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Abstract

A lipid/calcium/phosphate (LCP) nanoparticle (NP) formulation (particle diameter ~25 nm) with

superior siRNA delivery efficiency was developed and reported previously. Here, we describe the

successful formulation of 111In into LCP for SPECT/CT imaging. Imaging and biodistribution

studies showed that, polyethylene glycol grafted 111In-LCP preferentially accumulated in the

lymph nodes at ~70% ID/g in both C57BL/6 and nude mice when the improved surface coating

method was used. Both the liver and spleen accumulated only ~25% ID/g. Larger LCP (diameter

~67 nm) was less lymphotropic. These results indicate that 25 nm LCP was able to penetrate into

tissues, enter the lymphatic system, and accumulate in the lymph nodes via lymphatic drainage

due to 1) small size, 2) a well-PEGylated lipid surface, and 3) a slightly negative surface charge.

The capability of intravenously injected 111In-LCP to visualize an enlarged, tumor-loaded sentinel

lymph node was demonstrated using a 4T1 breast cancer lymph node metastasis model. Systemic

gene delivery to the lymph nodes after IV injection was demonstrated by the expression of red

fluorescent protein cDNA. The potential of using LCP for lymphatic drug delivery is discussed.

1. Introduction

The lymphatic system is a central component of the immune system and serves as the

secondary circulation system responsible for the drainage of fluid, proteins, and waste

products from tissues into the blood. Lymph nodes also play an important role in infectious
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disease, inflammation, and cancer [1]. Primary tumors commonly invade draining lymph

nodes, which then serve as a reservoir for further metastatic spread of cancer cells [2–4].

The delivery of genes and drugs to both local, draining lymph nodes and the lymphatic

system as a whole is a challenging task. Certain lipophilic compounds such as long-chain

fatty acids, cholesterol esters, triglycerides, and lipid-soluble vitamins can be transported

through the lymphatic channels [1, 5]. However, most chemotherapy agents do not gain

access to the lymphatic system and lymph node metastases after conventional intravenous

(IV) infusion [1, 5]. Consequently, the development of clinical chemotherapy for lymph

node metastasis has remained elusive.

Many different types of nanoparticle (NP), including liposomes, silica NPs, and other

polymer-based drug delivery systems, have exhibited improved efficiency in regionally

delivering drugs to the lymphatic system [6–10]. For example, intraperitoneally (IP) injected

liposomes containing doxorubicin result in an 8- to 14-fold (4 h post injection) and a 3- to 6-

fold (24 h post injection) increase in doxorubicin concentration in the draining lymph nodes

in rats compared to free doxorubicin [6]. However, no significant difference was observed

after IV administration. Thus, methods for effective delivery of IV administered NP to the

lymphatic system are still needed for the detection of lymph node metastasis.

Non-invasive imaging techniques using nuclear medicine, such as single photon emission

computer tomography (SPECT) and positron emission tomography (PET) have been

developed [11, 12]. Among the radionuclides used in clinical practice, 111In is the second

most widely used radionuclide in clinical practice, surpassed only by 99mTc. 111In displays

major decay at photon energy levels of 171.3 and 245.4 keV, within the ideal range of the

detector device. The half-life of 111In (2.83 days) is also advantageous because prolonged

exposure to the radionuclide may cause undesired toxicity and should be prevented. Many

studies have demonstrated in vivo imaging of tumors with various types of NPs using

SPECT/CT or PET/CT technique [12–14].

Lipid/calcium/phosphate (LCP) NPs were first developed for siRNA delivery [15–17] and

can also successfully deliver plasmid DNA to hepatocytes [18]. Based on the mechanism of

formation of the CaP core, we hypothesized that any drug or radionuclide that can form co-

precipitates with CaP has the potential to be formulated into LCP. Since indium (In) can

form precipitates with phosphate very efficiently (solubility product constant, Ksp, of InPO4

= 2.3×10−22) in a manner similar to that of calcium (Ksp of Ca3(PO4)2 = 1.0×10−25), we

hypothesize that 111In will be a good candidate to add to LCP formulations to provide in

vivo imaging capability.

Systemic accumulation of NPs in the lymph nodes after IV administration has rarely been

reported. A 25 nm, dextran-coated, ultrasmall super-paramagnetic iron oxide (USPIO,

Feridex®) NP has shown systemic lymphotropism after IV administration and has been

evaluated for MRI of clinical lymph node metastasis [19–22]. However, larger iron oxide

NPs coated with the same dextran coating were found to preferentially accumulate in the

liver and spleen [19]. Another self-luminescing, near-infrared semiconductor polymer NP

(30~40 nm) capable of accumulating in the lymph node at a certain level has been described
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recently for lymph node mapping and tumor imaging [23]. However, quantitative data

showing the level of accumulation is missing and liver showed the highest accumulation

according to near-infrared fluorescent imaging.

Other NPs of similar size (25~30 nm) or smaller may exhibit prolonged circulation time in

the blood. No preferential accumulation in lymph nodes has been reported, however. For

example, one recent publication reported that PET imaging demonstrated a long-circulating,

15 nm, micellar NP had minimal accumulation in the liver and spleen, with ~6% ID/g tumor

accumulation. However, this micellar NP did not show lymphotropism [24]. Another recent

publication reported 30 nm Au nanocages for use in tumor PET imaging also exhibit

minimal accumulation in the liver and spleen but no lymphotropism [25]. Thus, NP

lymphotropism may be correlated not only with NP size but also other surface properties.

