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Abstract

The polygenetic nature of most cancers emphasizes the necessity of cancer therapies that target 

multiple essential signaling pathways. However, there is a significant paucity of targeting ligands 

with multi-specificities for targeted delivery of biomaterials. To address this unmet need, we 

generated a tetraspecific targeting ligand that recognizes four different cancer biomarkers, 

including VEGFR2, αvβ3 integrin, EGFR, and HER2 receptors, which have been implicated in 

numerous malignant tumors. The tetraspecific targeting ligand was constructed by sequentially 

connecting four targeting ligand subunits via flexible linkers, yielding a fusion protein that can be 

highly expressed in E. coli and readily purified to near homogeneity. Surface Plasmon Resonance 

(SPR), Bio-Layer Interferometry (BLI) studies and extensive cellular binding analyses indicated 

that all the targeting ligand subunits in the tetraspecific fusion protein recognized their target 

receptors proximately to the corresponding monospecific ligands. The resulting tetraspecific 

targeting ligand was applied for the delivery of nanomaterials such as gold nanoparticles (AuNPs) 

for targeted hyperthermic killing of various cancer cell lines with biomarkers of interest expressed. 

We demonstrate that the tetraspecific ligand can be facilely introduced on the surface of AuNPs 

and efficient target-dependent killing of cancer cells can be achieved only when the AuNPs are 

conjugated with the tetraspecific ligand. Significantly, the tetraspecific ligand simultaneously 

interacts with more than one receptors, such as EGFR and HER2 receptors, when they are 

expressed on the surface of the same cell, as demonstrated by in vitro binding assays and cell 

binding analyses. Our results demonstrate that the tetraspecific ligand, through multivalency and 

synergistic binding, can be readily used to generate various ‘smart’ biomaterials with greatly 

broadened tumor targeting range for simultaneous targeting of multiple signaling pathways on 

many different cancer types.
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1. Introduction

A major challenge in cancer nanotechnology is how to selectively deliver nanomaterials to 

diseased tissues while simultaneously minimizing their nonspecific accumulation on normal 

cells. Targeting ligands play a vital role in the targeted delivery of nanoparticles to the tumor 

sites [1,2]. However, there is a significant paucity of targeting ligands that are suitable for 

targeted delivery of nanomaterials, and therefore an urgent unmet need to develop targeting 

molecules that confer ‘smartness’ to nanoparticles [3,4].

Successful targeting of cancer cells with high specificity is, however, a complicated and 

daunting task. Different cancers are presumably different diseases with dissimilar expression 

profiles of cell surface biomarkers. Even for the same malignant tumor such as breast 

cancer, the HER2-positive rate is only 20–30%, indicating that majority of breast cancer 

patients cannot benefit from the effective anti-HER2 therapies such as trastuzumab or 

pertuzumab [5]. Recent progress in sequencing the whole cancer genomes reveals catalogs 

of all the mutations that are present in the cancerous tissues [6,7]. In the case of pancreatic 

cancer, for example, an average of 63 genetic alterations that define a core set of 12 cellular 

signaling pathways and processes are exclusive to the diseased PDAC (pancreatic ductal 

adenocarcinoma) cells [7]. Such polygenetic nature of most cancers clearly indicates that 

any effective cancer treatment should be based on targeting multiple essential signaling 

pathways, presumably by using a combination of targeted therapeutics.

An ideal approach to addressing the challenge is by integrating the ability of targeting 

multiple cell surface biomarkers onto a single molecule. Such multispecific targeting ligands 

could have expanded spectrum of cancer indication and improved therapeutic efficacies, in 

addition to potentially reduced drug resistance. It has been reported that simultaneous 

targeting EGFR and IGF-1R, two tumor-associated receptors on either the same or adjacent 

tumor cells, using a recombinant bispecific antibody, had enhanced antitumor activity [8]. 

The approach was also demonstrated by an engineered bispecific antibody against VEGF 

and HER2 that effectively inhibited the growth of both VEGF- and HER2-dependent tumors 

in animal models [9].

Currently, there is an urgent need to confer multispecificity to biomaterials for their targeted 

delivery to diseased tissues. The central barrier is to develop next generation targeting 

ligands with multispecificity that can be tuned and applied to different cancer types [10,11]. 

While it is a great achievement to engineer a monoclonal antibody to acquire 

multispecificity, the process is often limited [12], in addition to high manufacturing cost. In 

this study, we aimed to develop a targeting ligand with tetraspecificity capable of binding 

four cell surface biomarkers, namely, VEGFR2, αvβ3 integrin, EGFR, and HER2, which are 

of significant cancer targeting interest [13–16]. We evaluated the design of the tetraspecific 

targeting ligand and the maintenance of specific targeting features for each individual 
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targeting subunit. We investigated the site-specific conjugation of the tetraspecific ligand to 

a nanomaterial (AuNPs), the effectiveness of ligand-directed hyperthermia therapy against 

cancer cells expressing different biomarkers, and the synergistic effects derived from the 

tetraspecificity.

2. Materials and Methods

2.1. Construction of Tetraspecific Targeting Ligand

The coding sequences for each monospecific ligand were used for assembly of the fusion 

gene. The coding sequences for VEGFR2 binding FN3VEGFR2 and αvβ3 binding FN3αvβ3 

domains were synthesized by GenScript (Piscataway, NJ). The coding sequences for EGFR-

binding ZEGFR and HER2-binding ZHER2 domains were amplified from the genes coding 

heptameric ligands as we recently reported [17]. The amplified coding sequences were 

assembled to form a fusion gene by PCR using primers described in Supplemental Table 1. 

The final coding sequence for the tetraspecific ligand was ligated into pET28b between Nco 
I and Xho I sites and the accuracy was confirmed by DNA sequencing. The gene coding the 

tetraspecific ligand with a C-terminal cysteine residue was constructed by PCR 

amplification using primers V9-5-23 and Tet-cys R as described in Supplemental Table 2.

2.2. Expression and Purification of Tetraspecific Targeting Ligand

The plasmid containing a monospecific or the tetraspecific ligand was transformed into 

E.coli BL21 (DE3) Rosetta cells. The positive clones were selected on LB plate containing 

kanamycin (50 μg/mL) and chloramphenicol (34 μg/mL). The single colony was picked and 

grown at 10 mL LB overnight at 37 °C. The overnight 10 mL cell culture was added to 1 L 

of LB media containing kanamycin (50 μg/mL) and chloramphenicol (34 μg/mL). Cells 

were grown at 37 °C until the O.D. 600 was between 0.5 to 1.0, and 1 mM IPTG was added 

to induce expression at 22 °C for 16 h. After induction, the cells were spun down at 3,000× 

g for 10 min at 4 °C, and the pellet was stored at −20 °C prior to further purification. To 

purify each monospecific or tetraspecific ligand, the cell pellet was resuspended in buffer A 

(25 mM HEPES pH 7.4 and 50 mM NaCl) and sonicated for 1 min for a total of 4 times. 

