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Summary
We propose Bayesian case influence diagnostics for complex survival models. We develop case
deletion influence diagnostics for both the joint and marginal posterior distributions based on the
Kullback–Leibler divergence (K–L divergence). We present a simplified expression for computing
the K–L divergence between the posterior with the full data and the posterior based on single case
deletion, as well as investigate its relationships to the conditional predictive ordinate. All the
computations for the proposed diagnostic measures can be easily done using Markov chain Monte
Carlo samples from the full data posterior distribution. We consider the Cox model with a gamma
process prior on the cumulative baseline hazard. We also present a theoretical relationship between
our case-deletion diagnostics and diagnostics based on Cox’s partial likelihood. A simulated data
example and two real data examples are given to demonstrate the methodology.
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1. Introduction
The importance of identification of influential observations in a statistical analysis is a well-
recognized methodological problem, and the development of diagnostic measures to detect
influential observations is of interest to many researchers. Influential observations in a given
dataset can have a strong impact on statistical inference and conclusions. In these situations,
such influential observations are an important part of the data, and hence require the most
careful examination. A common way of assessing the influence of an observation on model fit
is through case deletion. In Bayesian analysis, the Kullback–Leibler divergence (K–L
divergence) based on case deletion is a measure of discrepancy between the posterior
distributions with and without a particular case, and it is a popular Bayesian diagnostic measure.
Another popular Bayesian diagnostic measure is the conditional predictive ordinate (CPO)
(Gelfand et al., 1992; Geisser, 1993), which is defined as the predictive density of the ith case
given the data without the ith case. A large value of the K–L divergence for the ith case implies
more influence of the ith case on estimation, hypothesis testing, and model fit. A large value
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of CPO for the ith case implies better concordance of the ith case with the rest of the data, and
hence a better model fit.

In Bayesian analysis, considerable research has been done for developing case influence
diagnostics using the K–L divergence under various parametric models (Johnson and Geisser,
1985; Pettit, 1986; Carlin and Polson, 1991; Weiss and Cook, 1992; Peng and Dey, 1995;
Weiss, 1996; Christensen, 1997; Weiss and Cho, 1998). Pettit (1986) suggested the use of the
K–L divergence in detecting influential observations in his review of Bayesian diagnostics.
Carlin and Polson (1991) proposed an expected utility approach using the K–L divergence as
a utility function to define the influence of a set of observations in a parametric modeling
framework, considering the normal linear model and mixed models. Weiss and Cook (1992)
introduced the K–L divergence to assess the divergence between posteriors in the context of
case deletion in generalized linear models. Weiss (1996) and Weiss and Cho (1998) proposed
assessing the influence of case deletion using model perturbations as well as establishing its
relationship to the K–L divergence and CPO. Bayesian influence measures for assessing
marginal posterior distributions have also been developed for the multivariate linear model and
normal random effects models (Johnson and Geisser, 1985; Weiss and Cho, 1998).

Despite the extensive literature on Bayesian diagnostic methods for parametric models, very
little has been developed for semiparametric models, including survival models. Due to the
potential advantages of fitting a vast array of complex survival models posed by modern
survival data, semiparametric Bayesian methodologies in survival analysis have been getting
enormous attention in biomedical research. Bayesian case influence diagnostics for survival
models pose both theoretical and computational challenges, which are discussed here.

The objective of this article is to propose Bayesian case-deletion influence diagnostics for
survival models. First, we develop diagnostic measures to assess the influence of a case on
both the joint and marginal posterior distributions based on the directed K–L divergence. In
this development, we derive a novel and simplified expression for computing the K–L
divergence, which facilitates efficient computation of the proposed diagnostic measures using
Markov chain Monte Carlo (MCMC) samples from full data posterior distribution. This avoids
the burden of sampling from each of the n posterior distributions, each based on deletion of
the ith case, i = 1, …, n. Second, we apply the proposed methodology to Bayesian survival
models with continuous survival time data. The survival model we consider is the Cox model
with a gamma process prior on the cumulative baseline hazard (Sinha, Ibrahim, and Chen,
2003). In addition, we investigate a theoretical connection between the proposed diagnostics
based on the K–L divergence and CPO, as well as a connection between diagnostics based on
Cox’s partial likelihood.