In this paper, we demonstrate that LCP were able to achieve both systemic delivery of genes

to the lymphatic system and imaging of lymph node metastasis by a mechanism similar to

the aforementioned Feridex®. The systemic lymphotropism of LCP and Feridex® was

achieved by tissue penetration and an atypical lymphatic drainage mechanism that is

different from phagocytic uptake mechanisms used by locally injected NPs to accumulate at

regional draining lymph nodes. Coating of the NP surface with a lipid bilayer or dextran

may contribute to the unusual lymphotropism.

2. Materials and Methods

2.1 Materials

Cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), dioleoylphosphatydic acid

(DOPA), 1,2-Dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP), 1,2-

distearoryl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000)

ammonium salt (DSPE-PEG2000), and 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-

yl)amino] dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC) were purchased from

Avanti Polar Lipids, Inc. (Alabaster, AL). 111InCl in 0.05 N HCl was purchased from

PerkinElmer (Waltham, MA). Double-strand oligo DNA (sense sequence, 5′-
CAAGGGACTGGAAGGCTGGG-3′) and Texas-Red labeled sense-strand oligo DNA

(sequence: 5′-[TxRd]CAAGGGACTGGAAGGCTGGG-3′) were both synthesized by

Sigma-Aldrich (St. Louis, MO). 3H labeling of oligonucleotides was prepared by hydrogen

exchange with 3H2O at the C8 positions of the purines [26]. 4T1-luc2-GFP Bioware® Ultra

Green) cell line was purchased from Caliper (Hopkinton, MA). CR8C peptide was

synthesized by Peptide 2.0 Inc. (Chantilly, VA). Other materials were obtained from Sigma-

Aldrich (St. Louis, MO).

2.2 The preparation of 111In-LCP core
111In-LCP core was prepared using a previously described method [15–17] with some

modifications (Supplementary Figure 1). Two water-in-oil microemulsions were prepared:

1) a calcium emulsion: 111InCl3 was premixed with CaCl2 to make a final 50 μL of 500 mM

CaCl2 in 4 mL of cyclohexane oil phase (cyclohexane/Igepal CO-520 = 71/29, v/v), and 2) a

phosphate emulsion: a sufficient amount of 0.05 N NaOH was added to pH 9.0 Na2HPO4 (to

neutralize the extra HCl in the calcium emulsion) to make final 50 μL of 100 mM Na2HPO4
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also in 4 mL of cyclohexane oil phase. DOPA (92.5 μL 34.6 mM in chloroform) as the inner

leaflet lipid was also added in the phosphate emulsion.

After mixing the two microemulsions for 40 min, 8 mL of absolute ethanol was added to the

micro-emulsion to break the microemulsion system. The mixture was stirred for another 30

min. Then, the mixture was centrifuged at 12,500× g for 15 min to collect the 111In -LCP

cores. The cores were washed once with 10 mL absolute ethanol to remove residual

surfactants. Then, the cores were washed with 1.2 mL cyclohexane and mixed with 1.4 mL

absolute ethanol to remove any residual DOPA. Finally, the cores were washed with 2 mL

of absolute ethanol to ensure the removal of cyclohexane. After all washes, the pellets were

dispersed in 250 μL chloroform. The product was centrifuged at 10,000× g for 5min.

Precipitate containing excess salts and aggregates was discarded and the supernatant

containing LCP cores was collected and stored in a glass vial at −20 °C.

2.3 Outer leaflet coating

For outer leaflet coating, 100 μL of 20 mM cholesterol, 100 μL of 20 mM DOPC, and 50 μL

of 20 mM of DSPE-PEG2000 (all in CHCl3) were mixed with the LCP cores in a glass vial.

After complete removal of the CHCl3 by using a stream of nitrogen and vacuum desiccation

for 1 h, the cores were first suspended in 100 μL of pre-warmed absolute alcohol (55 °C)

and then dispersed in total 1 mL pre-warmed aqueous solution containing 5% dextrose.

2.4 Sucrose gradient centrifugation

Sucrose gradient centrifugation assays were performed using NBD-PC, which had a

structure similar to that of DOPC, to mix with DOPC at 1% of the total DOPC to label the

outer leaflet of LCP with fluorescence. The outer leaflet coated LCP was loaded into a tube

containing a sucrose density gradient ranging from 0% to 60% (w/w). After ultra-

centrifugation at 337,000× g for 4 h, excess lipids that were not associated with the LCP

floated to the upper part of the gradient and were separated from the dense LCP which

formed a sharp band above the 60% layer in the gradient.

2.5 Tuning 111In-LCP NP size by adjusting surfactant system

To tune the 111In-LCP core size, a Triton surfactant system (cyclohexane/hexanol/Triton

X-100 = 75/10/15, v/v/v) was mixed with the original Igepal surfactant system

(cyclohexane/Igepal CO-520 = 71/29, v/v). As the portion of the Triton surfactant system

increased, the size of 111In-LCP cores could be enlarged to ~50 nm, making the final larger-

LCP (L-LCP) around 65 nm in diameter.