After cell lysis, the soluble fraction was recovered by centrifugation at 12,000× g for 10 min 

at 4 °C. The resulting soluble fraction was loaded onto a TALON metal affinity column 

(Clontech, Mountainview, CA) pre-equilibrated with buffer B (25 mM HEPES pH 7.4 and 

300 mM NaCl). An initial washing was performed by using buffer B followed by extensive 

washing with buffer C (buffer B and 20 mM imidazole). The proteins of interest were eluted 

with buffer D (buffer B and 200 mM imidazole). The quality of the purified proteins was 

checked with SDS-PAGE. The labeling of purified proteins by fluorescein isothiocyanate 

(FITC) (ACROS organics, Geels, Belgium) and Alexa Fluor 555 carboxylic acid, 

succinimidyl ester (Alexa 555) (Life technologies, Grand Island, NY) was performed 

according to the procedures as we published previously [17].

2.3. Surface Plasmon Resonance (SPR) Analysis

BIAcore 2000 (BIAcore AB, Uppsala, Sweden) was used for Surface Plasmon Resonance 

analysis of target-binding kinetics. Purified recombinant human VEGFR2 ECD-Fc, EGFR 

ECD-Fc and HER2 ECD-Fc were purchased from R&D Systems (Minneapolis, MN). 
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Human αvβ3 integrin was purchased from Millipore (Billerica, MA). Each receptor was 

diluted in a 10 mM sodium acetate buffer at pH 5.0 and immobilized on a CM5 sensor chip 

(GE Healthcare, Piscataway, NJ) to achieve about 2,500 resonance units through amine 

coupling according to the manufacturer’s instructions. Various concentrations of 

monospecific and tetraspecific ligands were injected onto the flow cell in an HBS-P buffer 

(10 mM HEPES pH 7.4, 150 mM NaCl, and 0.005% surfactant P20) at a flow rate of 20 μl/

min. The dissociation constants (KD) were calculated using BIA evaluation software by 

fitting data on one to one Langmuir binding model.

2.4. Bio-Layer Interferometry (BLI) Analysis

BLI analyses of the affinity of monospecific ligands, tetraspecific ligand or TetraS-AuNP 

biomaterial against each receptor were performed by using a fortéBIO Octet QK system. 

Assays were run at 30 °C on Greiner Bio One black 96-well microplates. Anti-hIgG Fc 

Capture (AHC) biosensors (Pall fortéBIO Corp, Menlo Park, CA) were used to immobilize 

the receptors of interest containing Fc, including human VEGFR2 ECD-Fc, EGFR ECD-Fc, 

HER2 ECD-Fc, and HER3 ECD-Fc. Ni-NTA biosensors (Pall fortéBIO Corp, Menlo Park, 

CA) were used to immobilize His-tagged targeting ligands for αvβ3 binding analysis. All 

receptor ligand samples were prepared in an assay buffer (1× PBS, 0.002% Tween 20, pH 

7.4) and applied to a 96 well-microplate in column arrangement. Various concentrations of 

ligands were used to test the binding. Assays were run in triplicate via regeneration of the 

AHC biosensor with 10 mM glycine, pH 2.5. All data were acquired in fortéBIO Data 

Acquisition 6.4 software. Analysis was performed in fortéBIO Data Analysis 6.4 software. 

Data processing was performed by averaging the reference biosensors, applying Savitzky-

Golay Filtering, and fitting binding curves using global fitting and a 1:1 model.

2.5. Cell Culture

K562αvβ3 was a kind gift from Dr. S. Blystone (Upstate medical university, Syracuse, NY). 

293VEGFR2 (293-KDR) was purchased from SibTech, Inc. (Brookfield, CT). All other cell 

lines including wild type K562, wild type 293 HEK, EGFR-positive A431, HER2-positive 

SK-OV3, EGFR- and HER2-negative MCF7 cells were obtained from UNC Tissue Culture 

Facility. All cell lines were maintained by serial passage in each proper media containing 

10% fetal bovine serum in 5% CO2 incubator at 37 °C.

2.6. Confocal Microscopy

Each cell line (about 2× 104) was seeded on coverslides and allowed to grow in a proper 

media for 16 h. The resulting coverslips were washed with 1× PBS twice followed by 

incubation with various concentrations of FITC-labeled monospecific or tetraspecific ligand 

for 30 min at room temperature. The coverslips were washed with 1× PBS 3 times. The 

resulting samples were examined with a Zeiss LSM 510 confocal microscope at the UNC 

Microscopy Core.

2.7. Circular Dichroism Spectroscopy

Highly purified monospecific and tetraspecific ligands were prepared in a 10 mM phosphate 

buffer (pH 7.5) and used for circular dichroism (CD) scanning with an AVIV model 202-01 
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spectropolarimeter at the UNC Macromolecular Interaction Facility. To determine thermal 

stability, the CD spectra at 220 nm were measured from 25 °C to 94 °C, and the ramp was 

cool down to 25 °C followed by measuring the CD spectra at 220 nm again from 25 °C to 94 

°C. The melting temperature (Tm) was calculated as a temperature which has the midpoint 

CD spectra between the lowest and the highest CD spectra with reversible melting curve.

2.8. Flow Cytometry and Cell-binding Analysis

Cell binding of the monospecific and tetraspecific ligands was evaluated by using flow 

cytometry. Approximately 2× 104 cells were grown on a 24-well plate for 16 h. After 

washing with 1× PBS the following day, cells were incubated with FITC-labeled 

monospecific or tetraspecific ligand for 30 min at room temperature, followed by washing 

with 1× PBS twice. The samples were analyzed by a flow cytometry (BD FACS Canto flow 

cytometry) and the data were analyzed by the Flow Jo system (Tree star, Inc. Ashland, OR).

2.9. Conjugation of Tetraspecific Ligand with AuNPs

0.5 mL of AuNPs (30 nm gold nanoparticles, 0.01% Au, and 2× 1011 particles/mL, 

NANOCS, New York, NY) and 0.1 mL of tetraspecific ligand with a C-terminal cysteine (1 

μM) was incubated in 1× PBS at 4 °C for 1 h under the protection of Argon gas, followed by 

saturating nanoparticle surfaces with 5 mM of 2 kDa mPEG-SH (NANOCS, New York, 

NY) (1: 200 volumetric ratio) at 4 °C for 4 h. The solution was spun in a 300 K filtration 

column (Pall Corp, Port Washington, NY) at 12,000 rpm for 20 min to remove unreacted 

ligand and mPEG. The resulting TetraS-AuNP biomaterial was resuspended in 0.2 mL of 1× 

PBS. Concentration of TetraS-AuNP was estimated by the BCA assay.