To motivate the proposed methodology, we consider a well known dataset, the Stanford heart
transplant data (Miller and Halpern, 1982). The dataset contains 184 transplant cases with the
following variables: time measured from the date of the transplant in days; status code (dead
or alive); patient age at first transplant in years; and T5 mismatch score (missing for 27 of the
cases). This dataset has been analyzed by many, illustrating frequentist diagnostic measures
(Pettitt and Daud 1989; Escobar and Meeker, 1992). Here, it is of interest to carry out Bayesian
diagnostic methods not only to compare our results with the frequentist results, but also to
possibly find other influential (or noninfluential) cases not identified by the previous methods.
As shown in Figure 2, our proposed Bayesian diagnostic method identified some cases as
influential in this dataset. More details regarding this example are given in Section 4.2. To
further illustrate the methodology, we also apply the proposed methods to simulated data and
a phase III melanoma clinical trial (E1690) discussed in Sections 4.1 and 4.3, respectively.
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The rest of this article is organized as follows. In Section 2, we introduce Bayesian case
influence diagnostics based on the K–L divergence. In Section 3, we derive case influence
diagnostics for the Cox model with a gamma process prior. In Section 4, we examine the
performance of the influence diagnostics using simulated data, the Stanford heart transplant
data, and the E1690 trial. We conclude the article with some discussion in Section 5.

2. The Proposed Method
2.1 General Development

Let D be full data and D−i be the data with the ith case deleted. Let L(β|D) denote the likelihood
based on the full data and L(β|D−i) denote the likelihood based on the data without the ith case.
The posterior distributions for the full data and the ith case deleted can be defined as p(β|D) ∝
L(β|D)π(β) and p(β|D−i) ∝ L(β|D−i)π(β), respectively, where π(β) is the prior distribution of
β. A typical choice of π(β) is a Np(μ0, Σ0) distribution or a uniform improper prior.

Let K(P, P−i) denote the K–L divergence between P and P−i, where P denotes the posterior
distribution of β for the full data, and P−i denotes the posterior distribution of β without the
ith case. Specifically,

(1)

K(P, P−i) thus measures the effect of deleting the ith case from the full data on the joint posterior
distribution of β. Note that K(P, P−i) ≠ = K(P−i, P) in general. After some algebra, as shown
in Web Appendix A, we can derive a simplified expression for K(P, P−i) as follows:

(2)

where Eβ [·|D] represents the expectation with respect to the joint posterior distribution of β
given D. Equation (2) enables us to compute K(P, P−i) for i = 1 … n, using only samples from
the full data joint posterior distribution of β. Therefore, equation (2) implies that we completely
avoid sampling from p(β|D−i) for the computation of K(P, P−i), and this saves us enormous
computational time and effort.

Now suppose that interest lies in assessing the influence of the ith case on the subset β1 of the
parameter vector β = (β1, β2). Weiss and Cho (1998), Weiss (1996), and Weiss and Cook
(1992) pointed out that if the goal of an analysis is to assess the influence of the ith case on the
marginal posterior distribution of β1, then using the joint posterior of (β1, β2) to assess this
influence may overstate the influence. Hence, in these settings, we need to consider the
influence of a case using the marginal posterior distribution of β1.

We can express the marginal influence diagnostics of Weiss and Cho (1998) based on the
directed K–L divergence as

(3)
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where p1(β1|D) = ∫ p(β1, β2|D) dβ2. The marginal K–L divergence, K(P1, P1,−i), in (3) measures
the effect of deleting the ith case from the full data on the marginal posterior distribution of
β1. Using similar derivations as in (2), we can obtain a simplified expression for K(P1, P1,−i)
as follows:

(4)

where p(β2|β1, D) = p(β1, β2|D)/∫ p(β1, β2|D) dβ2 and  can be evaluated as
.

