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Evolutionary biology

Rapid evolution of mimicry following
local model extinction

Christopher K. Akcali and David W. Pfennig

Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA

Batesian mimicry evolves when individuals of a palatable species gain the

selective advantage of reduced predation because they resemble a toxic

species that predators avoid. Here, we evaluated whether—and in which

direction—Batesian mimicry has evolved in a natural population of

mimics following extirpation of their model. We specifically asked whether

the precision of coral snake mimicry has evolved among kingsnakes from a

region where coral snakes recently (1960) went locally extinct. We found that

these kingsnakes have evolved more precise mimicry; by contrast, no such

change occurred in a sympatric non-mimetic species or in conspecifics

from a region where coral snakes remain abundant. Presumably, more pre-

cise mimicry has continued to evolve after model extirpation, because

relatively few predator generations have passed, and the fitness costs

incurred by predators that mistook a deadly coral snake for a kingsnake

were historically much greater than those incurred by predators that mistook

a kingsnake for a coral snake. Indeed, these results are consistent with prior

theoretical and empirical studies, which revealed that only the most precise

mimics are favoured as their model becomes increasingly rare. Thus, highly

noxious models can generate an ‘evolutionary momentum’ that drives the

further evolution of more precise mimicry—even after models go extinct.
1. Introduction
When selection is strong, evolutionary change can occur in natural populations

rapidly enough to observe [1]. Because selection to avoid being eaten is typically

strong [2], a context in which rapid evolution may readily arise is Batesian mimi-

cry. Batesian mimicry occurs when an edible species (the ‘mimic’) evolves

to resemble a conspicuous, noxious species (the ‘model’), thereby gaining protec-

tion from predation [3–5]. The degree of resemblance between mimics and their

models is generally sensitive to changes in model abundance [5,6]; mimetic fide-

lity can decrease or increase, depending on whether the model becomes

relatively more or less abundant, respectively [7,8].

How phenotypic resemblance between mimics and their models changes

immediately following model extirpation is unclear, however. Three outcomes

are possible. First, mimics may remain unchanged. Such an outcome might arise

if, for instance, there has not been enough time for mimics to respond to

changes in model abundance. Second, less precise mimicry may evolve [9,10].

Mimicry may break down following model extirpation, because local predators

would no longer experience selection to recognize mimics as dangerous

[6,11,12]. Third, more precise mimicry may evolve. Greater mimetic precision

may evolve after model extirpation if alternative prey are abundant, and if

the fitness costs associated with mistaking a model for a mimic were historically

greater than those associated with mistaking a mimic for a model (as might be

the case with highly noxious models). Indeed, theoretical [13–15] and empirical

studies [7,8] have shown that only the most precise mimics receive protection

from predation when the model becomes increasingly rare (as would be

expected to occur when model extirpation is imminent); thus, selection may
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Figure 1. (a) Non-venomous scarlet kingsnakes, Lampropeltis elapsoides, are Batesian mimics of (b) highly venomous eastern coral snakes, Micrurus fulvius.
(c) Historically, M. fulvius and L. elapsoides co-occurred in the North Carolina Sandhills (as shown here). Around 1960, however, M. fulvius was apparently extirpated
from this region, but not from the Florida panhandle. (Online version in colour.)
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continue to favour the evolution of more refined mimicry,

even after the model is gone.

Here, we focus on a well-studied mimicry complex

to evaluate whether and how Batesian mimicry evolved

following extirpation of the model.
2. Material and methods
(a) Study system
Non-venomous scarlet kingsnakes (Lampropeltis elapsoides)

resemble venomous coral snakes (Micrurus fulvius; figure 1a,b).

Although both species co-occur in the southeastern US,

L. elapsoides also occurs further north (figure 1c). Field exper-

iments have found that natural predators avoid Plasticine

replicas of L. elapsoides in sympatry with M. fulvius but not in

these northern allopatric regions [6], verifying that L. elapsoides
are Batesian mimics of M. fulvius. Moreover, even naive sympatric

predators avoid coral snake patterns [16].