2.10. AuNPs-mediated Hyperthermia Treatment

Each cell line (about 2× 104) was seeded on coverslides and allowed to grow in a proper 

media for 16 h. TetraS-AuNP biomaterial was incubated with each cell line at 37 °C for 30 

min. NIR irradiation (800 nm, 1 watt) was performed for 20 min at 25 °C. The resulting 

cells were labeled by 1 μM calcein AM (Life Technology, Carlsbad, CA) and 2 μM ethidium 

homodimer-1 (Life Technology, Carlsbad, CA) at 25 °C for 1 h, for the detection of live and 

dead cells, respectively. The coverslides were washed with 1× PBS buffer 3 times. The 

resulting samples were examined with a Zeiss LSM 510 confocal microscope.

2.11. Serum Stability

Purified tetraspecific ligand (5 μg) was incubated with 10% of mouse serum (5 mg/mL, 

Sigma Aldreich, MO) for 6 to 24 h at 37 °C. After incubation, 10 volume of buffer A was 

added and the remaining undigested ligand was purified from the reaction mixture using 

Co2+-NTA column. Samples were analyzed and quantified by using 12% SDS-PAGE.

2.12. Cell Proliferation MTS Assay

CellTiter96 Aqueous Non-Radioactive Cell Proliferation Assay kit from Promega 

(Madision, WI) was used for the MTS assay. Approximately 1× 104 cells were seeded in 

each well of a 96-well plate and grown for 16 h at 37 °C. To examine the possible inhibition 

on cell proliferation, tetraspecific ligand was incubated with the cells for 48 h at 37 °C. 
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Approximately 10 μM Cis-platinum (II) diamine dichloride (Sigma-Aldreich Chemical Co, 

St Louis, MO) was used as a positive control. Approximately 20 μl of MTS/PMS solution 

was added into each well followed by incubation for 4 h at 37 °C. The absorbance at 490 nm 

was recorded using an ELISA plate reader.

3. Results

3.1. Design and Generation of Tetraspecific Targeting Ligand

EGFR, HER2, VEGFR and αvβ3 are four cell surface targets that have been clinically 

validated to have great therapeutic values [13–16]. Members of the EGFR or ErbB family 

are of great importance in a number of cancers due to their high potential to induce 

tumorigenesis if deregulated [14]. Under normal physiological conditions, ErbB receptors 

play essential roles in propagating signals for cell proliferation, differentiation, motility, and 

apoptosis [14]. Aberrant regulation of the ErbB/HER family and their ligands is a common 

occurrence in many human cancers, including breast, lung, colorectal, head and neck, and 

pancreatic cancers [18,19]. Co-overexpression of EGFR and HER2 has been found in some 

breast cancers and non-small cell lung cancer (NSCLC) [20,21]. Ligand-induced EGFR and 

HER2 heterodimerization activates downstream pathways that are essential for cell 

proliferation and survival, necessitating the targeting of both receptors simultaneously [14]. 

Tumor angiogenesis is common in most, if not all, solid tumors, and angiogenesis-related 

cell surface receptors are important anti-cancer targets [22]. It is now clear that disruption of 

angiogenesis represents a promising approach to the treatment of many types of cancers 

[15,22]. Signaling pathways mediated by αvβ3 and VEGF/VEGFR are critical for tumor 

angiogenesis [23]. VEGF is upregulated in many human cancers and promotes endothelial-

cell proliferation, migration and survival, expression of adhesion molecules, and potently 

induces increased vascular permeability [15]. Integrin αvβ3 is a multi-functional 

glycoprotein that plays a major role in tumor angiogenesis and metastasis [22]. Both 

VEGFR and αvβ3 have been shown to be overexpressed on the surface of proliferating 

endothelial cells during tumor angiogenesis [23]. Significantly, there is a mutually beneficial 

relationship between VEGFR2 and integrin αvβ3 since each receptor is able to promote 

activation of its counterpart via the formation of a heterodimer [23,24]. Such VEGFR2 and 

αvβ3 transactivation allows cells to regulate cellular activities, such as cell migration, 

survival, and differentiation [23]. Therefore, targeting αvβ3 and VEGFR represents a 

promising anti-angiogenic approach to the treatment of multiple types of solid tumors [24]. 

Furthermore, increasing evidence suggests a link between the EGFR/HER2 and VEGFR/

αvβ3 pathways, including a crosstalk between integrin αvβ3 and EGFR receptors [23–25]. A 

single targeting ligand that can bind and recognize all four targets holds the promise of 

targeting many different cancer types. In particular, nanoparticles conjugated with such 

tetraspecific targeting ligand could be used for the targeted delivery to diseased tissues with 

very different biomarker expression profiles and therefore have greatly expanded cancer 

indications.

To develop a tetraspecific targeting ligand that can be used for targeting nanoparticles to a 

wide variety of cancers, we used the single domain antibody mimics based on the type III 

domain of fibronectin (FN3) and the three-helix bundle Z domain [26,27]. The FN3 domain 
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has a sandwich immunoglobulin-like scaffold and ligand-binding surface loops structurally 

analogous to the three CDRs of the immunoglobulin VH domain [26]. FN3-based single 

domain antibody mimics have several unique properties that make them ideal ligands for 

targeting nanoparticles. These features include the small size (< 10 kDa), high 

thermostability (Tm ~ 90°C), lack of disulfide bonds, low cost (highly expressed in E. coli), 
and low immunogenicity (derived from highly abundant extracellular fibronectin) [26]. The 

three-helix bundle Z domain derived from Staphylococcal aureus surface protein A is 

another scaffold that is widely used for the development of affinity molecules through 

directed evolution strategy [27]. Despite its bacterial origin and thus potential 

immunogenicity, Z domain is also highly stable (Tm ~78°C) and lack of disulfide bonds, and 

can be expressed with high yields in bacteria [27]. In addition, both FN3 and Z domains are 

highly modular, making it possible to easily introduce desired specificities by using tandem 

fusion approach.

