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Abstract

Asymmetrical activation of right and left hemispheres differentially influences the autonomic

nervous system. Additionally, each hemisphere primarily receives retinocollicular projections

from the contralateral eye. To learn if asymmetrical hemispheric activation induced by monocular

viewing would influence relative pupillary size and respiratory hippus variability (RHV), a

measure of parasympathetic activity, healthy participants had their left, right or neither eye

patched. Pupillary sizes were then recorded with infrared pupillography. Pupillary dilation was

significantly greater with left than right eye viewing. RHV, however, was not different between

eye viewing conditions. These differences in pupil dilatation may have been caused by relatively

greater activation of the right hemispheric-mediated sympathetic activity induced by left

monocular viewing or relatively greater deactivation of the left hemispheric-mediated

parasympathetic activity induced by right eye patching. The absence of an asymmetry in RHV,

however, suggests that hemispheric asymmetry of sympathetic activation was primarily

responsible for this ocular asymmetry of pupil dilation.
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Introduction

The autonomic nervous system (ANS) plays a critical role in the involuntary control and

regulation of the organs and systems involved in maintaining homeostasis and helping the

body adapt to its environment. The two major divisions of the ANS are the sympathetic and

parasympathetic systems. Beginning with Lowenstein and Loewenfeld (1950a,b), it has been

demonstrated that the ANS controls the size of the pupils with activation of the cholinergic

parasympathetic nervous system (PNS) constricting the pupil (miosis) and the adrenergic

sympathetic nervous system (SNS) dilating the pupil (mydriasis).

Both animal and human studies suggest lateralized hemispheric differentiation of ANS

control. For example, researchers (Hoffman & Rasmussen, 1953; Oppenheimer et al., 1992;

Oppenheimer et al., 1996) demonstrated that right insular cortex stimulation increases

sympathetic activity (increase heart rate) and left insular cortex increases parasympathetic

activity (decreases heart rate). Right hemispheric infarction in the rat is associated with

elevated catecholamines with corresponding increases in heart rate and blood pressure

(Hachinski et al., 1992) and in the human with tachyarrhythmias (Lane et al., 1992). The

volume of right insular cortex infarction correlates well with the degree of catecholamine

elevation (Sander & Klingelhofer, 1995). A right insular lesion is also associated with

greater probability of death within one year, possibly related to pathological sympathetic

activation of the cardiovascular system (Colivicchi et al., 2005).

Further, using tachistoscopic visual half-field stimulation, Wittling et al. (1998) provided

evidence that the left hemisphere appears to be dominant in the parasympathetic control

heart rate. Measures of hand perspiration reflect sympathetic arousal levels of the brain.

Whereas right hemispheric strokes reduce shock-induced hand sweating, left hemispheric

strokes increase hand sweating (Heilman et al., 1978). This finding is consistent with the

subsequent demonstration that the right hemisphere tends to have stronger connection with

the lateral (sympathetic) than medial (parasympathetic) hypothalamus (Lemaire et al., 2011).

While additional studies also appear to support these asymmetries of cerebral hemispheric

control of the ANS (Hilz et al., 2001; Zamrini et al., 1990; Rosen et al., 1982), there are also

some studies which suggest right hemispheric dominance in parasympathetic control of

heart rate (Ahern et al., 2001; Thayer & Lane, 2009). These investigators reported that with

selective hemispheric anesthesia, by means of injecting a barbiturate into the right or left

carotid artery, heart rate variability decreased more with right than left carotid injections,

suggesting greater right hemisphere dominance for vagal control.

Though beyond the scope of the current paper, there appears to be some inter and intra-

hemispheric relationships in the control of the ANS. One possibility is that the hemispheric
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laterality of autonomic control functions in a manner that is similar to the hemispheric

control of attention and emotion in that the right hemisphere may be dominant for both

sympathetic and parasympathetic nervous system control and the left hemisphere may be

more facile in the allocation of parasympathetic resources than sympathetic.