2.6 Particle size and zeta potential analysis

Particle size and zeta potential of LCP NPs were determined using a Malvern ZetaSizer

Nano series (Westborough, MA). Before measurement, LCP NPs were purified using

sucrose gradient centrifuge method to remove excess lipids. Collected NPs were measured

in water using protocols suggested by the manufacturer.
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2.7 TEM microscopy and sample preparation

LCP cores suspended in chloroform was carefully applied on the formvar/carbon coated

copper 200 mesh grid and allowed to dry for 10 min at room temperature. The volume of

chloroform used should be as small as possible (~1 μL) to prevent dissolution of the

formvar/carbon film. For outer leaflet coated LCP in 5% dextrose solution, 10 μL of the

final LCP solution was applied on the formvar/carbon coated copper 200 mesh grid. The

LCP was allowed to settle on the grid for 10 min. Then the remaining LCP solution was

carefully removed by using a Kimwipes wiper. Another 10 μL of water was used to rinse the

grid to prevent formation of dextrose crystals. After the 10 μL of water was removed

carefully by using Kimwipes wiper, the grid was placed in a dust-free area to allow

complete dryness for at least 30 min before observation using a TEM microscopy (JEOL

100 CS II).

2.8 Determining siRNA entrapment efficiency

To ensure modifications would not compromise the ability to encapsulate siRNA, 35 μg

total double-stranded oligo DNA (as surrogate to siRNA) including 10 μg of 3H-labeled

DNA oligo was added to the calcium emulsion during 111In-LCP preparation. After the LCP

core preparation, oligo entrapment efficiency was determined using liquid scintillation

counting for 3H.

2.9 In vivo SPECT/CT imaging and biodistribution study

All animal work was performed in accordance with and approved by the University of North

Carolina Institutional Animal Care and Use Committee guidelines. Athymic nude (nu/nu)

mice and wild type C57BL/6 mice purchased from National Cancer Institute were used.

SPECT/CT experiments were performed using a GE eXplore speCZT system. A mouse 7-

pinhole collimator was used for high resolution SPECT imaging. Each mouse was injected

through the tail vein with 200 μL of the final 111In-LCP containing ~0.5 mCi of 111In. Mice

were anesthetized with isoflurane and their body temperature was controlled using a water

circuit and warm air. Mice were scanned at 2 h, 4h, and 24 h post IV injection. SPECT/CT

imaging was performed by Biomedical Research Imaging Center at UNC.

Mice were sacrificed and organs/tissues collected at 24 h post injection for biodistribution

studies. Eight lymph nodes, including 2 axillary, 2 brachial, 2 inguinal, and 2 popliteal

lymph nodes were collected. Each organ/tissue sample was counted with a gamma counter

and the reading was corrected for the 111In decay factor during analysis.

2.10 LCP tissue penetrating study by IM injection
111In loaded S- and L-LCP were coated with or without 20% DSPE-PEG2000. Each mouse

received only 10 μL IM injection containing ~5 μCi 111In to the right hind leg muscle to

reduce possible tissue damage. After 3 h or 24 h, mice were sacrificed with major organs

collected for gamma counting. Draining popliteal lymph nodes was collected and four

counter side distal lymph nodes (1 axillary, 1 brachial, 1 inguinal, and 1 popliteal from the

counter side of the IM injection) were also collected for comparison. The gamma reading

was corrected for the 111In decay factor during analysis. Statistical analysis was performed

using a Student’s t-test.
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2.11 Loading Texas-Red oligo into LCP NPs

Double-stranded oligo DNA with Texas-Red labeled on the sense strand was added to the

calcium emulsion during the preparation of the LCP cores. Following the same LCP

preparation protocol, 10 μL IM injection of the Texas-Red oligo loaded S- and L-LCP were

used for the experiment examining the distribution patterns in the draining lymph nodes.

2.12 Study of the distribution of LCP in the draining lymph nodes

Mice were sacrificed 24 h after IM injection of the Texas-Red oligo loaded S- or L-LCP

with the draining popliteal lymph nodes collected. The lymph nodes were fixed in formalin

overnight then put in 30% sucrose solution for another overnight. The lymph nodes were

then mounted in OCT (optimum cutting temperature) compound and snap-frozen by liquid

nitrogen. Frozen sections were cryo-sectioned at a thickness of 20 μm. FITC labeled

antibodies against CD11c or CD11b were diluted to a concentration of 1:500 for

immunostaining. After PBS wash, the slides were mounted with DAPI containing mounting

medium for confocal microscopy observation using a Leica SP2 confocal microscope.

2.13 Establishing 4T1 tumor metastasis model

The luciferase and GFP double-expressed 4T1 murine breast cancer cell line (4T1-luc2-GFP

Bioware® Ultra Green) was used. The tumor model was established by hock injection of

2×105 4T1-Luc2-GFP cells in the right hind leg of 6–8 weeks old female BALB/c mice.

Bioluminescence imaging in a Kodak In-Vivo FX PRO system was performed within 15

min after injection with intraperitoneal luciferin to evaluate tumor metastatic progression

starting around 10 d after hock inoculation. Fluorescent image of the GFP expression of the

dissected lymph nodes were taken using an IVIS Kinetic imaging system.

