the joint posterior distribution
of , it can be viewed as a Bayesian analogue of the likelihood displacement (LD), as discussed
in Cook and Weisberg (1982), and Cook (1986). Specifically, for the Cox model, K(P, P_;) is
comparable to the LD based on partial likelihood, which is available in SAS ver si on

9. 1. 3. For more on LD for the Cox model, see Pettitt and Daud (1989). In addition, a limiting
expression for K(P, P_;) based on model (8) provides a method for computing K(P, P_;) under
Cox’s partial likelihood. The detailed derivations are given in Web Appendix A. Moreover, it
can be shown that K(P1, P1 —;) can be approximated by a quadratic form in the weighted score
residuals upon a Taylor’s series expansion. However, detailed derivations of these results are
beyond the scope of this article and will be reported elsewhere.

4. lllustrative Examples

In this section, we illustrate our methodology with simulated data and two real datasets.

4.1 Simulated Data

To examine the performance of the proposed diagnostics measures, we considered simulated
datasets with one or more of the generated cases perturbed. The covariate xj1, i =1, ..., n, was
generated from a N(30, 4) distribution and standardized for numerical stability. An additional
covariate, Xjp, was independently generated from a Bernoulli(0.5) distribution. The failure time
T; was generated from an exponential distribution with hazard rate 4;, where 4; = exp(8g +
B1Xi1 + BoXip) with g =1, f1 =—0.5, and S, = 2, and the censoring time C; was generated from
an exponential distribution with 1 = 2.56, where Tj and C; were assumed independent. The
survival times yj, i = 1, ..., 150, were taken as y; = min(T;j, C;), i was the censoring indicator
equal to 1, if T; < C;, and 0, if T; > C;. In the simulated data, y; ranged from 0.000008 to 0.8269
with median = 0.0553, mean = 0.1045, and standard deviation = 0.1321, whereas A; ranged
from 1.11 to 58.79 with median = 5.97, mean = 12.89, and standard deviation = 13.28. The
observed censoring rate was 32%.

We selected cases 10, 59, and 62 for perturbation. To create influential observations in the
dataset, we choose one or two of those selected cases and perturbed the survival time (y;), the
covariate (Xj1), or both the survival time and the covariate of the chosen case(s). Detailed
descriptions regarding the perturbations are given in Table 1 and Web Appendix A. In Table
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1, dataset (a) denotes the original simulated dataset with no perturbation and datasets (b)—(0)
denote datasets with perturbed case(s) added by the perturbation schemes (I)-(VI).

We fit the gamma process model of Section 3 with an exponential H*(y) = 2.7y. We chose a
noninformative prior distribution for g as N,(0, 10°1). We used ARMS within Gibbs to obtain
posterior samples. After burn-in, 40,000 MCMC posterior samples were used in the analysis.
The proposed joint and marginal K-L divergences, K(P, P_;) in (10), K(P1, P1 —j), K(P2,

P, ;) in (16), and calibrations of those divergences were computed for the simulated data with
and without perturbation of the cases. We used p; in Section 2.1 to compute the calibrations of
K(P, P-j), K(P1, P1 i), and K(P2, P2 —j). We monitored convergence of the Gibbs chain using
the method proposed by Geweke (1992), as well as trace plots. We conducted sensitivity
analyses using ¢ = 0.01, 0.1, 1, 10, and 100. For brevity, we present results for only the low
confidence value of ¢ = 0.01. For the computation of K(P1, P1 —;) and K(P», P2 —;), we used
every fifth sample from the 40,000 MCMC posterior samples to reduce the autocorrelations
and yield better convergence results.

Table 1 shows that the posterior inferences are sensitive to the perturbation of the selected case
(s). Overall, the inferences are most sensitive to the perturbation of both the survival time and
the covariate. Because we used noninformative priors on g and ¢ = 0.01, the posterior estimates
were similar to the maximum likelihood estimates based on partial likelihood. The results
regarding the diagnostics showed that K(P, P_;), as well as K(P1, P1 —j) and K(P, P2 ),
changed very little for the nonperturbed cases, whereas they changed a lot for the perturbed
case(s).

The results in Table 2 show that before perturbation (dataset [a]), all of the selected cases are
not influential, each providing a small K(P, P—;) with its calibration close to 0.5. However,
after perturbation (datasets [b-o]), K(P, P—;) for those perturbed cases increased a lot and the
corresponding calibrations become much larger than 0.5, indicating those cases are influential.
Specifically, perturbing both the survival time and the covariate of a case increases K(P, P—;)
a lot. For example, K(P, P—;) (and its calibration) for case 10 in dataset (h) is increased from
0.0006 (0.5168) to 5.8040 (1). We also note that the perturbed cases are similarly identified as
influential using the LD based on partial likelihood. Moreover, Figure 1 clearly shows that K
(P, P—j) performed well for identifying influential case(s) in each dataset providing larger K
(P, P—;) for the perturbed case(s) compared to the other cases.