Whereas each side of the retina primarily projects to the ipsilateral hemisphere's geniculo-

calcarine system, there is also evidence the entire retina in each eye has greater projections

to the contralateral superior colliculus. According to Perry and Cowey (1984), about 7 to 10

percent of retinal ganglia cells project to the superior colliculus. Furthermore, these

investigators as well as others (Pollack & Hickey, 1979; Rafal et al., 1990) reported that the

majority (∼70%) of the retinocollicular pathway project to the contralateral superior

colliculus. Additionally, tectoreticular fibers from the colliculus project to the

mesencephalic reticular formation that mediates hemispheric arousal, with ipsilateral fibers

more abundant than contralateral fibers (Truex and Carpenter, 1964) and stimulation of the

each colliculus induces an ipsilateral hemispheric arousal response (Jefferson, 1958). Thus,

each superior colliculus via the tectoreticular system appears to be able to activate-arouse

the ipsilateral hemisphere. Based on this connectivity, monocular visual input into the brain

may be able to asymmetrically activate the cerebral hemispheres; however, little research

has been performed in an attempt to understand the influence of monocular visual input on

the cerebral hemispheric interactions with the components of the ANS as assessed by

measuring alterations of pupillary size, a sensitive and reliable means of assessing

autonomic function (Bar et al., 2005).

A demonstration of this shift in hemispheric arousal can be inferred from behavioral studies

of neglect. Studies of animals and patients have revealed that damage to elements of one

hemisphere's thalamic and mesencephalic reticular activating system can induce the

ipsilesional attentional and action-intentional biases that are characteristic of the unilateral

neglect syndrome (Watson et al., 1974; Watson et al., 1981). Patients with unilateral neglect

have revealed that their injured hemisphere is relatively hypoaroused (Watson et al., 1977).

Thus, these patients' ipsilesional attentional and action-intentional bias appears to be caused

by the relative hyperactivity of the unlesioned contralesional hemisphere (Heilman, 1979),

and this relative contralesional hemispheric hyperactivity can be related to an injury-induced

hemispheric reduction of activity, as well as perhaps a lesion-induced loss of inter-

hemispheric inhibition of the uninjured hemisphere. Support for the loss of inter-

hemispheric hypothesis comes from studies which have demonstrated improvement in

patients with hemispatial neglect who are treated with slow transcranial magnetic

stimulation (TMS) applied to the unlesioned hemisphere, which reduces the unlesioned

hemisphere's activation (Koch et al., 2008).

Sprague (1966) induced what appeared to be contralesional neglect in animals with a

posterior cortical lesion. Subsequently, by ablating the contralesional colliculus, he

demonstrated the reversal of this neglect-like behavior. Since the retinocollicular pathway

primarily projects contralaterally, Posner and Rafal (1987) posited that occlusion of the eye

on the same side as the hemispheric lesion would reduce the activation of the contralateral

colliculus, and thereby reduce the spatial bias associated with neglect. Thus, in those

patients with a right posterior cortical lesion who have left hemispatial neglect, patching the
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ipsilesional (right) eye should theoretically produce relative deactivation of the superior

colliculus contralateral to the lesion while reducing the relatively heightened activation of

the unlesioned hemisphere (the Sprague effect). However, studies on unilateral neglect have

revealed that ipsilesional eye patching showed mixed results by helping some, but not all

patients (Butter & Kirsch, 1992; Serfaty et al., 1995; Barrett et al., 2001).

Based on the above studies demonstrating right-left hemispheric asymmetries in autonomic

control and the potential impact of monocular viewing on hemispheric activation, the goal of

this study was to learn if monocular viewing would affect pupillary size as controlled by the

sympathetic and parasympathetic divisions of the autonomic nervous system. Occlusion of

the left eye may reduce the activation of the right superior colliculus and induce relative

inactivation of the right hemisphere. Since the right hemisphere appears to preferentially

mediate activity of the sympathetic nervous system, occlusion of the left eye may lead to a

relative reduction of pupillary diameter, miosis. In contrast, right eye occlusion and relative

reduced inactivation of the left hemisphere, which may mediate the parasympathetic nervous

system, may induce pupillary dilation, mydriasis.

In healthy individuals without hemispheric injury, it remains uncertain if the change in

pupillary diameter results from deactivation of the colliculus-hemisphere from contralateral

eye patching or activation of the opposing hemisphere from the viewing eye, or a

combination of both via inter-hemispheric inhibition (i.e., activation of one hemisphere

inhibits the other via callosal communication, affecting both sympathetic and

parasympathetic behaviors). With pupillary dilation, this effect could be explained solely

from activation of the sympathetic mediated right hemisphere with left (versus right) eye

monocular viewing. However, pupillary dilation can result from both a direct inactivation

induced by reduced left collicular-hemispheric arousal with left (versus right) eye patching

according to the Sprague effect, as well as inter-hemispheric inhibition with further

deactivation of the left hemisphere mediated parasympathetic system from the opposing

activated right collicular-hemisphere. Similarly, but opposite effects may be seen with right

(versus left) eye monocular viewing.