To develop the tetraspecific targeting ligand, we chose VEGFR2-binding FN3VEGFR2, αvβ3-

binding FN3αvβ3 for targeting VEGFR2 and αvβ3, and EGFR-binding ZEGFR and HER2-

binding ZHER2 for targeting EGFR and HER2, respectively [28–31]. Gly/Ser and Pro/Gln 

rich flexible linkers were used to connect each targeting moiety as shown in Figure 1A and 

Supplemental Table 2. It has been reported that these linkers are flexible and do not interfere 

with the function of each domain in multidomain proteins [32]. The DNA sequences that 

code for different moieties, including FN3VEGFR2, FN3αvβ3, ZEGFR, ZHER2 and the flexible 

linkers between each two targeting moieties, were optimized for codon usage in E. coli. The 

resulting cDNA fusion gene was assembled and cloned into expression vector pET-28b for 

overexpression in E. coli. A 6×His tag, introduced onto the C-terminus of the fusion protein, 

permitted facile purification via immobilized metal affinity column chromatography 

(IMAC) (Figure 1A). If necessary, the 6×His tag can be removed by TEV-mediated 

cleavage at a site engineered downstream of the last targeting domain. The expressions of 

tetraspecific ligand and each of the monospecific ligand in E. coli were induced by the 

addition of 1 mM IPTG. As shown in Figure 1B, the tetraspecific ligand and each of the 

monospecific ligands were highly expressed as soluble proteins and purified to near 

homogeneity through a Co2+-NTA column (Figure 1B). No degradation of the tetraspecific 

ligand was observed, indicating that the generation strategy for tetraspecific targeting ligand 

was successful.

3.2. Analysis of Target Binding Affinity and Specificity

To examine whether the tetraspecific targeting ligand maintains recognition of each target of 

interest, we compared the target-binding properties of the tetraspecific ligand with that of 

the four monospecific ligands via Surface Plasmon Resonance (SPR) and Bio-Layer 

Interferometry (BLI) (Table 1). For assays using SPR, the extracellular domain (ECD) of 

EGFR, HER2, or VEGFR2 was immobilized on a CM5 sensor chip via amine coupling and 

the target-binding parameters were measured by injecting the monospecific or tetraspecific 

targeting ligands into the flow cell at various concentrations. As shown in Supplemental 

Figure 1 and Table 1, tetraspecific ligand maintained binding to EGFR, HER2, and 

VEGFR2 with affinities around 17 nM, 15 nM, and 1.4 nM, compared to 2.6 nM, 0.9 nM, 

and 0.5 nM for monospecific ZEGFR, ZHER2, and FN3VEGFR2, respectively. In general, the 
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binding affinity of the tetraspecific ligand for each target was relatively weaker than that of 

the corresponding monospecific ligand due to faster dissociation of tetraspecific ligand from 

the receptors. For example, koff of monospecific ZEGFR (2.6 ± 0.3 × 10−7 s−1) is 20 times 

slower than that of tetraspecific ligand (5.2 ± 1.2 × 10−6 s−1) against EGFR (Table 1). The 

faster dissociation of tetraspecific ligand might be caused from the presence of the other 

binding moieties. In the case of αvβ3, we found that αvβ3 immobilized on CM5 sensor chip 

was not functional, presumably due to the modification of residues involved in binding with 

the ligand during covalent immobilization of αvβ3, resulting in failure to measure the αvβ3-

binding using SPR. To address the problem, we used the Bio-Layer Interferometry (BLI) 

that allows for the measurement of target-binding through analysis of the interference 

pattern of white light reflected from a surface layer of immobilized protein on the biosensor 

tip, compared with that from an internal reference surface layer [33,34]. Thus, monospecific 

FN3αvβ3 and tetraspecific ligand were immobilized on the anti-His Octet biosensor through 

the C-terminal 6× His tag, and free αvβ3 integrin was included in the solution at different 

concentrations for binding analysis using a fortéBio Octet QK system. As shown in 

Supplemental Figure 1D, the tetraspecific ligand bound to αvβ3 with an affinity around 73 

nM, which is 2.3-fold weaker compared with that of the monospecific FN3αvβ3 (~31 nM), 

suggesting the integration of FN3αvβ3 into a tetraspecific fusion does not much interfere 

with its target-binding features. It is worth mentioning that the reduction of target-binding 

affinity of the two Z domain-based ligands was more remarkable, with 6.5-fold and 16-fold 

decrease in binding with EGFR and HER2, whereas only 2.8-fold and 2.3-fold decrease in 

FN3 domain-based ligands for VEGFR2 and αvβ3, respectively (Table 1). These results 

suggest that FN3-based monobodies appear to be more stable and less structurally disturbed 

when present in a fusion protein, consistent with its higher stability and biologically active 

tandem oligomeric form in the highly abundant fibronectin present in numerous mammals. 

Altogether, these experiments demonstrated that the tetraspecific ligand bound to all four 

target receptors in vitro and retained the desired tetraspecificity as designed.

3.3. Analysis of Cellular Binding Features

The successful binding of purified receptors by a targeting ligand under in vitro conditions 

does not necessarily mean it can recognize and target the native form of a receptor on the 

surface of cancer cells. To address this concern, we first examined the functionality of the 

tetraspecific ligand via confocal cell binding assays by incubating FITC-labeled tetraspecific 

ligand or the four monospecific ligands using cell lines with and without the expression of 

each receptor. Specifically, A431 and SK-OV3 cells were well characterized for their high 

level of expression on EGFR and HER2, respectively, and were used as positive cell lines 

for the binding of EGFR and HER2. For αvβ3 and VEGFR2, we used engineered K562αvβ3 

and 293VEGFR2 as positive cell lines on which the gene of αvβ3 or VEGFR2 was stably 

transfected, respectively [29,35]. To study the background and nonspecific binding of the 

targeting ligands, cell lines that are known to express no or very low levels of the receptors 

of interest were used as negative controls. These include MCF7 cells that express low level 

of both EGFR and HER2, wild-type K562 cells negative for αvβ3, and wild-type 293 cells 

negative for VEGFR2. As illustrated in Figure 2, 100 nM of FITC-labeled monospecific 

ligands respectively recognized each positive cell line (A431, SKOV3, K562αvβ3, and 

293VEGFR2), whereas their bindings to the corresponding negative cell lines (MCF7, K562, 
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and 293) were either not detectable or close to the background. Just like each of the 

monospecific ligands, the tetraspecific ligand recognized all the positive cell lines, but not 

the negative control cell lines, indicating it combines the four desired specificities within 

one fusion molecule and interacts well with all four receptors that are present as the 

biologically active conformations on the surface of cancer cells. To quantitatively compare 

the receptor-dependent cell-binding, we used flow cytometry to estimate the cell-binding 

affinities. As shown in Table 2, the binding specificities of tetraspecific ligand against cell 

lines expressing VEGFR2, αvβ3, EGFR, and HER2, respectively, were all well retained, 

with the affinities decreased only 1.2- to 2.5-fold compared to the corresponding 

monospecific ligands. The results from combined confocal and flow cytometry studies 

clearly indicated that the cell binding of the tetraspecific ligand was highly receptor-

dependent and the binding affinities were only slightly diminished compared to the 

corresponding monospecific ligands, indicating that the desired tetraspecificity was 

combined in the fusion ligand for in vivo cellular applications.