Following McCulloch (1989), calibration of K(P, P−i) can be done by solving for pi such that
K(P, P−i) = K(B(0.5), B(pi)) = −log{4pi(1 − pi)}/2, where B(p) denotes the Bernoulli
distribution with success probability p. This implies that describing outcomes using p(β|D−i)
instead of p(β|D) is compatible with describing an unobserved event as having probability pi
when the correct probability is 0.5. After calculating K(P, P−i) from (2), we can compute pi

using  . This equation implies that 0.5 ≤ pi ≤ 1. pi ≫ 0.5
implies that the ith case is influential, because deleting the ith case changes the posterior
distribution as much as describing an observed event as having probability pi when the correct
probability is 0.5. In this article, we use pi as the calibration of K(P, P−i) in all of the examples.

2.2 Independence Model
As an illustration, we consider the proposed diagnostic method for the independence model.
Suppose that given β, yi, i = 1, 2, …, n are independent response variables, not subject to

censoring. Then the full data likelihood is , where f(yk|β) is the density of

yk and the likelihood without the ith observation is . Therefore, L(β|
D)/L(β|D−i) = f (yi|β) and the CPO is given by CPOi = [Eβ[{f(yi|β)}−1|D]]−1 (Gelfand et al.,
1992).

Using (2) and the above results, we can therefore show that

(5)

Similarly, using equation (4) we can obtain K(P1, P1,−i) for the influence of the ith case on the
marginal posterior distribution of β1 and its connection with CPO as follows:

(6)

where p(β2|β1, D) = p(β1, β2|D)/∫ p(β1, β2|D) dβ2 and ∫{f(yi|β)}−1p(β2|β1, D) dβ2 can be
evaluated as Eβ2[{f(yi|β)}−1|β1, D]. Because equations (2) and (4)–(6) are expressed as posterior
expectations with respect to the full data posterior distribution, they can be easily calculated
using only MCMC samples from the full data posterior distribution of β.
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3. Cox Model with Gamma Process Prior
3.1 Model

In the Cox proportional hazards model (Cox, 1972), the gamma process is a very commonly
used nonparametric prior process for the cumulative baseline hazard (Kalbfleisch, 1978). The
full data are denoted as D = {y, δ, X}, where y = (y1, y2, …, yn)′ denotes the observed survival
times, where yi may be right censored. We assume that the survival times are all distinct and
ordered, i.e., 0 < y1 < y2 < ··· <yn < ∞. δ = (δ1, δ2, …, δn)′ is an indicator vector with δi = 1 if
the ith subject failed, and δi = 0 if the ith subject was right censored. Also, X is an n × p matrix
of covariates with ith row , and D−i = {y−i, δ−i, X−i} denotes the data with the ith subject (i.e.,
(yi, δi, )) deleted from D. The hazard function is given by , where β is
the p × 1 vector of unknown regression coefficients, and h0(.) is an unknown baseline hazard
function.

Under the Cox model, the joint probability of the survival of n subjects is given by

(7)

where H0(y) is the cumulative baseline hazard (Ibrahim, Chen, and Sinha, 2001). We take
H0 ~ GP (cH *(·), c), where GP denotes gamma process, H*(y) is a known differentiable
parametric function that represents a parametric guess for the cumulative baseline hazard
H0(y), and c ⩾ 0 is a confidence parameter. H*(y) is thus the mean of the process. Letting hk
= H0(yk) − H0(yk−1), we take hk ~ Gamma(ch0k, c), the hk’s are independent, where h0k =
H*(yk) − H*(yk−1) and Gamma(α, λ) denotes the gamma distribution with mean α/λ(α > 0 and
λ > 0).

The marginal likelihood function of β can now be written as follows (Ibrahim et al., 2001;
Sinha et al., 2003):

(8)

where , and ℛ(yk) = {l: yl ⩾ yk} is the set of subjects at risk
at time yk.