2.14 Lymph node gene delivery with S-LCP

S-LCP cores were loaded with RFP plasmid and CR8C peptide by mixing 50 μg RFP

plasmid and 50 μg CR8C peptide sequentially with 50 μL of 500 mM CaCl2 solution [18]

with some 111InCl3 for biodistribution evaluation. The core preparation and coating with an

outer leaflet were completed following the same procedure described above. Outer leaflet

lipids of 40% DOPC (or DOTAP) plus 40% cholesterol and 20% DSPE-PEG2000 were used

for coating. Each C57BL/6 mouse received 200 μL of the final S-LCP containing 10 μg of

RFP plasmid and 10 μg of CR8C peptide by IV injection. After 24 h, the mice were

sacrificed and major organs, including 8 lymph nodes, were collected for RFP fluorescence

imaging using a Carestream In-Vivo Imaging System FX Pro and gamma counting.

3 Results

3.1 Preparation of S-LCP and L-LCP

The general procedure for LCP preparation was originally established and optimized for

siRNA encapsulation [15–17]. In order to efficiently formulate 111In into the CaP core,

some major adjustments have been made to this procedure. Since 111In will compete with

calcium for phosphate, the CaCl2 concentration has been reduced from 2.5 M to 500 mM

and the Na2HPO4 concentration (pH 9.0) has been increased from 12.5 mM to 100 mM. For
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the same LCP preparation size, the working microemulsion was thus reduced to 1/8 of the

original volume.

The LCP made with the original Igepal surfactant system (cyclohexane/Igepal CO-520 =

71/29, v/v) was small in size. The CaP core was ~10 nm in diameter and the final LCP NP

coated with the outer leaflet lipids was ~25 nm (Figure 1A), consistent with previous

observations [15, 16]. These small NPs have been termed S-LCP.

By adjusting the microemulsion surfactant system, LCP core size could be tuned between

~10 and ~50 nm in diameter. When mixing the Igepal system with the Triton system at a 1:1

or 1:3 ratio, particles became progressively larger (Figure 1A). When using an Igepal:Triton

ratio at 1:7, the 111In-LCP core was significantly enlarged to ~50 nm. This larger LCP with

a final size, including the outer-leaflet coating, of ~65 nm have been termed L-LCP. Both S-

and L-LCP were coated with dioleoylphosphatidylcholine (DOPC)/Cholesterol/1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)2000 (DSPE-

PEG2000) at 2/2/1 molar ratio for the experiments described here unless otherwise specified.

TEM images of the final S- and L-LCP after outer leaflet coating showed that both NPs

were well-dispersed (Figure 1B). The lipid membrane coating of S- and L-LCP was further

characterized by negative staining using uranyl acetate (Figure 1C).

3.2 Characterization of 111In-LCPs

Sucrose-gradient centrifugation was used to purify LCP NPs for characterization described

below. DLS analysis revealed a fairly uniform S-LCP size (~25 nm) with a polydispersity

index (PDI) below 0.3 and a zeta potential of approximately −20 mV. L-LCP, on the other

hand, was around 67 nm in size with a PDI of ~0.4 and a zeta potential around −18 mV

(Table 1). The zeta-potentials of LCP with different outer leaflet coatings are listed in Table

2.

Using a 3H-labeled oligodeoxynucleotide (oligo) and scintillation counting, it was

determined that S-LCP could entrap oligo at an efficiency of ~60%, which was not affected

by the presence of 111In. Oligo entrapment by L-LCP was also unaffected by the presence

of 111In, but only ~30% of the oligo was entrapped (Table 1). 111In entrapment of both S-

and L-LCP was around 30% (Table 1). Inductively coupled plasma mass spectrometry was

used to analyze the LCP core composition. For both S- and L-LCP, the Ca/P ratio was about

1:1, which was different from that of the naturally occurring hydroxyapatite

(Ca10(PO4)6(OH)2, Ca/P = 1.67) (Table 1). These results indicated that the modifications

made for efficient 111In encapsulation did not significantly change any of the properties

listed in Table 1 of the LCP made without 111In.

3.3 Accumulation of S-LCP in the lymph nodes

To study the biodistribution of S-LCP, S-LCP containing ~0.5 mCi 111In was tail vein

injected into both wild-type C57BL/6 and nude mice. SPECT/CT images were taken at 2, 4

and 24 h post injection. Little accumulation occurred in the mononuclear phagocytic system

(MPS) in both the liver and spleen (Figure 2A). The majority of the 111In was found in the

heart and vena cava at 2 h and 4 h post injection, indicating that the S-LCP remain in the
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blood circulation after injection. At 24 h, symmetrical lymph nodes throughout the animal

accumulated significant amounts of the S-LCP (Figure 2B). After SPECT/CT imaging, mice

were sacrificed and their major organs were collected. Gamma counting was performed on

collected organs to determine biodistribution. The collected major lymph nodes had ~70 %

ID/g accumulation of S-LCP. Improved S-LCP core washing and coating with the outer

leaflet contributed to a reduced uptake of the particles by the MPS, ~25% ID/g in both the

liver and spleen (Figure 2C). When mice were injected with L-LCP, higher accumulation in

the MPS (~39% ID/g in the liver and ~289% ID/g in the spleen) and lower lymph node

accumulation (~23% ID/g) were observed (Figure 2C).