3.4. Analysis of Toxicity and Stability

Most nanoparticles have complicated and often not well-characterized surface properties 

which can result in denaturation of protein-based targeting ligands whose correct folding 

relies on maintaining a hydrophobic core. The chemical conjugation of nanoparticles with a 

targeting ligand often involves harsh reaction conditions that disrupt its targeting feature. In 

addition, the abundant proteases under physiological conditions can quickly degrade the 

targeting moieties on the surface of nanoparticles, unless they are highly resistant to 

proteolysis. Therefore, targeting ligands with high thermal stability and protease resistance 

are greatly desirable. To address these problems, the thermal stability of purified 

tetraspecific and monospecific ligands was determined by circular dichroism (CD) analysis. 

It was found that all four monospecific ligands were stable for up to 80 °C, with a Tm for 

FN3VEGFR2, FN3αvβ3, ZEGFR, and ZHER2 at approximately 61 °C, 80 °C, 61 °C, and 63 °C, 

respectively (Table 3). Surprisingly, the tetraspecific ligand also showed a reversible melting 

curve from 25 °C to 94 °C, and yielded a Tm of approximately 60 °C, despite the presence 

of three flexible linker regions. These results suggest that the high stability exhibited by the 

individual monospecific moieties against heat induced denaturation was well maintained in 

the tetraspecific fusion protein. We further assessed the stability of the tetraspecific ligand in 

serum by incubating purified tetraspecific ligand with mouse serum for 6, 12 and 24 h, 

respectively. As illustrated in Figure 3, tetraspecific ligand proved to be remarkably stable in 

mouse serum after up to 24 h incubation at 37 °C (Figure 3).

Any useful targeting ligands should be non-toxic themselves prior to their application on the 

delivery of nanoparticles. The toxicity of the tetraspecific ligand was examined by the cell 

proliferation assays using four different cell lines that overexpress EGFR, HER2, αvβ3, and 

VEGFR2 respectively. As shown in Figure 4, no apparent cell growth inhibition was 

observed on any of these cell lines, when the ligand concentration was used up to 1 μM. This 

result indicates that tetraspecific ligand is non-toxic and safe to use, at least on the cell lines 

we have tested.
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3.5. Characterization of Tetraspecific-AuNP Biomaterials

To apply the tetraspecific ligand in targeting cancer cells expressing different biomarkers, 

we conjugated the tetraspecific ligand with gold nanoparticles (AuNPs) and applied the 

resultant biomaterial for killing various cancer cells in a highly specific biomarker-

dependent manner via light-mediated hyperthermia treatment [36–40]. To minimize the 

interference of the targeting feature by the NP surface immobilization, we took advantage of 

the lack of any cysteine residues on the tetraspecific ligand and genetically engineered the 

only cysteine at the C-terminus of the fusion protein. This only thiol group allows for 

oriented, site-specific immobilization of tetraspecific ligand on the surface of AuNPs 

through robust Au-S bond formation. To increase the stability and minimize nonspecific 

binding or uptake of AuNPs by cancer cells, the unoccupied surface of targeted AuNPs were 

further saturated with thiol PEG (mPEG-SH, 2 kDa) (Figure 5A). We systematically 

examined the target-binding feature of the resultant tetraspecific ligand-AuNP (TetraS-

AuNP) biomaterial by using BLI-based Octet. This was readily achieved by measuring the 

binding between various concentrations of TetraS-AuNP biomaterial in solution with the Fc 

fusion of a target receptor (i.e. EGFR-Fc, HER2-Fc, or VEGFR2-Fc) immobilized on the 

anti-human Fc capture (AHC) Octet biosensors. Due to the lack of a tagged αvβ3 protein, the 

binding with αvβ3 integrin was not included. As shown in Table 4, the binding affinities of 

the TetraS-AuNP biomaterial to EGFR, HER2 and VEGFR2 were estimated at 

approximately 54 nM, 5.2 nM, and 3.9 nM, respectively, which were decreased from 2- to 5-

fold compared with unconjugated tetraspecific ligand. Again, it appears that the reduction of 

the target-binding affinity of Z domain-based moieties was more remarkable than that of 

FN3 domain-based moieties, consistent with our hypothesis that FN3 domain is more 

resistant to structurally disturbing environment. Despite this minor reduction, the resulting 

TetraS-AuNP biomaterial still possesses low to medium nanomolar target-binding affinities 

and retains the desired multispecificity very well.

3.6. Hyperthermia Treatment

To demonstrate that the tetraspecific ligand can be used to broaden tumor targeting range of 

nanomaterials with improved targeting efficiency, we used the TetraS-AuNP biomaterial for 

biomarker-dependent killing of four different cancer cell lines, namely A431, SKOV3, U87-

MG, and 293VEGFR2 cells, which overexpress or express EGFR, HER2, αvβ3, and VEGFR2, 

respectively, through hyperthermia treatment. Briefly, 100 nM TetraS-AuNP biomaterial 

was first incubated with each cell line at 37 °C for 30 min to promote ligand-receptor 

binding and/or receptor-mediated endocytosis. After extensive washing to remove TetraS-

AuNP biomaterial that was not internalized or weakly attached to cancer cells, the cells were 

irradiated for 20 min by using a near IR (NIR) laser at 800 nm and 1 watt [41]. To assess 

cell viability, calcein AM and ethidium homodimer (EthD-1) were added one hour post-

irradiation, for the detection of live cells and dead cells, respectively [41]. As shown in 

Figure 5 B–C, all four cell lines were viable upon the NIR irradiation in the presence or 

absence of the PEGylated AuNPs, indicating that NIR irradiation was not harmful to the 

cancer cells, and the PEGylated AuNPs were neither nonspecifically attached nor uptaken 

by these cancer cells, at least under the conditions we applied. When the AuNPs were 

targeted with the tetraspecific ligand, significant cell death (95%) was observed for A431, 

SKOV3, and 293VEGFR2 cells, upon irradiation using NIR laser for 20 min (Figures 5B and 
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C), whereas cells outside of the irradiation range maintained near complete viability 

(Supplemental Figure 2). For U87MG cells, the percentage of cell death was approximately 

20% (Figure 5B), consistent with the low expression level of αvβ3 on the surface of this cell 

line [42]. These results strongly suggest that the tetraspecific ligand can be used to 

effectively targeting AuNPs for hyperthermia-mediated cell killing of different cancer cell 

lines in a highly specific biomarker-dependent manner.