We now derive the likelihood function without the ith subject. If yk < yi then the risk set at time
yk involves the ith subject, otherwise, the risk set at yk does not involve the ith subject.
Therefore, after deleting the ith subject, the risk set changes to ℛ(yk) = {l: yl ⩾ yk, l ≠ i} for
k < i. As the risk set changes, the corresponding Ak in the denominators of (8) changes to Ak −
exp(x′iβ) for k < i, whereas for k > i, the risk set and Ak remain the same (see Web Appendix
A for details). Hence, the likelihood function without the ith subject is given by
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(9)

The posterior distributions based on the full data and the data without the ith subject are thus
given by p(β|D) ∝ L(β|D)π(β) and p(β|D−i) ∝ L(β|D−i)π(β), respectively.

3.2 Diagnostic Measures
For the Cox model in general, the likelihood function cannot be written as a product of n
independent terms because the risk set for the kth subject involves observations other than the
kth subject. Because of this dependency, we use (8) for the likelihood function. Another
advantage of (8) is its computational feasibility. Because the hazard, hk, has been integrated
out from (8), it is only a function of β. Therefore, sampling the hk’s is not necessary for Bayesian
inference and diagnostics, and thus only samples from the posterior distribution of β are needed.

After some algebra, the ratio of likelihoods for the full data and the data without the ith subject
can be written as L(β|D)/L(β|D−i) = gi(β)Li(β|D). Thus, we can get a simplified expression for
computing the influence of the ith subject on the joint posterior distribution of β as follows:

(10)

where

(11)

, which can be simplified as

(12)
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In addition, CPOi can be written as,

(13)

Because (10) is expressed as a posterior expectation with respect to the full data, computation
of (10) can be done using MCMC samples from the full data posterior p(β|D). The samples
from p(β|D) can be easily obtained using adaptive rejection Metropolis sampling (ARMS;
Gilks, Best, and Tan et al., 1995) within Gibbs. Specifically, we have

(14)

and

(15)

where J is the number of Gibbs samples after burn-in and  is the jth Gibbs
sample, j = 1, …, J.

Similarly, we obtain

(16)

Monte Carlo evaluation of Eβ1[log ∫{gi(β)Li(β|D)}−1 × p(β2|β1, D) dβ2|D] in (16) can be
obtained using the following steps:

Step 1: We use Gibbs sampling to obtain the samples  for j = 1, …, J from p(β|

D) and record  as J Gibbs samples from the marginal posterior of β1, p1(β1|D).

Step 2: We use Gibbs sampling to obtain the samples  for r = 1, …, R from p(β|

D) and record  as R Gibbs samples from the marginal posterior of β2 given β1, p
(β2|β1, D).
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Step 3: For each , use  as nested Gibbs samples from  to get the Monte Carlo
approximation of Eβ1[log ∫{gi(β)Li(β|D)}−1p(β2|β1, D) dβ2|D] as

.

Note that the Gibbs samples in the first and second steps need to be sampled independently.
Now, we can get the MCMC approximation of (16) as

(17)

After computing K(P, P−i) or K(P1, P1,−i) for all subjects, we can plot K(P, P−i) or K(P1,
P1,−i) across subjects to identify influential cases.

Because K(P, P−i) measures the effect of deleting the ith case on the joint posterior distribution
of β, it can be viewed as a Bayesian analogue of the likelihood displacement (LD), as discussed
in Cook and Weisberg (1982), and Cook (1986). Specifically, for the Cox model, K(P, P−i) is
comparable to the LD based on partial likelihood, which is available in SAS version
9.1.3. For more on LD for the Cox model, see Pettitt and Daud (1989). In addition, a limiting
expression for K(P, P−i) based on model (8) provides a method for computing K(P, P−i) under
Cox’s partial likelihood. The detailed derivations are given in Web Appendix A. Moreover, it
can be shown that K(P1, P1,−i) can be approximated by a quadratic form in the weighted score
residuals upon a Taylor’s series expansion. However, detailed derivations of these results are
beyond the scope of this article and will be reported elsewhere.