Historically, M. fulvius reached its northernmost limit in the

North Carolina Sandhills [17], a 3900 square kilometres area of

gently rolling, sand-covered hills characterized by longleaf

pine savannah (figure 1c). Local predators include black bears

(Ursus americanus), bobcats (Lynx rufus), coyotes (Canis latrans),

foxes (Vulpes and Urocyon sp.), raccoons (Procyon lotor), hawks

(Buteo sp.), kestrels (Falco sparverius) and loggerhead shrikes

(Lanius ludovicianus).
Micrurus fulvius has always been considered rare in the Sand-

hills (only five specimens exist in museums; see the electronic

supplementary material), and no recent records exist [17].

Indeed, no specimens have been collected in the Sandhills since

1960 (see the electronic supplementary material), despite exten-

sive activity there by herpetologists [18]. Thus, although the

causes are unknown, M. fulvius has apparently been extirpated

from the Sandhills (or, at the very least, they are so rare that

they are functionally extirpated). By contrast, L. elapsoides are

common in the Sandhills [17].

Interestingly, the L. elapsoides that most closely resemble

Micrurus occur in sympatric populations near the sympatry/allo-

patry border (i.e. ‘edge sympatry’) [7]. Field experiments have

shown that selection for mimicry is strongest in edge sympatry

[8]. Because the model is rare in edge sympatry (see above),

the probability of mistakenly attacking it is low, and predators

are therefore more willing to risk attacking imprecise mimics.

Consequently, only precise mimics are favoured in such edge

sympatric regions as the Sandhills [7].
(b) Data collection and analysis
To determine whether and how mimicry changed over time, we

compared five pre-extirpation M. fulvius to 27 post-extirpation

L. elapsoides from the Sandhills (too few pre-extirpation L. elapsoides
were available for analysis). These L. elapsoides were collected in

the 1970s (n ¼ 5 individuals), 1980s (n ¼ 5), 1990s (n ¼ 3), 2000s

(n ¼ 11) and 2010s (n ¼ 3; the electronic supplementary material).
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Specimens were photographed using a digital camera (Canon

PowerShot SX110; Canon zoom lens, 6.0–60.0 mm, 1 : 2.8–4.3);

the width of each ring was measured from digital images using

IMAGEJ v. 1.46 [19]. We then calculated the proportions of red and

black on the mid-dorsum of each snake from its snout to its

cloaca. Previous work showed that these characteristics changed

the most as the mimetic pattern breaks down in allopatry [10,11]

and that these characteristics are targets of predator-mediated

selection [7,8].

We combined the mean proportion of dorsum red and black on

mimics and models into a common principal component score. We

then subtracted the mean PC1 score for M. fulvius from the PC1

score for each individual mimic to calculate a mimic–model dis-

similarity score (where a score of zero indicates that L. elapsoides
and M. fulvius were identical in proportion of red and black; for

example calculation, see the electronic supplementary material).

Using JMP v. 10.0.1, we regressed the dissimilarity score of each

L. elapsoides against the year it was sampled to determine whether

resemblance between L. elapsoides and M. fulvius changed over

time (one outlier was omitted from analysis).

Next, we sought to control for the possibility that any change

in L. elapsoides colour pattern might reflect not predator-

mediated selection favouring mimicry, but some other agent of

selection (e.g. a change in light environment following recent

anthropogenic changes in habitat). We did so in two ways.