3.7. Analysis of Synergistic Binding to EGFR and HER2

As we have demonstrated, the tetraspecific ligand retains specific binding against all four 

targets and should presumably show synergistic avidity effect when more than two receptors 

are present on the cancer cell surface with relatively similar abundances. However, it is 

challenging to examine such synergistic effect because the expression levels of different 

biomarkers on cancer cells are often highly biased and it is difficult to find well 

characterized cancer cell lines that have two biomarkers (i.e., EGFR and HER2) expressed 

at proximate levels. To quantitatively address the possible synergistic effect, we first used an 

artificial system by immobilizing EGFR and HER2 on the surface of Octet biosensor at 

different ratios, which allows us to measure the binding affinities when EGFR and HER2 are 

present at different concentrations and ratios. To precisely tune the ratio between EGFR and 

HER2 on the surface, we used anti-human Fc capture biosensor that could capture the Fc 

portion of EGFR extracellular domain (ECD)-Fc and HER2 ECD-Fc with equal strength and 

therefore result in surface with EGFR and HER2 immobilized at pre-determined ratios. As 

shown in Table 5, when EGFR or HER2 was immobilized alone, no additive effect on 

binding affinity was detected. Significantly, a dramatic synergistic binding effect (more than 

1,500-fold and 10,000-fold increase for HER2 and EGFR binding, respectively) was 

observed when EGFR and HER2 were immobilized at 1:1 molar ratio, a condition that 

presumably maximizes the avidity binding effect. When either EGFR or HER2 was co-

immobilized with HER3 ECD-Fc, no such additive effect was observed, consistent with the 

absence of HER3-binding moiety in the tetraspecific ligand. This result also suggested that 

the binding of tetraspecific ligand with EGFR/HER2 could be much tighter than that of 

monospecific ligands. This result also suggested that the binding of tetraspecific ligand with 

EGFR/HER2 could be much tighter compared to monospecific ligands. To investigate this 

possibility, we performed a competitive binding assay of monospecific ligands with 

tetraspecific ligand using a biosensor with both EGFR and HER2 immobilized. The 

experiment was designed to first bind tetraspecific ligand to biosensors with both receptors 

immobilized, followed by a competitive binding with either buffer (Figure 6A, no 

competition) or a high concentration mixture of EGFR and HER2 monospecific ligands as 

competitors (Figure 6B). As illustrated in Figure 6, the target-binding of monospecific 

ligands on EGFR/HER2 was completely abrogated by the pre-bound tetraspecific ligand 

(Figure 6B), suggesting that tetraspecific ligand binds both EGFR and HER2 receptors 

simultaneously and with binding strength much higher than each of the monospecific 

ligands.

To examine the synergistic effect in cell-based assays, the cell line used for test must 

express at least two of the target receptors at relatively similar levels. We chose prostate 

cancer cell line LNCaP because these cells appear to express EGFR and HER2 at levels that 
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are not very different [43]. As illustrated in Figure 7A, both EGFR- and HER2-binding 

monospecific ligands and tetraspecific ligand (all labeled with Alexa 555) bound to LNCaP 

cells when the concentrations were used at 200 nM. We postulated that the binding of 

fluorescently-labeled tetraspecific ligand to LNCaP cells should be abolished by a large 

excess of unlabeled same ligand. However, if the binding involves two different receptors, 

the synergistic avidity effect will make the tetraspecific ligand bind more tightly, an 

interaction that is difficult to disrupt by a large excess of monospecific EGFR- and HER2-

binding ligands, even when both are present. Indeed, incubation of 200 nM Alexa 555-

labeled tetraspecific ligand with LNCaP cells in the presence of 10-fold molar excess (2 μM) 

of unlabeled tetraspecific ligand yielded no detectable cell binding compared to background 

cellular autofluorescence (Figure 7B). However, the binding of Alexa 555-labeled 

tetraspecific ligand was maintained at up to 90% fluorescent intensity compared to the 

binding of tetraspecific ligand alone (Figure 7A) when incubated with LNCaP cells in the 

presence of 10-fold molar excess (2 μM) of both unlabeled monospecific EGFR- and HER2-

binding ligands (Figure 7C).

4. Discussion

It is widely believed that combination anti-cancer therapies that simultaneously target 

multiple signaling pathways essential for tumorigenesis and metastasis could increase 

therapeutic efficacy and limit the development of drug resistance. One promising approach 

to addressing the challenge is by conferring multiple specificities to nanomaterials, which 

hold the great potential of being applied for simultaneous targeting of multiple signaling 

pathways on many different cancer types. Targeting ligands based on large and complex 

structures (i.e., monoclonal antibodies) are difficult to engineer to achieve desirable 

targeting features, including low cost, high stability, multispecificity, and site-specific 

conjugation, that are ideal for conferring smartness to nanoparticles [1–3]. Considerable 

attention has been paid to the utility of small protein domains as a source of engineered 

affinity molecules. Targeting ligands based on monomeric small protein domains with high 

solubility, stability, and minimal aggregation tendency are ideal for oriented and site-

specific conjugation with nanoparticles that often possess complex and denaturing surfaces. 

Furthermore, small targeting ligands with simple but stable structures allow for 

accommodation of greater number of targeting moieties on the nanoparticle surface. In this 

study, a tetraspecific targeting ligand was developed by genetically fusing four monospecific 

targeting ligands in tandem against EGFR, HER2, αvβ3, and VEGFR2, respectively, via 
flexible and tunable linkers. In general, the binding affinity of the tetraspecific ligand against 

each target receptor was slightly decreased compared to the corresponding monospecific 

ligand. We attribute this to the complex structure of the tetraspecific ligand and possible 

inter-domain hindrance that might result in minor structural disturbance and reduced 

accessibility by the target receptors. Despite these minor reductions in binding affinity, our 

analyses demonstrate the persistence of biomarker-dependent binding of tetraspecific ligand 

to four different cell lines overexpressing each targeting receptor. It is possible to further 

tune the lengths and positions of the flexible linkers to minimize the affinity reduction. In 

principle, each targeting moiety in the tetraspecific ligand is readily tunable and replaceable 

by other desired targeting moiety. In addition, other modular domains can be integrated, 
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including more targeting moieties or domains with biological functions such as cell 

membrane penetration and siRNA-binding. In the clinic, however, immunogenicity has 

complicated attempts to assemble different functional domains into a single multispecific 

ligand due to non-human origin of many engineered targeting ligands. Because FN3 

domains are commonly found in many extracellular human proteins and therefore less 

immunogenic, engineered targeting ligands based on FN3 domains with human origin could 

be developed to address this issue [26]. Our tetraspecific ligand currently features a mixture 

of Z domain and FN3 domain-based monospecific ligands, but the plasticity inherent in our 

design would allow replacement of the bacterial Z domain-based ligands with human FN3 

domain-based variants. We are currently engineering all FN3-based multispecific targeting 

ligands to several other cancer biomarkers.