4. Illustrative Examples
In this section, we illustrate our methodology with simulated data and two real datasets.

4.1 Simulated Data
To examine the performance of the proposed diagnostics measures, we considered simulated
datasets with one or more of the generated cases perturbed. The covariate xi1, i = 1, …, n, was
generated from a N(30, 4) distribution and standardized for numerical stability. An additional
covariate, xi2, was independently generated from a Bernoulli(0.5) distribution. The failure time
Ti was generated from an exponential distribution with hazard rate λi, where λi = exp(β0 +
β1xi1 + β2xi2) with β0 = 1, β1 = −0.5, and β2 = 2, and the censoring time Ci was generated from
an exponential distribution with λc = 2.56, where Ti and Ci were assumed independent. The
survival times yi, i = 1, …, 150, were taken as yi = min(Ti, Ci), δi was the censoring indicator
equal to 1, if Ti ≤ Ci, and 0, if Ti > Ci. In the simulated data, yi ranged from 0.000008 to 0.8269
with median = 0.0553, mean = 0.1045, and standard deviation = 0.1321, whereas λi ranged
from 1.11 to 58.79 with median = 5.97, mean = 12.89, and standard deviation = 13.28. The
observed censoring rate was 32%.

We selected cases 10, 59, and 62 for perturbation. To create influential observations in the
dataset, we choose one or two of those selected cases and perturbed the survival time (yi), the
covariate (xi1), or both the survival time and the covariate of the chosen case(s). Detailed
descriptions regarding the perturbations are given in Table 1 and Web Appendix A. In Table
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1, dataset (a) denotes the original simulated dataset with no perturbation and datasets (b)–(o)
denote datasets with perturbed case(s) added by the perturbation schemes (I)–(VI).

We fit the gamma process model of Section 3 with an exponential H*(y) = 2.7y. We chose a
noninformative prior distribution for β as N2(0, 106I). We used ARMS within Gibbs to obtain
posterior samples. After burn-in, 40,000 MCMC posterior samples were used in the analysis.
The proposed joint and marginal K–L divergences, K(P, P−i) in (10), K(P1, P1,−i), K(P2,
P2,−i) in (16), and calibrations of those divergences were computed for the simulated data with
and without perturbation of the cases. We used pi in Section 2.1 to compute the calibrations of
K(P, P−i), K(P1, P1,−i), and K(P2, P2,−i). We monitored convergence of the Gibbs chain using
the method proposed by Geweke (1992), as well as trace plots. We conducted sensitivity
analyses using c = 0.01, 0.1, 1, 10, and 100. For brevity, we present results for only the low
confidence value of c = 0.01. For the computation of K(P1, P1,−i) and K(P2, P2,−i), we used
every fifth sample from the 40,000 MCMC posterior samples to reduce the autocorrelations
and yield better convergence results.

Table 1 shows that the posterior inferences are sensitive to the perturbation of the selected case
(s). Overall, the inferences are most sensitive to the perturbation of both the survival time and
the covariate. Because we used noninformative priors on β and c = 0.01, the posterior estimates
were similar to the maximum likelihood estimates based on partial likelihood. The results
regarding the diagnostics showed that K(P, P−i), as well as K(P1, P1,−i) and K(P2, P2,−i),
changed very little for the nonperturbed cases, whereas they changed a lot for the perturbed
case(s).

The results in Table 2 show that before perturbation (dataset [a]), all of the selected cases are
not influential, each providing a small K(P, P−i) with its calibration close to 0.5. However,
after perturbation (datasets [b–o]), K(P, P−i) for those perturbed cases increased a lot and the
corresponding calibrations become much larger than 0.5, indicating those cases are influential.
Specifically, perturbing both the survival time and the covariate of a case increases K(P, P−i)
a lot. For example, K(P, P−i) (and its calibration) for case 10 in dataset (h) is increased from
0.0006 (0.5168) to 5.8040 (1). We also note that the perturbed cases are similarly identified as
influential using the LD based on partial likelihood. Moreover, Figure 1 clearly shows that K
(P, P−i) performed well for identifying influential case(s) in each dataset providing larger K
(P, P−i) for the perturbed case(s) compared to the other cases.