3.4 PEGylated S-LCP was more tissue penetrating than L-LCP

To study whether PEGylated S-LCP could penetrate into tissue and lead to lymphatic

accumulation, we designed an intramuscular (IM) injection experiment due to the difficulty

of directly observing particles penetrating into tissues from circulation. PEGylated S-LCP or

L-LCP at 10 μL was IM injected into the muscle of right, hind leg. After 3 h or 24 h, mice

were sacrificed and major organs, including lymph nodes and the injected leg, were

collected for gamma counting. Our hypothesis was that if S-LCP has the ability to achieve

high tissue penetration following local intramuscular injection, they can move more freely in

the tissue, enter into circulation in the blood, and accumulate in the distal lymph nodes.

When the NPs were PEGylated, both S- and L-LCP had an early blood distribution

(observed at 3 h) that could be explained by the mechanical force created by the injection

(Figure 3). In support of our hypothesis, S-LCP exhibited much higher tissue penetration

between 3 and 24 h than L-LCP, as illustrated by decreased retention at the injection site (p

< 0.01, N=3) and a sustained concentration in the circulation. Although there was some

accumulation of S-LCP in the liver, the S-LCP depot at the IM injection site served as a

reservoir to provide a continuous supply of NPs to the blood. Distal lymph nodes were able

to accumulate ~41% ID/g of IM injected S-LCP.

As the initial blood distribution of PEGylated, L-LCP was cleared by the liver, the L-LCP

depot at the IM injection site could not penetrate into the blood to maintain the NP

concentration. The L-LCP depot was limited to the injection site and did not decrease

significantly between 3 and 24 h post-injection (Figure 3). The larger NPs were favored by

the MPS uptake processes; PEGylation in a manner similar to that of the smaller NPs did not

alter this pattern [25, 27]. This phenomenon may explain why PEGylated L-LCP

accumulated in the draining lymph node more than S-LCP. In either case, however, the

effects of PEG protection in reducing their uptake by the MPS (i.e., local macrophages and

dendritic cells) were clear.

3.5 Non-PEGylated L-LCP showed highest accumulation in the draining lymph node

Without PEGylation, both S- and L-LCP had limited mobility (though S-LCP was still more

mobile), trapping more than 80% of the injected dose at the site of injection after 3 h. Since

there was no PEG protection against MPS, the dominant uptake mechanism must be by

phagocytosis of NPs by the nearby macrophages. Rapid and efficient accumulation in the

draining lymph nodes at both 3 and 24 h post-injection were observed. Larger particles
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without PEGylation were preferentially taken up by MPS, as demonstrated by their

accumulation levels of ~3000% ID/g in the draining lymph nodes after 3 h. A list of zeta-

potentials of LCP NPs with different surface coatings can be found in Table 2.

3.6 Different distribution patterns of LCP in the draining lymph node

To study the distribution pattern of LCP in the draining lymph node, S- and L-LCP, both

with 20% PEGylation and loaded with Texas-Red labeled DNA oligo, were used to repeat

the IM injection experiment. After 24 h, the draining lymph nodes were collected and fixed

with formalin for frozen section and observation with confocal microscopy. The results

indicated that labeled S-LCP rarely overlapped with CD11c (dendritic cell marker) or

CD11b (macrophage marker) staining (Figure 4). Labeled L-LCP, on the contrary, mainly

overlapped with CD11c and partially with CD11b.

3.7 PEG coating for S- and L-LCP

To demonstrate the importance of PEGylation to the lymphotropism of S-LCP, an

experiment varying the amount of PEG coating on the S- and L-LCP was conducted. S-LCP

without PEGylation exhibited high accumulation in the liver and spleen, as predicted.

However, there was no difference observed among groups modified with 5, 10, and 20%

PEGylation, indicating that S-LCP did not require a high degree of PEGylation (Figure 5A).

As little as 5% PEG reduced MPS accumulation and increased lymphotropism at levels

comparable to NPs with 20% PEGylation. On the other hand, increased PEGylation on L-

LCP was beneficial, as liver accumulation of the NPs decreased with increasing amounts of

PEGylation (Figure 5B). When coated with 5% PEG, the accumulation of L-LCP became

higher in the spleen compared to NPs without PEG. Increasing the amount of PEG to 10 or

20% can further reduce accumulation of the particles in the liver, but accumulation in the

spleen remains unchanged.

3.8 Imaging lymph node metastasis

A variety of human cancers disseminate via regional lymph node metastasis [28]. The ability

to image sentinel lymph nodes and evaluate the stage of metastasis is highly desirable. To

demonstrate whether S-LCP can be used to detect lymph node metastasis, a 4T1 murine

breast cancer cell line expressing both luciferase and green fluorescent protein (4T1-luc2-

GFP) was used to establish a lymph node metastasis model [29]. After confirming the lymph

node metastasis with luciferase imaging (Figure 6A), the mice were injected through the tail

vein with 111In-S-LCP. SPECT/CT imaging taken at 24 h after injection clearly illustrated

the enlarged, tumor-loaded, metastatic lymph node (Figure 6B).