It has been a major unmet need to overcome the acquired drug resistance in a wide variety of 

cancer cells. The maintenance of multispecificity, thermal and serum stability, and low 

cellular toxicity of tetraspecific ligand makes it a highly valuable reagent for targeting 

nanoparticles to kill cancer cells regardless of their genetic background. AuNPs are ideal for 

tetraspecific functionalization because of their facile synthesis, biocompatibility, non-

toxicity, utility in imaging, and potential application in therapy due to the well-documented 

NIR-induced hyperthermia effect [2, 38,39]. We demonstrated that tetraspecificity was 

readily conferred to AuNPs, and the resulting AuNP biomaterial can be used to induce 

effective cell death through NIR irradiation in a highly specific biomarker-dependent 

manner (Figure 5). Therefore, the tetraspecific ligand developed in this work provides a 

facile and robust approach to targeting gold nanoparticles for hyperthermic treatment of 

various cancers with different biomarkers and drug resistant properties. It should be noted 

that the conjugation of tetraspecific ligands onto AuNPs did not improve target-binding 

compared to free tetraspecific ligand. We suspect that the expected avidity effect could be 

compromised in many targeted biomaterials due to the presence of multiple un-optimized 

components on the surface of biomaterials. In AuNPs, for example, the introduction of PEG, 

which is generally used to make nanoparticles biocompatible and well dispersed in 

physiological conditions, could affect multivalency and avidity. Ideally, the targeting ligands 

should be conjugated at the end of PEG molecules to minimize the potential for interference 

from PEG. It appears that the presence of the PEG layer on AuNPs does not affect target-

binding affinity and specificity of the tetraspecific ligand. We attribute this to the 

introduction of long flexible linkers on the tetraspecific ligand and the use of low molecular 

weight (2 kDa) PEG with a shorter length than high molecular weight PEGs. It is also 

possible that the density of PEG on the surface of AuNPs is not high, making tetraspecific 

ligands still accessible by their receptors. It is of great interest to compare the monospecific 

ligand to tetraspecific ligand in the AuNP studies. However, the binding affinity of each 

monomeric targeting ligand is stronger than that of the corresponding one on the 

tetraspecific ligand (Table 1). This makes the comparison between monospecifically-

targeted and tetraspecifically-targeted AuNPs difficult. AuNPs are limited, however, in that 

they are not biodegradable and NIR has limited penetration depth when used in the clinic 

[44]. Other nanomaterials, such as polymeric nanoparticles, liposomes, and inorganic 

nanoparticles can be easily functionalized with ligands containing a single C-terminal 

cysteine, thereby expanding the repertoire of the tetraspecific ligand in nanoparticle 
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applications [1,3,4]. The combination of the tetraspecific ligand described here with 

different nanomaterials allows for the generation of a wide variety of ‘smart’ biomaterials 

that can be used to target multiple types of cancer cells with improved targeting efficiency.

Our experiments indicate a greatly empowering synergistic effect between the tetraspecific 

ligand and both EGFR/HER2 receptors (Figures 6, 7, and Table 5). This is consistent with 

the report by Ekerljung and co-workers showing that a bispecific affibody against EGFR and 

HER2 had up to 30-fold enhanced binding affinity upon simultaneous binding to both 

receptors [45]. We demonstrated that the tetraspecific ligand possessed desirable synergistic 

receptor-binding effect to a much greater extent. Upon in vitro binding with surface 

immobilized EGFR/HER2 at a 1:1 molar ratio, the target-binding affinity of the tetraspecific 

ligand increased approximately 1,500-fold and 10,000-fold for HER2 and EGFR, 

respectively (Table 5). Cell-based competition assays confirmed that the tetraspecific ligand 

bound EGFR and HER2 on LNCaP cells synergistically, rather than additively, making the 

binding not disruptable by a 10-fold molar excess of a mixture of monospecific ligands 

(Figure 7). Due to the highly varied expression level and internalization rate of different cell 

surface receptors, and the non-equilibrium environment under physiological conditions, it is 

challenging to investigate the effect of the high-affinity tetraspecific ligand on receptor-

mediated endocytosis. We speculate that, overall, tetraspecific ligand endocytosis is more 

likely to be determined by those receptor(s) with relatively higher abundances. Depending 

on the endocytotic properties of these receptors, the endocytosis of the nanomaterials 

targeted by the tetraspecific ligand could be compromised, unaffected, or potentially 

enhanced. The availability of this tetraspecific ligand will facilitate future studies of this 

question. Once tetraspecific binds EGFR and HER2, it is possible to induce 

heterodimerization between EGFR and HER2, but it is unlikely to generate biologically 

active form of the heterodimer, which requires significant ligand-mediated conformational 

change. Indeed we did not observe any cell proliferation or toxicity effect induced by 

tetraspecific ligand (Figure 4).

5. Conclusion

In summary, a simple targeting ligand with tetraspecificity was successfully generated and 

applied for the delivery of nanomaterials for targeted hyperthermia treatment of cancer cells 

expressing different biomarkers. Synergistic binding effects and the effectiveness of the 

TetraS-AuNP biomaterial indicate the great translational potential of this technology in the 

facile generation of ‘smart’ nanomaterials with greatly broadened tumor targeting range and 

efficiency.
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Figure 1. 
Figure 1 A. Schematic Diagram and Design of the Tetraspecific Ligand

A tetraspecific ligand consists of four target binding moieties and three flexible hinge 

linkers. 6× His tag was engineered at the C-terminus to facilitate affinity purification.

Figure 1 B. Purification of Monospecific and Tetraspecific Ligands on SDS-PAGE.

Each of the monospecific and tetraspecific ligands was purified by metal affinity column 

chromatography and separated on 12 % SDS-PAGE for analysis.
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Figure 2. Comparison of the Binding of Monospecific and Tetraspecific Targeting Ligands with 
Cancer Cells Overexpressing EGFR, HER2, αvβ3 and VEGFR2, Respectively
A) Binding of FITC-labeled monospecific ZEGFR or tetraspecific ligand with EGFR-positive 

A431 cells and EGFR-low MCF7 cells.

B) Binding of FITC-labeled monospecific ZHER2 or tetraspecific ligand with HER2-positive 

SK-OV3 cells and HER2-low MCF7 cells.