To learn if these alterations in pupil diameter during monocular viewing can be explained

primarily by alterations of either the sympathetic or parasympathetic components of the

autonomic nervous system or an interaction of both systems, it may be valuable to have an

additional measurement to aid in determining this distinction. Experimental spectral analysis

of respiratory frequency rhythmic oscillations of pupil diameter, or hippus variability

(RHV), may offer a further means of assessing the degree of parasympathetic activation.

Hippus oscillations are presumed to reflect the autonomic nervous system's influence on the

pupillary muscles; and there is evidence to suggest that the oscillations are specifically

related to parasympathetic activity (Huang, 2000; Borgdorff, 1975). The midbrain Edinger-

Westphal nucleus, which gives rise to the parasympathetic nerves that help control pupillary

size, receives connections from the rostral ventral respiratory neuronal cell group (Gaytan

and Pasaro, 1998). Spectral decomposition of the changing pupil diameter reveals distinct

oscillations that correspond to respiratory rhythm (Calcagnini, 2000), a rhythm that is

associated with activity of the myelinated vagal pathway and has been related to cerebral

influence on autonomic behavior (e.g., Friedman and Thayer, 1998). Parnandi and
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Gutierrez-Osuna (2012) demonstrated significant correlations between heart rate variability

and hippus variability using analogous spectral analysis methods. Thus, there are anatomical

and behavioral data to indicate that the application of spectral analysis techniques to the

examination of hippus in response to monocular viewing may be helpful in learning the

relative independent contributions of PNS activity to pupil size. Therefore, if pupillary

asymmetries with right versus left eye viewing are detected, but without simultaneous

alterations of RHV, it would suggest that the pupillary changes are primarily being induced

by alterations of sympathetic activity. In contrast, if there are asymmetries of RHV that

mirror pupillary constriction, it would suggest that the pupillary changes are related to the

effect of monocular viewing on the parasympathetic nervous system.

Based on previous studies demonstrating right-left hemispheric asymmetries in sympathetic

versus parasympathetic control (Hoffman & Rasmussen, 1953; Oppenheimer et al., 1992;

Oppenheimer et al., 1996; Hilz et al., 2001; Zamrini et al., 1990; Rosen et al., 1982), as well

as the influence of collicular ablation on ipsilateral hemispheric activation (Sprague, 1966)

and the possible influence of monocular occlusion reducing contralateral collicular

activation (Posner and Rafal, 1987), we predicted that with left eye patching (right eye

viewing), there would be a reduction of right hemisphere mediated sympathetic activity and

a relative enhancement of left hemisphere mediated parasympathetic activity producing

pupillary constriction. In contrast, with right eye patching and relative left hemisphere

inactivation, we expected a reduction of parasympathetic activation with a relatively greater

sympathetic activation producing pupillary dilation. The purpose of this study is to learn if

right and left monocular viewing can differentially influence the sympathetic versus

parasympathetic components of the ANS as evidenced by pupillary changes.

Method

Participants

Subjects for this study were 14 healthy volunteers (4 women). One participant was excluded

due to lack of sleep and also appearing to be sleepy during the evaluation. A second subject

was excluded due to being left-handed. Thus, 12 self-reported right-handed participants

were included in this study. These participants had a mean age of 22.5 years, +/- 5.2, and

age range of 18-31 years. All participants were screened for adequate visual acuity to

prevent any unnatural strain and discomfort during the experimental session. The visual

acuity required to visualize the targeted crosshairs (+) as described below was estimated at

approximately 20/100 according to the Snellen chart. The participants were free of

diagnosed neurological, ophthalmological or psychiatric diseases. Participants denied taking

any ‘over the counter’ or prescribed medications and were asked to refrain and/or denied

any caffeine intake or other stimulants within a 12-hour period prior to testing.