Moreover, in Table 1, we observe that perturbing the survival time of a case had influence on
the posterior estimates of both 1 and 2, whereas perturbing the covariate (x;) of a case alone
had more influence on the estimates of 1, corresponding to the perturbed covariate. We see
that K(P1, P1 —j) and K(P, P2 ;) in Table 2 describe these marginal influences well.
Specifically, both K(P1, P1 i) and K(P2, P, ;) increase for the perturbation of the survival
time, whereas K(P1, P1 ) increases relative to K(P2, P, ;) for the perturbation of the covariate
(xq). For example, perturbing the survival time of case 62 in dataset (d) increases K(P1, P1 —j)
and K(P2, P2 _j) from 0.0107 to 1.3214, and 0.0036 to 1.7394, respectively, whereas perturbing
the covariate (x;) of case 62 in dataset (g) increases K(P1, P1 —j) and K(P, P2 ;) from 0.0107
to 2.4073, and 0.0036 to 0.0618, respectively.

Although there may be masking effects when there is more than one perturbed case (datasets
[k=o0]), K(P, P—;) identifies the influential cases by providing a larger K(P, P—;) and its
calibration compared to the other cases. In addition, K(P1, P1 —j) and K(P2, P2, ;) also describe
the influence of the cases on posterior inference regarding 41 and £, respectively. However,
the magnitude of the measures become much smaller and the existence of an extremely
influential case may mask the influence of other cases. This is not surprising because the
proposed diagnostics are based on single case deletion.
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Overall, the proposed joint and marginal influence diagnostic measures, K(P, P—j), K(P1,
P1 i), and K(P2, P, ;) performed well for identifying influential cases as well as describing
the influence of a case on posterior inference.

4.2 Stanford Heart Transplant Data

To further illustrate the proposed methodology, we revisit the Stanford heart transplant data
discussed in Section 1. Escobar and Meeker (1992) used 184 transplant cases to identify
influential cases using an accelerated failure time lognormal regression model. We used the
same dataset here with some minor modifications and identified influential cases using the
proposed methodology. Of the 184 cases, 71 cases were right censored. The covariate included
in this analysis was age (x;) (mean = 41.09 and standard deviation = 11.036) as well as a
quadratic term of age (x»). Similar to Miller and Halpern (1982) and Escobar and Meeker
(1992), the T5 mismatch score covariate was not used in this analysis due to its non-
significance. For numerical stability in MCMC sampling, we standardized age and divided
survival time by 365 to make time in years instead of days.

We fit the gamma process model of Section 3 with H*(y) = 0.35y, ¢ = 0.01 and ¢ = 100. We
chose a noninformative prior distribution for # = (81, 2) as N2(0, 1061). MCMC computations
were done similarly as described in Section 4.1, and 14,000 MCMC posterior samples were
used in this analysis after burn-in. The posterior means (standard deviations) and 95% highest
posterior density (HPD) intervals for g were: For ¢ = 0.01, 0.4588 (0.1134), and (0.2404,
0.6830) for 1, and 0.2323 (0.0841) and (0.0650, 0.3949) for f3,; For ¢ = 100, they were 0.3793
(0.1068) and (0.1746, 0.5916) for 1, and 0.1117 (0.0766) and (—0.0385, 0.2606) for f3,.

Table 3 shows subjects having large K(P, P_;) and calibration values compared to the other
subjects in the dataset. For both small and large c, case 74 was identified as the most influential,
having K(P, P_;) (calibration) = 0.1539 (0.7573) for ¢ = 0.01 and K(P, P_;) (calibration) =
0.1818 (0.7761) for ¢ = 100. Cases 159, 119, and 139 were also identified as influential. In
addition, we identified cases 160, 108, and 133 as somewhat influential compared to other
cases in the dataset for both small and large c. Figure 2 shows a plot of K(P, P_;) for all the
cases using ¢ = 0.01. Upon examination of these cases, it appears that these cases are influential
due to low values of the covariate age, and because there were not many low age cases.
Specifically, cases 159, 139, 160, 108, and 133 had small failure times in spite of their low age
values. An analysis using the LD based on partial likelihood showed that cases 74, 159, 119,
and 139 were also identified as influential. In addition, our analysis identified similar cases as
being influential as in Escobar and Meeker (1992), in which they identified influential cases
using either case weight perturbations (patient number: 21, 74, 119, 133, 159, 160) or response
perturbations (patient number: 18, 21, 133, 139, 159) based on an accelerated failure time
lognormal regression model. Although a different model than ours was being fit, we used the
results in Escobar and Meeker (1992) as a benchmark for the proposed Bayesian methodology
to examine whether the proposed Bayesian methodology was at least consistent and yielding
results in the same direction as commonly used frequentist methodology. We note that we used
patient number as case humber whereas Escobar and Meeker (1992) used case humber sorted
by age.