After SPECT/CT imaging, the mouse was sacrificed for GFP imaging of metastatic cancer

in the lymph nodes (Figure 6C) and organ biodistribution analysis by gamma counting

(Figure 6D). The total accumulated dose in the metastatic lymph nodes was ~1.5 times

higher than in counter-side, popliteal lymph nodes. Accumulation in metastatic lymph nodes

decreased to ~9.1% ID/g, whereas the counter-side, popliteal lymph node remained at 35.4%

ID/g. The overall lymph node accumulation level in this BALB/c, 4T1 model was lower

than what was observed in the C57BL/6 and nude mice. High tumor accumulation (19.1%

ID/g) was observed in the 4T1 tumor.

Tseng et al. Page 9

Biomaterials. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.9 Lymph node gene delivery with S-LCP

The ability of S-LCP NPs to deliver genes to the lymph nodes was demonstrated using a

plasmid containing RFP cDNA. An oligo-arginine peptide flanked by two cysteines

(sequence: CR8C) that significantly enhances the gene-expression level in a study of LCP-

mediated delivery of genes to hepatocytes was also used [18]. S-LCP loaded with the RFP

plasmid, CR8C peptide, and 111In were prepared for this study. The cationic lipid, DOTAP

(1,2-dioleoyl-3-trimethylammonium-propane), was included in this study for outer leaflet

coating to compare with DOPC since DOTAP was known for its higher transfection

efficiency. PEGylation at 20% was still used for both DOTAP and DOPC coated S-LCP

NPs. As demonstrated in Figure 7A, S-LCP-DOTAP had high accumulation in the liver,

but 111In gamma counting indicated much lower accumulation in the lymph nodes. On the

other hand, S-LCP-DOPC showed accumulation that was low in the liver and spleen, but

high in the lymph nodes.

The level of RFP gene expression in liver was also high in mice injected with S-LCP-

DOTAP, which correlated well with the accumulation levels (Figure 7B). For gene

expression in the lymph nodes, although S-LCP-DOPC had a higher accumulation level, the

RFP expression level was lower than that produced by injection with S-LCP-DOTAP

(Figure 7C).

4 Discussion

The invention of the LCP illustrated that a small NP with a lipid bilayer coating could be

created while also maintaining a well-PEGylated surface. LPD (Lipid/Polycation/DNA) NPs

previously developed in our lab, also with a lipid-bilayer coating, had an average size

around 100 nm [30]. Although there are extensive studies of NP biodistribution within this

small size range, they are focused mainly on iron oxide and gold NPs, polymeric micelles,

and quantum dots with different surface protection coatings [19, 27]. There is no literature

that characterizes the in vivo biodistribution behavior of well-PEGylated, lipid-bilayer-

coated NPs in such a small size range. To conduct these studies, an enlarged version of LCP

(L-LCP) was thus developed and the in vivo performance of NPs of both sizes was evaluated

for comparison.

When characterizing NP, it is important to ensure that impurities have been properly

removed after preparation. Since excess lipid may form liposomes or micelles that could

interfere with DLS analysis of LCP, purification using sucrose gradient centrifugation was

necessary to ensure accurate characterization of size and zeta-potential. The same LCP

purification method was also applied while determining 111In loading and DNA oligo

entrapment efficiency.

In the in vivo SPECT/CT imaging study, the reduced accumulation of S-LCP in the MPS is

comparable to many other NPs that are similar in size [19, 25, 27]. However, predominant

systemic accumulation in the lymph nodes is rare after IV injection of NPs. For L-LCP,

there was a small amount of accumulation in the lymph nodes that could be attributed to the

presence of smaller NPs generated during the preparation of L-LCP cores (Figure 1A,
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Supplementary Figure 2). The comparison between S-LCP and L-LCP demonstrated that

small size (~25 nm) is an important factor for lymphotropism

Twenty-four hours after the injection of 111In-S-LCP, over 80% of the total injected 111In

dose was retained in the mouse (Figure 2C), suggesting elimination of S-LCP from the

mouse body was very slow. Thus, the elimination of S-LCP from the blood could be due to

redistribution throughout the body, presumably to the lymphatic system (as shown by the

high accumulation in the carcass and lymph nodes, Fig 2C). This finding is in contrast to

previously mentioned reference NPs [24, 25], which might be excreted after reaching the

liver or kidney. Furthermore, these findings support our hypothesis that S-LCP could

penetrate tissues, enter the lymphatic system, and efficiently accumulate in the lymph nodes

via an atypical lymphatic drainage mechanism due to (1) small size (~25 nm), (2) a well-

PEGylated lipid surface, and (3) a slightly negative surface charge. Lymphatic accumulation

of the nanoparticles also explains the reduction in their concentration in the blood while

maintaining minimal excretion and accumulation in other major organs (liver, spleen, etc.).

Since S-LCP was more able to penetrate tissues and was taken up minimally by the MPS

due to their smaller size, one reasonable prediction is that the majority of S-LCP were

drained into the lymph nodes as individual particles. On the other hand, the bulk of the

accumulation of L-LCP in the lymph nodes after IM injection is most likely MPS mediated

[31]. As shown in Figure 4, labeled S-LCP rarely overlapped with CD11c (dendritic cell

marker) or CD11b (macrophage marker) staining. Since dendritic cells and macrophages

were the two major phagocytic cells in the lymph nodes, our results suggested that S-LCP

remained as individual particles in the lymph nodes. In the case of L-LCP, Texas-Red

fluorescence overlapped mostly with CD11c and only partially with CD11b. Combined with

the observation that IV injected L-LCP had low accumulation in the lymph nodes, this

suggests that after IM injection, L-LCP accumulation in the draining lymph nodes was

mainly mediated by MPS uptake at the injection site, after which the MPS cells migrated to

the draining lymph nodes.