Apparatus-Monocular Viewing Goggles

A set of specially designed goggles was used for eye patching (Figure 1a, 1b). In order to

control for an asymmetrical somatosensory input due to a typical eye patch, these goggles

were designed from protective eye wear normally purchased at a local store. The goggles

were comfortably fitted over each eye without placing excessive pressure at any point of
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contact with the skin. The clear goggle lens was removable from the supporting frame, thus

allowing a black nylon patch to be placed over the front and back of the lens unilaterally for

complete monocular obstruction of all light. Furthermore, the nylon overlapped along the

perimeter of the leading edge of the lens to further obstruct any light from penetrating on all

sides. Thus, direct light entered the participants' eyes from the monitor and ambient light

from the room was limited. In order to symmetrically balance the tactile sensation from the

nylon perimeter strip in contact with the skin surrounding the orbit of the occluded, a thin

nylon strip was also applied only along the perimeter of the clear lens of the contralateral

viewing eye.

A goggle for binocular viewing (or unpatched condition) was designed with strips of nylon

also placed along the perimeter and overlapped in order to provide an equal and symmetrical

tactile sensation similar to the monocular viewing goggles (Figure 2a,b).

Procedure

Each subject signed an informed consent form in accordance with the Institutional Review

Board at the University of Florida. The experiment took place in an acoustically and

magnetically shielded room. The lighting of the recording room was controlled to be

consistent across subjects by 36 LED bulbs on the ceiling. Light from the left side and the

right side of the ceiling were symmetric. Subjects sat comfortably in a chair in the center of

the recording room facing a monitor. After verifying from each subject the absence of any

light perception to the occluded eye and any tactile asymmetry between left and right,

subjects were asked to place their head on a chin-and-forehead rest to begin recording.

Luminance was measured by LX1010B digital light meter. With the overhead lights on, the

luminance in the direction from the chinrest horizontally to the front of the computer

monitor was 20 cd/m2. The luminance in the direction from the chinrest horizontally to the

left wall and the right wall were the same, equal to 25 cd/m2. With the overhead lights off,

the average luminance of the computer monitor itself was 7 cd/m2. The luminance of the

fixation point was 11 cd/m2. There was no difference in luminance between left and right

portions of the monitor. All the surfaces of the walls of the recording room were made by

black fabric and the reflective luminance of the surfaces was only approximately 1 cd/m2

despite the overhead lighting.

Each subject's pupil size was recorded for 3 sessions in a random order with either the left,

right or neither eye(s) being covered. Each recording session lasted for 4 minutes. The

randomly chosen goggle was donned before each session and assured by each subject for

comfort prior to testing. Instructions were to sit quietly while maintaining a fixated gaze on

a cross-hair “+” measuring 9 × 9 mm displayed on a 20.1″ LCD 1024×768 resolution

monitor at approximately 85 cm from the viewing eye(s). The height and width of the

monitor measured 30.5 × 40.7cm, respectively. The visual angle of the monitor measured

approximately 0.35 degrees for the height and 0.47 degrees for the width.

The size of the pupils and eye movements were recorded with a desktop mounted infrared

eye-tracker (EyeLink 1000) at a sampling rate of 1000 Hz. The experimental paradigm was

delivered by E-Prime software.
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Analysis

Artifact rejection

All the saccade events were automatically detected by the data acquisition system (following

the manual of Eyelink 1000). In addition, the blinks were detected when the pupillary size

dropped to zero. To eliminate the artifact caused by the saccade and blink events, linear

interpolation was performed around each onset of saccade/blink event within a [0 - 500]

millisecond interval.

Statistic of the pupillary size

Time course of pupillary size was low-pass filtered with cutoff frequency at 100 Hz and then

down sampled to 200Hz. The average pupil size for each condition was assessed separately

by the temporal mean of the pupillary time course. The average pupil size was normalized

within each individual subject by dividing the binocular viewing condition.

The reported values for pupil size were assigned an arbitrary unit as a measure for pupil area

according to the Eyelink manual. Pupil size data is not calibrated and the units of pupil

measurement will vary with subject setup. Pupil size is an integer number, in arbitrary units.

Typical pupil area is 100 to 10000 units, with a precision of 1 unit.

Statistic of the hippus variability analysis

The magnitude of the respiratory frequency (RF, 0.12 – 0.50 Hz) component of the pupil

diameter signal was calculated by modifying the Porges-Bohrer method used to quantify

respiratory sinus arrhythmia (Porges, 1985). The pupil diameter time series, sampled at 200

Hz, was convolved with a third order polynomial filter to produce a new time series

containing the variance of trend occurring below the low cut-off frequency (for RF, fc =

0.095 Hz). This baseline was then subtracted from the original time series to generate a time

series representing the hippus variability in the frequency band of spontaneous breathing.