Moreover, in Table 1, we observe that perturbing the survival time of a case had influence on
the posterior estimates of both β1 and β2, whereas perturbing the covariate (x1) of a case alone
had more influence on the estimates of β1, corresponding to the perturbed covariate. We see
that K(P1, P1,−i) and K(P2, P2,−i) in Table 2 describe these marginal influences well.
Specifically, both K(P1, P1,−i) and K(P2, P2,−i) increase for the perturbation of the survival
time, whereas K(P1, P1,−i) increases relative to K(P2, P2,−i) for the perturbation of the covariate
(x1). For example, perturbing the survival time of case 62 in dataset (d) increases K(P1, P1,−i)
and K(P2, P2,−i) from 0.0107 to 1.3214, and 0.0036 to 1.7394, respectively, whereas perturbing
the covariate (x1) of case 62 in dataset (g) increases K(P1, P1,−i) and K(P2, P2,−i) from 0.0107
to 2.4073, and 0.0036 to 0.0618, respectively.

Although there may be masking effects when there is more than one perturbed case (datasets
[k–o]), K(P, P−i) identifies the influential cases by providing a larger K(P, P−i) and its
calibration compared to the other cases. In addition, K(P1, P1,−i) and K(P2, P2,−i) also describe
the influence of the cases on posterior inference regarding β1 and β2, respectively. However,
the magnitude of the measures become much smaller and the existence of an extremely
influential case may mask the influence of other cases. This is not surprising because the
proposed diagnostics are based on single case deletion.
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Overall, the proposed joint and marginal influence diagnostic measures, K(P, P−i), K(P1,
P1,−i), and K(P2, P2,−i) performed well for identifying influential cases as well as describing
the influence of a case on posterior inference.

4.2 Stanford Heart Transplant Data
To further illustrate the proposed methodology, we revisit the Stanford heart transplant data
discussed in Section 1. Escobar and Meeker (1992) used 184 transplant cases to identify
influential cases using an accelerated failure time lognormal regression model. We used the
same dataset here with some minor modifications and identified influential cases using the
proposed methodology. Of the 184 cases, 71 cases were right censored. The covariate included
in this analysis was age (x1) (mean = 41.09 and standard deviation = 11.036) as well as a
quadratic term of age (x2). Similar to Miller and Halpern (1982) and Escobar and Meeker
(1992), the T5 mismatch score covariate was not used in this analysis due to its non-
significance. For numerical stability in MCMC sampling, we standardized age and divided
survival time by 365 to make time in years instead of days.

We fit the gamma process model of Section 3 with H*(y) = 0.35y, c = 0.01 and c = 100. We
chose a noninformative prior distribution for β = (β1, β2) as N2(0, 106I). MCMC computations
were done similarly as described in Section 4.1, and 14,000 MCMC posterior samples were
used in this analysis after burn-in. The posterior means (standard deviations) and 95% highest
posterior density (HPD) intervals for β were: For c = 0.01, 0.4588 (0.1134), and (0.2404,
0.6830) for β1, and 0.2323 (0.0841) and (0.0650, 0.3949) for β2; For c = 100, they were 0.3793
(0.1068) and (0.1746, 0.5916) for β1, and 0.1117 (0.0766) and (−0.0385, 0.2606) for β2.