How the degree of PEGylation affects LCP lymphotropism is also interesting.

Geometrically, NPs will have increased curvature as they become smaller in size. In order to

provide a comparable degree of surface protection, a higher degree of PEGylation would be

required by an S-LCP (~25 nm) than an L-LCP (~67 nm). However, smaller NPs might

inherently possess a stealth property that allows them to avoid uptake by the MPS and thus

require less PEGylation. The results in Figure 5 supported this hypothesis. It also suggested

that PEGylation could significantly reduce uptake by the MPS in the liver, but not the

spleen. Only when the NP size was reduced, could we achieve significant reduction in the

amount of accumulation of the NPs in the spleen. This accumulation pattern also holds true

for many other types of NPs in addition to the one described here [25, 27].

Even when PEGylated at 20% PEG, L-LCP exhibited much lower accumulation in the

lymph nodes compared to S-LCP, (~21% vs. ~70% ID/g, respectively). The lower degree of

accumulation in the lymph nodes could be explained by the population of smaller particles

that was generated as a by-product during the process to create the L-LCP cores (Figure
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1A). Alternatively, NPs could be carried by MPS cells in the periphery and migrated into the

lymph nodes [31].

An uneven distribution of 111In in the metastatic lymph node (Figure 6B) was most likely

due to the presence of the tumor mass that excluded lymphatic fluid, an observation that was

also reported in other clinical studies using Feridex® [20, 32].

Due to enlargement of the metastatic lymph nodes caused by tumor growth and

inflammation, the accumulation level was reduced to ~9.1% ID/g as a result of increased

organ weight of the lymph nodes, whereas the counter-side, popliteal lymph node was

measured at 35.4% ID/g (Figure 6D). However, the accumulated 111In signal was sufficient

for imaging, leading to the observation of the uneven distribution pattern (Figure 6B) [32].

The overall lymph node accumulation in this BALB/c, 4T1 model was lower than what was

observed in the C57BL/6 and nude mice. The decrease could be attributed to higher MPS

function induced by the 4T1 tumor, as indicated by a significantly larger spleen in this

model (data not shown). However, the 4T1 tumor achieved high tumor accumulation (19.1%

ID/g), which might also contribute to the overall lower accumulation in the lymph nodes of

this model. This work demonstrated the feasibility of using 111In-S-LCP to image metastatic

lymph nodes via intravenous injection.

The high accumulation and RFP expression level with S-LCP-DOTAP in the liver (Figure

7A) was due to efficient uptake by hepatocytes but not Kupffer cells (as been discussed by

Liu et al, manuscript in submission). For the observation that S-LCP-DOTAP has lower

accumulation but higher RFP expression in the lymph node (Figure 7B), there are two

possible explanations. The first depends on the high transfection efficiency of positively-

charged DOTAP, due to its ability to facilitate endosome escape. The higher expression of

RFP despite the lower delivered dose suggests that S-LCP-DOTAP exhibited a higher gene

expression activity than S-LCP-DOPC. Alternatively, positively charged DOTAP could also

aid in the cellular uptake process after PEG shedding [33–35]. Cellular uptake of S-LCP-

DOPC in the lymph nodes might be limited (Figure 4). If cellular uptake was low, the

bioavailability of the RFP plasmid is likely to be low as well.

Figure 3 suggests that local injection of non-PEGylated larger particles, such as non-

PEGylated L-LCP, would be sufficient for vaccination or sentinel lymph node mapping

since systemic accumulation and delivery to the lymph node is not required and local

injection of larger particles actually achieved higher levels of local accumulation [36–42].

NPs for vaccination or sentinel lymph node mapping are readily achievable since they do

not require a high degree of PEGylation. There is also a fairly broad, acceptable range of

particle size. On the other hand, the more sophisticated S-LCP-DOPC would be more

effective in achieving systemic lymphatic drug delivery, due to highly specific accumulation

in the lymph nodes after IV injection. This characteristic would be desirable in the treatment

of diseases such as HIV infection. The HIV virus in the lymph nodes is difficult to treat due

at least in part to the limited ability of anti-HIV drugs to access the lymph nodes [43].

Strategies such as formulating anti-HIV drugs into lipid NPs to enhance the lymph-node-

specific accumulation of anti-HIV drugs have been reported [44–47]. However, these

formulations were administered by subcutaneous injection and could only enhance the
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concentration of drugs in regional lymph nodes. The lymphotropism of LCP, along with the

ability of some anti-viral and anti-tumor nucleoside analogue drugs to be entrapped by a

similar strategy [48], supports the use of LCP for delivery of nucleoside-analog drugs in the

treatment of metastatic cancer and HIV infection in the lymph nodes.