First, we assessed whether phenotypic changes similar to those

observed among L. elapsoides from the Sandhills were observed

among L. elapsoides from the Florida panhandle, where M. fulvius
remains abundant (figure 1c). This region is similar to the Sand-

hills in habitat; moreover, the assemblage of predators is similar

across regions. Using the methods above, we compared 23

M. fulvius and 23 L. elapsoides from the Florida panhandle. The

L. elapsoides were collected in the 1970s (n ¼ 13 individuals),

1980s (n ¼ 1), 1990s (n ¼ 2), 2000s (n ¼ 7; electronic supplemen-

tary material). Second, we assessed whether similar phenotypic

changes occurred in corn snakes, Pantherophis guttatus, a non-

mimetic species found in the Sandhills. Like L. elapsoides, P. guttatus
has red and black on its dorsum, but its pattern is characterized by

blotches, not rings. Using the methods above, we sampled 82

P. guttatus that were collected in the 1970s (n ¼ 5 individuals),

1980s (n ¼ 14), 1990s (n ¼ 18), 2000s (n ¼ 41) and 2010s (n ¼ 4;

electronic supplementary material); these specimens were

compared with the five M. fulvius from the Sandhills (see above).

Figure 2. (a) Over the past four decades, L. elapsoides from the Sandhills
(where M. fulvius became extirpated around 1960) have become more similar
to M. fulvius. By contrast, no such trend was found among (b) L. elapsoides
from the Florida panhandle (where M. fulvius remains abundant) or
(c) P. guttatus (a non-mimetic species) from the Sandhills.
3. Results
In 50 years following the apparent extirpation of M. fulvius,
L. elapsoides from the North Carolina Sandhills became

more similar to the former in colour pattern (F1,26¼ 6.997;

p ¼ 0.014; figure 2a). Moreover, these L. elapsoides became less

variable in colour pattern (Spearman correlation between

coefficient of variation in dissimilarity score and decade

sampled ¼ 20.8; n ¼ 5 decades; p ¼ 0.05 (one-tailed test)). By

contrast, L. elapsoides from Florida did not change significantly

in mimic–model dissimilarity (F1,22¼ 1.417; p ¼ 0.247;

figure 2b), nor did P. guttatus, a non-mimetic species from the

North Carolina Sandhills (F1,81¼ 1.028; p ¼ 0.314; figure 2c).
4. Discussion
Theory predicts that mimicry should break down in the

absence of models [5]. Indeed, mimicry in L. elapsoides
breaks down where it occurs in allopatry with its model

[10]. However, instead of observing an erosion of mimicry

following extirpation of M. fulvius from the North Carolina
Sandhills, we observed rapid evolution of more precise mimi-

cry (figure 2a). No such pattern was detected among

L. elapsoides from Florida, where the model has not been extir-

pated (figure 2b), nor among a non-mimetic species from the

Sandhills (figure 2c).

Two lines of evidence suggest that precise mimicry has

evolved in the Sandhills. First, snakes were sampled over a 38

year interval, twice the maximum lifespan of L. elapsoides [20].

Thus, changes occurred across generations. Second, these

changes are unlikely to reflect phenotypic plasticity: there is

no evidence of plasticity in L. elapsoides coloration [21]. Thus,

our data (figure 2a) appear to reflect evolutionary change.

This rapid evolution of precise mimicry is consistent

with theoretical and empirical studies. Theory predicts that

selection for mimetic precision should increase as models

become scarcer [13–15], as would probably have occurred

in the Sandhills. Additionally, field experiments recently
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conducted in this population revealed that free-ranging pred-

ators only avoid precise (but not imprecise) L. elapsoides
mimics [7,8]. Thus, predators in the Sandhills continue to

exert strong selection for more precise mimicry.

Presumably the generalist predators in the Sandhills [17] are

likely to pay a low cost of passing up a palatable meal by mistak-

ing a mimic for a model. By contrast, because M. fulvius are

highly venomous [22], prior to 1960 (when M. fulvius were extir-

pated), predators were likely to have paid a high cost for

mistaking a model for a mimic. This asymmetry in fitness costs

explains the strong selection to avoid the model and its lookalikes.

Eventually, however, mimicry should break down. How

rapidly it does so depends on such factors as the generation
times of predators and mimics, the standing variation in

coloration among mimics, gene flow between mimics in sym-

patry versus allopatry [10], and the intensity of selection

against mimics.

In sum, our data suggest that, paradoxically, selection

imposed on mimics by predators can generate an ‘evolution-

ary momentum’ towards more precise mimicry—even after

models go extinct.
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