4.3 Melanoma Data

As a further demonstration of the proposed methodology, we considered a phase 111 clinical
trial, labeled E1690 (Kirkwood et al., 2000). The trial evaluated the efficacy of interferon
alfa-2b therapy on melanoma patients. The dataset consisted of 427 patients. The response
variable was relapse-free survival time in years. The covariates included in this analysis were
age, treatment, sex, and performance status. For details, see Web Appendix B. We fit the
gamma process model of Section 3 with H*(y) = 0.26y and ¢ = 0.01. We chose a noninformative
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prior distribution for g as N4(0, 10%1). MCMC computations were done similarly as described
in Section 4.1.

For the E1690 data, we did not find any highly influential cases. The K(P, P_;) was smaller
than 0.034 for all cases and the corresponding calibrations were not much larger than 0.5 (Web
Figure 1). However, cases 16784, 16074, 16179, 16109, 16221, and 16504 had larger K(P,
P_;) compared to the other cases (Web Table 1). Specifically, case 16784 (K(P, P—;) = 0.0338,
calibration = 0.6279) and case 16074 (K(P, P—j) = 0.0303, calibration = 0.6213) were identified
as the most and the second-most influential cases compared to the other cases. After an
investigation as to the reason why these identified cases were more influential than others, we
found that the identified cases had longer relapse-free survival time (although they were
censored) in spite of their large ages compared to other cases having moderate performance
status. The marginal influence for the individual f;’s showed that the identified observations
were more influential on posterior inference of 4, which corresponds to the performance status
covariate, compared to the other covariates (Web Table 1).

5. Discussion

We have proposed Bayesian case influence diagnostics using the Kullback-Leibler divergence
for survival models. We have provided simple computational formulas for computing case
influence on both the joint and marginal posterior distributions using MCMC techniques. We
have only considered diagnostics based on single case deletion. This can be easily expanded
to deletion of more than a single case or subsets of cases. In principle, this methodology can
also be applied to any regression model by specifying the ratio of likelihoods with full data
and data with a single case (or subset of cases) deleted. We have presented the full development
for survival models here for focus and clarity of exposition.

The issue of what to do in a statistical analysis once an influential observation has been detected
is a huge issue with no easy answer. Most researchers in this area recommend that (i) analyses
with and without the influential case should be clearly reported, indicating differences in point
and interval estimates, as well as variance estimates, and (ii) if one seeks remedies to the
problem, three strategies are typically mentioned: one can transform the data, reparameterize
the model, or fit a new model all together. Remedies for influential observations is a very large
research area on its own.

Supplemental Materials

Refer to Web version on PubMed Central for supplementary material.
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Figure 2.
K(P, P—j) for the heart transplant data with ¢ = 0.01.

Biometrics. Author manuscript; available in PMC 2009 April 1.




Page 15

Choetal.

29 91eLIEA0D
9022’0 ¥€0S'T 81900 84870 60220 ¢6LY'T 9900 968T°0— 0T awn [eAIAINS 0 IN
29 a1elIeA0D
6.0 06¢8'T ¢/S0°0 66810— €9¥C0 8G6.'T 89500 T16T°0- 69 9JelleA0D u
69 8lelieA0D
6.¥2°0 6¢S8'T 90900 G8EC0- T.¥20 18T8'T T090°0 T0VZ 0- 0T 8lellen0dd w N
29 LN [BAIAINS
6vTC0 9v9E'T 9¢0T'0 L2l 0- ¥ST20 ITVeE'T T20T0 L192°0— 0T awn [eAIAINS |
69 awn [eAlIAINS
29120 0.8€'T TS0T°0 PASTA SN §S1C0 919€'T 9¥0T'0 961€°0— 01 awn [eAlrIng A Al S9SED OM |
31e1IeA0d pue
¥9¢2°0 86TG'T T.S0°0 TL00°0— G620 EVer'T ¥.50°0 6600°0— 29 awn [eAlIAINS [
91e1IeA0d pue
€9¢2°0 §S0S'T L0900 15¢0°0— L¥2c0 6T87'T 60900 62¢0°0— 69 awn [eAIAINS !
31e1IeA0D pue
¥1¢¢'0 661S'T ¥950°0 1900°0— 65¢C0 8961'T 99500 9800°0— 01 awn [eAlrIng Yy 1]
S7AZA) 0298'T €190°0 06€2°0- 89¥2'0 08¢8'T 07900 €IV 0- 9 9lelIeA0D 6
€870 €998'T §590°0 1¢9¢°0— [7A7A 62€8'T 75900 0€92°0— 69 8lellen0dd )
80620 G/26'T €0L0°0 ¢8re0— 06¥¢'0 9168'T €0L0°0 08ve'0- ()2 9JelleA0D 3 1
6120 08eS'T LEOT'O 6T9€°0— T16TC0 9CTS'T 9€0T'0 €9G€°0— 29 awn [eAIAINS p
6¢¢C0 8€09'T 060T°0 €8YY'0— 6TCC0 G9/9°T T60T°0 [ 2d0 69 awn [eAlIAINS 2
L6120 96¢S'T 02010 Yeye0- T61C°0 €00S'T 6T0T°0 §GEE0- 01 awn [eAlrIng q | 95eJ 3UO
L9S2°0 87€0°¢C L.0T°0 TIvS0- S¥S20 G766'T ¢80T'0 ¢6¢S°0— SUON ejep [eulblo e uoneqginuad oN 3UON
aseo
Jagwinu paganyiad
ased uolyeganiiad saweu awayds J0
as uesiy as UBs|N EN 3N 3s ERIA paganyisd lesered uoljeqiniisd J3qUINN