C) Binding of FITC-labeled monospecific FN3VEGFR2 or tetraspecific ligand with 

VEGFR2-positive 293VEGFR2 cells and VEGFR2-negative wild type 293 cells.

D) Binding of FITC-labeled monospecific FN3αvβ3 or tetraspecific ligand with αvβ3-positive 

K562αvβ3 cells and αvβ3-negative wild type K562 cells. All the cell-binding signals were 

visualized by confocal microscopy.
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Figure 3. Serum Stability of the Tetraspecific Ligand
Purified tetraspecific ligand (5 μg) was incubated with 10% mouse serum (5 mg) for 0, 6, 

12, and 24 h, respectively. After incubation, the undigested ligand was recovered with Co2+-

NTA resin. Each elution product was loaded and the amount quantified on 12% SDS-PAGE.
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Figure 4. Cell Proliferation Assay
293VEGFR2, K562αvβ3, A431, and SK-OV3 cells were incubated with various concentrations 

of tetraspecific ligand for 48 h at 37 °C. Cisplatin (10 μM) was used as a positive control. 

Cell proliferation was compared based on the absorbance at 490 nm (A490).
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Figure 5. Hyperthermia Treatment of Cancer Cells Using TetraS-AuNP Biomaterial
A) Schematic diagram of AuNPs conjugated with tetraspecific ligand and 2 kDa mPEG-

thiol.

B) and C) The samples (controls or 100 nM of tetraS-AuNP biomaterial) were incubated 

with each cell line for 30 min to promote internalization. NIR irradiation (800 nm, 1 watt) 

was performed for 20 min. Calcein AM staining (green fluorescent signal, 1 μM) was used 

to detect and visualize live cells, and ethidium homodimer-1 (red fluorescent signal, 2 μM) 

was used to detect and visualize dead cells.
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Figure 6. Target-binding Analysis of TetraS-AuNP Bioconjugate Using BLI Octet
0.5 μg of EGFR ECD-Fc and HER2 ECD-Fc receptors were loaded on anti-Fc biosensors. 

A) 200 nM tetraspecific ligand was used for binding with receptors followed by dissociation 

in the assay buffer (1× PBS, 0.002% Tween 20, pH 7.4). B) 200 nM tetraspecific ligand was 

used for binding with receptors followed by competition with a mixture of 200 nM both 

ZEGFR and ZHER2 monospecific ligands. C) Biosensor was incubated with assay buffer first 

followed by incubating with a mixture of 200 nM both ZEGFR and ZHER2 monospecific 

ligands.
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Figure 7. Competition Study between Monospecific and Tetraspecific Ligands with Targets on 
Cancer Cell Surfaces
A) 200 nM Alexa 555-labeled monospecific ZEGFR, monospecific ZHER2, and tetraspecific 

ligand were incubated with LNCaP cells for 30 min at 25 °C. The cell-binding signals were 

visualized by confocal microscopy.

B) 200 nM Alexa 555-labeled tetraspecific ligand was mixed with 10 molar excess (2 μM) 

of unlabeled tetraspecific ligand, followed by incubation with LNCaP cells for 30 min at 25 

°C.

C) 200 nM Alexa 555-labeled tetraspecific ligand was mixed with a mixture of 10 molar 

excess (2 μM) of unlabeled monospecific ZEGFR and ZHER2 ligands, followed by incubation 

with LNCaP cells for 30 min at 25 °C. The cell-binding signals were visualized by confocal 

microscopy.
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Table 1

SPR Binding Analysis of Each Monospecific and Tetraspecific Targeting Ligand Using Purified Receptors

Targeting ligand Target receptor: VEGFR2

ka(M−1s−1) kd(s−1) KD(M)

MonoS FN3VEGFR2 1.0 ± 0.2 × 103 4.9 ± 0.5 × 10−7 0.5 ± 0.1 × 10−9

TetraS 1.0 ± 0.4 × 103 1.4 ± 0.4 × 10−6 1.4 ± 0.2 × 10−9

Targeting ligand Target receptor: αvβ3

ka(M−1s−1) kd(s−1) KD(M)

MonoS FN3αvβ3 2.5 ± 0.2 × 103 8.0 ± 0.4 × 10−6 31 ± 3.0 × 10−9

TetraS 1.1 ± 0.2 × 103 8.0 ± 0.6 × 10−6 73 ± 5.5 × 10−9

Targeting ligand Target receptor: EGFR

ka(M−1s−1) kd(s−1) KD(M)

MonoS ZEGFR 1.0 ± 0.2 × 103 2.6 ± 0.3 × 10−7 2.6 ± 0.3 × 10−9

TetraS 3.1 ± 0.6 × 103 5.2 ± 1.2 × 10−6 17 ± 3.4 × 10−9

Targeting ligand Target receptor: HER2

ka(M−1s−1) kd(s−1) KD(M)

MonoS ZHER2 0.9 ± 0.2 × 103 7.7 ± 1.5 × 10−7 0.9 ± 0.2 × 10−9

TetraS 4.4 ± 1.3 × 103 6.4 ± 2.1 × 10−6 15 ± 5.1 × 10−9
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Table 2

Cell-binding Affinity Measurement by Flow Cytometry

Cell lines Targeting ligand KD Targeting ligand KD

A431 MonoS ZEGFR 11 ± 1 nM TetraS 28 ± 3 nM

SK-OV3 MonoS ZHER2 10 ± 2 nM TetraS 25 ± 2 nM

293VEGFR2 MonoS FN3VEGFR2 110 ± 11 nM TetraS 160 ± 12 nM

K562αvβ3 MonoS FN3αvβ3 120 ± 8 nM TetraS 145 ± 8 nM
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Table 3

The Melting Temperatures of Monospecific and Tetraspecific Targeting Ligands Estimated by CD Analysis

Targeting ligand Tm(°C)

MonoS-FN3VEGFR2 61.5 ± 0.5

MonoS-FN3αvβ3 80.0 ± 2.0

MonoS-ZEGFR 61.0 ± 1.0

MonoS-ZHER2 63.5 ± 1.5

TetraS 60.0 ± 2.0
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Table 5

KD Measurements of Tetraspecific Ligand on Different Receptor(s) by Octet

Molar ratio of immobilized receptor(s) KD

[EGFR] : [HER2]=1 : 0 8.4 nM

[EGFR] : [HER2] = 0 : 1 1.3 nM

[EGFR] : [HER2] = 1 : 1 0.75 pM

[EGFR] : [HER3]=1 : 1 9.0 nM

[HER2] : [HER3]=1 : 1 1.0 nM
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