Targeting ligands could be incorporated to enhance cell-type specific uptake. For instance,

CD4-targeting peptides that could enhance cellular uptake by CD4-HIV host cells could be

grafted onto S-LCP-DOPC [49]. With the lymphotropism of S-LCP-DOPC, systemic

eradication of HIV infection in the lymph nodes might be possible. Future directions to

improve the lymphatic drug delivery efficiency of LCP would include: 1) adding an

endosome escape enhancer to the S-LCP-DOPC to boost gene expression activity, and 2)

adding targeting ligands to enhance cell-type specific uptake in the lymph nodes. If

successful, S-LCP-DOPC could serve as a drug delivery formulation that is highly specific

to the lymph nodes.

5 Conclusion

We have demonstrated successful loading of 111In into LCP NPs. A rare lymphotropic

property of S-LCP was studied. The results supported the hypotheses that S-LCP was able to

penetrate into tissues, travel within the lymphatic system, and accumulate in the lymph

nodes as individual NP due to 1) small size, 2) a well-PEGylated lipid surface, and 3) a

slightly negative surface charge. With SPECT/CT, IV injected, lymphotropic S-LCP could

be useful for imaging of systemic lymph node metastasis. Systemic gene/drug delivery to

the lymph nodes has been demonstrated with RFP cDNA expression in lymph nodes. These

results suggest the potential use of IV injected S-LCP formulation as a theranostic delivery

system to the lymphatic system.
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ABBREVIATIONS

LCP lipid/calcium/phosphate

NP nanoparticle

Ksp solubility product constant

MPS mononuclear phagocytic system

ID/g injected dose per gram tissue

SPECT single photon emission computer tomography
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PET positron emission tomography

USPIO ultra-small superparamagnetic iron oxide

DOPC dioleoylphosphatidylcholine

DOPA dioleoylphosphatidic acid

CaP calcium phosphate

DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene

glycol)2000)

LPD Lipid/Polycation/DNA

CT computed tomography

NBD-PC 1-Oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-

sn-Glycero-3-Phosphocholine

DLS dynamic light scattering

PDI polydispersity index

PK pharmacokinetics

GFP green fluorescent protein

RFP red fluorescent protein
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Figure 1.
A) TEM images of 111In -LCP core made with different Igepal system to Triton system mixing ratio. S- and L-LCP were made

by Igepal system to Triton system ratio 1:0 and 1:7, respectively. B) TEM images of S- and L-LCP after outer leaflet coating. C)

Negative staining of S- and L-LCP to show the lipid coating.
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Figure 2.
A) SPECT/CT images of nude mouse taken at 2 h and 4 h post IV injection of S-LCP containing ~0.5 mCi 111In. Strong 111In

signals were mainly observed in the heart and vena cava (red arrow). B) SPECT/CT images taken at 24 h post IV injection. Four

different horizontal sections were included to show that symmetrical lymph nodes (yellow arrows) throughout the body

accumulated significant amount of S-LCP. C) Biodistribution results determined by organ dissection and gamma counting. S-

LCP in nude mice and C57BL/6 mice; L-LCP in C57BL/6 mice were shown. Note that only eight major lymph nodes were

collected for counting. (N=3 for each group)
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Figure 3.
Biodistribution comparison after IM injection of 111In loaded S- and L-LCP coated with or without 20% DSPE-PEG2000. Mice

were sacrificed at 3 h or 24 h post IM injection.
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Figure 4.
S-LCP was largely not co-localized with phagocytic cells in the draining lymph node observed with confocal microscopy. LCP

was labeled with Texas-red-labeled oligo and phagocytic cells (CD11c for dendritic cells and CD11b for macrophages) were

labeled with green. Nuclei were stained with DAPI in blue. Left panels are for S- and right panels are for L-LCP, respectively.
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Figure 5.
Effect of PEGylation on the biodistribution of S-LCP (A) and L-LCP (B). Results with different degree of PEGylation at 0%,

5%, 10%, and 20% were shown.
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Figure 6.
Imaging lymph node metastasis on a 4T1 breast cancer model. A) Bioluminescence image of two BALB/c mice was taken 10 d

after hock inoculation. B) SPECT/CT images taken at 24 h post IV injection of 111In-S-LCP. Two horizontal and two vertical

sections were shown. The enlarged and tumor loaded sentinel, popliteal lymph node could be directly compared with the

counter-side, popliteal lymph node. C) GFP fluorescent images of the metastatic 4T1-luc2-GFP cancer cells in the lymph nodes.

Eight lymph nodes (from top to bottom: 2 axillary, 2 brachial, 2 inguinal, and 2 popliteal) from both side of one mouse were

shown. D) S-LCP biodistribution 28 h post injection at liver, spleen, 4T1 tumor, and various lymph nodes by gamma counting.

(N=3)
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Figure 7.
A) Biodistributions of S-LCP-DOPC and S-LCP-DOTAP with 20% PEGylation at 24 h post IV injection determined by gamma

counting. RFP gene expression at the major organs (B) and the eight lymph nodes (C) were shown by RFP fluorescent imaging.
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Table 2

Zeta-potentials of LCP with different outer leaflet coatings

DOPC/Cholesterol + 20% DSPE-PEG DOPC/Cholesterol + 0% DSPE-PEG DOTAP/Cholesterol + 20% DSPE-PEG

S-LCP −19.9 ± 4.1 mV −3.8 ± 2.1 mV 21.3 ± 2.1 mV

L-LCP −18.0 ± 2.0 mV −3.3 ± 1.8 mV N/A

Measured by dynamic light scattering (N=3)
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