&4

S9)ew!]ss 101491s0d

S91BWIISA POOY1[3X1] WNWIXRIA|

NIH-PA Author Manuscript

TO'0 = 9 ylim elep paje|nwiis ayl 10} suoljelAnsp pJepuels pue sueswl 10113]S0d
T alqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Biometrics. Author manuscript; available in PMC 2009 April 1.



Page 16

Choetal.

"uoleIqI[ed SIUasaldal "eD Jey S10N

6890 §890°0 59260 Tv6T'T 1960 €58T'T 29/80 29

9960 65660 €T¥8'0 9€TE0 90860 818271 8990°'T o1 0 IA

29290 6000 10260 81190 ¥926'0 66190 1v2L0 29

61250 07000 88280 €€82°0 L¥E80 12620 16110 65 u

20190 6v20°0 72160 YITTT 01260 0T60°T T2TT 65

Z5v50 Tv00°0 0290 08900 11290 12900 100 (1) w A

12280 18920 TT18°0 80 060 6EVS0 €990 29

8280 2820 12880 7262°0 6.16°0 86650 €L18°0 01 I

508.°0 06810 21550 99000 006.°0 15020 998€°0 65

28180 evzro 8060 86v50 L1960 v156'0 €T o1 b Al

880 Zzee0 00007 vr6Y'S 0000'T §652°9 8128°€ 29 [

29260 S8v9'0 0000°T EEVT'S 0000'T 62879 9068°€ 65 !

SET60 6550 00007 1688'S 00007 0v08'S 65v9°E o1 u m

1890 87900 08660 €L0V'T 98660 9685°C vv90°Z 29 b

ZvoL0 11100 8660 65752 866°0 95652 Zvee'T 65 3

0650 09700 6v86°0 6607'T 91860 PYIeT T716°0 (1) ] I

22660 v6ELT 67860 Y121 666°0 1520°€ 16.6'T 29 p

29860 LESK'T 1680 6.8v°0 86860 Sv09'T 208T'T 65 o

5966°0 85€T'Z €660 SL18°T 6660 5900°€ 9v66'T o1 q I

1250 98000 12150 10700 96150 60700 0200 29

81150 £000°0 06050 20000 19050 10000 10000 65

50250 80000 99250 #1000 89750 90000 60000 o1 e uoneginued oN
e (QEERN ‘1ed (GRERN ‘1ed ("d ‘' an Jaquinu ased salweU Jeseleq W8S UolegN1Iad

aouanfyul [eulbaey

ERTELITIIR ULy

NIH-PA Author Manuscript

¢ dlqel

elep pale|nwWIs ay) Jo) sonsoulelp adusnjiul aseDd

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Biometrics. Author manuscript; available in PMC 2009 April 1.



Page 17

Choetal.

"uoleIqI[ed SIUasaldal "[eD Jey S10N

S819°0 68200 S¥19°0 0,200 12 peeq 1 €eT
9T€9°0 65€0°0 11290 €0€0°0 6T peaq o 80T
11290 LEE0'0 61290 L0E0'0 0z peeq S 091
6669°0 1,800 §859'0 0€50°0 14 pead 98 6€T
81.9°0 82900 8589°0 €7.00 T NIy 91T 61T
201L°0 €160°0 €669°0 G980°0 €1 peeq 01 65T
19120 818T'0 €LGL°0 6EST'0 ST BV 9002 vl

‘1ed ("d ‘1ed (d ‘dM aby sne1s (shep) awnL "ou JusIed

00T =9

100="9

uonealnuapi ased

NIH-PA Author Manuscript

elep Jue|dsues) 1eay ay) Jo) sonsoulelp adusnjiul ased

€9lqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Biometrics. Author manuscript; available in PMC 2009 April 1.