Table 3 shows subjects having large K(P, P−i) and calibration values compared to the other
subjects in the dataset. For both small and large c, case 74 was identified as the most influential,
having K(P, P−i) (calibration) = 0.1539 (0.7573) for c = 0.01 and K(P, P−i) (calibration) =
0.1818 (0.7761) for c = 100. Cases 159, 119, and 139 were also identified as influential. In
addition, we identified cases 160, 108, and 133 as somewhat influential compared to other
cases in the dataset for both small and large c. Figure 2 shows a plot of K(P, P−i) for all the
cases using c = 0.01. Upon examination of these cases, it appears that these cases are influential
due to low values of the covariate age, and because there were not many low age cases.
Specifically, cases 159, 139, 160, 108, and 133 had small failure times in spite of their low age
values. An analysis using the LD based on partial likelihood showed that cases 74, 159, 119,
and 139 were also identified as influential. In addition, our analysis identified similar cases as
being influential as in Escobar and Meeker (1992), in which they identified influential cases
using either case weight perturbations (patient number: 21, 74, 119, 133, 159, 160) or response
perturbations (patient number: 18, 21, 133, 139, 159) based on an accelerated failure time
lognormal regression model. Although a different model than ours was being fit, we used the
results in Escobar and Meeker (1992) as a benchmark for the proposed Bayesian methodology
to examine whether the proposed Bayesian methodology was at least consistent and yielding
results in the same direction as commonly used frequentist methodology. We note that we used
patient number as case number whereas Escobar and Meeker (1992) used case number sorted
by age.

4.3 Melanoma Data
As a further demonstration of the proposed methodology, we considered a phase III clinical
trial, labeled E1690 (Kirkwood et al., 2000). The trial evaluated the efficacy of interferon
alfa-2b therapy on melanoma patients. The dataset consisted of 427 patients. The response
variable was relapse-free survival time in years. The covariates included in this analysis were
age, treatment, sex, and performance status. For details, see Web Appendix B. We fit the
gamma process model of Section 3 with H*(y) = 0.26y and c = 0.01. We chose a noninformative
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prior distribution for β as N4(0, 106I). MCMC computations were done similarly as described
in Section 4.1.

For the E1690 data, we did not find any highly influential cases. The K(P, P−i) was smaller
than 0.034 for all cases and the corresponding calibrations were not much larger than 0.5 (Web
Figure 1). However, cases 16784, 16074, 16179, 16109, 16221, and 16504 had larger K(P,
P−i) compared to the other cases (Web Table 1). Specifically, case 16784 (K(P, P−i) = 0.0338,
calibration = 0.6279) and case 16074 (K(P, P−i) = 0.0303, calibration = 0.6213) were identified
as the most and the second-most influential cases compared to the other cases. After an
investigation as to the reason why these identified cases were more influential than others, we
found that the identified cases had longer relapse-free survival time (although they were
censored) in spite of their large ages compared to other cases having moderate performance
status. The marginal influence for the individual βj’s showed that the identified observations
were more influential on posterior inference of β4, which corresponds to the performance status
covariate, compared to the other covariates (Web Table 1).

5. Discussion
We have proposed Bayesian case influence diagnostics using the Kullback–Leibler divergence
for survival models. We have provided simple computational formulas for computing case
influence on both the joint and marginal posterior distributions using MCMC techniques. We
have only considered diagnostics based on single case deletion. This can be easily expanded
to deletion of more than a single case or subsets of cases. In principle, this methodology can
also be applied to any regression model by specifying the ratio of likelihoods with full data
and data with a single case (or subset of cases) deleted. We have presented the full development
for survival models here for focus and clarity of exposition.

The issue of what to do in a statistical analysis once an influential observation has been detected
is a huge issue with no easy answer. Most researchers in this area recommend that (i) analyses
with and without the influential case should be clearly reported, indicating differences in point
and interval estimates, as well as variance estimates, and (ii) if one seeks remedies to the
problem, three strategies are typically mentioned: one can transform the data, reparameterize
the model, or fit a new model all together. Remedies for influential observations is a very large
research area on its own.

Supplemental Materials
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
K(P, P−i) for the simulated data with c = 0.01.
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Figure 2.
K(P, P−i) for the heart transplant data with c = 0.01.
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