The filtered time series was then down sampled at 5 Hz and processed by a 6th order

Butterworth band-pass filter (for RF, fc1 = 0.12 Hz) to restrict the variance to the frequency

range of interest. Hippus associated with spontaneous breathing was defined as the peak

amplitude within the frequency band of 0.12-0.4 Hz. To conform to assumption for

parametric analyses, the spectral densities representing RFHV were logarithmically

transformed.

Results

Dilation

Average pupillary area was compared using a repeated measures analysis of variance

(ANOVA) with repeated measures of both eyes open, left eye occluded and right eye

occluded. Since the descriptive analyses of the data indicated significant skewing and

kurtosis, a log transformation was performed on the data. The ANOVA performed on this

transformed data indicated a significant difference in pupil size across conditions, F (2, 22)

= 16.142, p < 0.001 [right eye patch] (Mdn [non-log] = 1916.2); left eye patch (Mdn [non-

log] = 1558.7); binocular viewing (Mdn = 1240.1)]. Post-hoc analyses comparing the left
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and right eye block conditions with one-way repeated measures ANOVA indicated a

significant difference, F (1, 11) = 4.159, p = 0.033 with left eye viewing yielding greater

dilation than right eye viewing.

See Figure 3.

Respiratory Hippus Variability

Comparison of the respiratory hippus spectral variability shows a significant difference

between experimental conditions, F (2, 22), = 8.139, p = 0.002. Post-hoc analyses

demonstrate that the RHV is larger during monocular viewing (mean = 9.47, SD = 0.85)

than binocular viewing (mean = 8.84, SD = 0.85) conditions (both eye viewing versus left

eye viewing t (11) = -4.281, p = 0.001; both eye viewing versus right eye viewing t (11) =

-2.700, p = 0.021). However, no significant difference is observed between the left eye

patching (right monocular viewing) and the right eye patching (left monocular viewing)

condition, t (11) = .500, p = 0.627 (Left eye patch mean RHV = 9.51, SD = 0.87; Right eye

patch mean RHV = 9.43, SD = 0.92). Power analysis, assuming stability of the data,

revealed that a total sample size of 5424 would be necessary to demonstrate a statistically

significant laterality effect.

Discussion

In the introduction, evidence that the left hemisphere primarily mediates parasympathetic

activity and the right hemisphere mediates sympathetic activity was introduced. Based on

this hemispheric asymmetry, we hypothesized that activation of the left hemisphere may

reduce pupil size and activation of the right hemisphere may increase pupil size and that

changes in RHV would be greater with left hemisphere activation and lesser with right

hemisphere activation. Since the superior colliculus receives the majority of its retinal

afferents from the contralateral eye and collicular activation induces ipsilateral hemispheric

activation, it was predicted that left eye patching (right eye viewing) would reduce right

hemispheric mediated sympathetic activity along with relative enhancement of left

hemispheric mediated parasympathetic activity producing constriction of the pupil and

greater RHV. In contrast, with right eye patching (left eye viewing) and relative left

hemisphere inactivation, there would be relative reduction of parasympathetic activity and

greater sympathetic activation with an induction of pupil dilation and reduced RHV. The

primary findings of this study were suggestive of a laterality effect for sympathetic but not

parasympathetic control.

In general, the pupils were smaller with binocular viewing than with either right or left eye

monocular viewing. This difference may be related to the greater amount of light activating

the retinal pathways when both eyes are open. When both eyes are viewing, the stimulus

(light) will activate, via both optic nerves and pretectal nuclei, both parasympathetic

Edinger–Westphal nuclei and induce greater constriction of the pupils than when light enters

just one eye. This difference in pupil diameter between binocular and monocular exposure to

light has also been previously reported (Weinhold & Bigelow, 1993).
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The relative pupil size was greater with left than right eye viewing. The reason for this

laterality effect could be primarily from light entering the left eye activating the right

superior colliculus and the right hemisphere, which in turn induced sympathetic activation.

An alternative explanation is that occlusion of the right eye reduced the activation of the left

superior colliculus and left hemisphere, thereby inducing a reduction of parasympathetic

activity, or a combination of both. Therefore, in order to clarify this relationship, RHV was

analyzed.

Since RHV appears to be primarily mediated by the PNS, the finding that monocular

occlusion of either eye resulted in an equal increase in high frequency hippus variability

suggests that the reason for the laterality effect in pupil dilation was primarily due to the

activity of the SNS. The reason that no laterality effect was evident in PNS activity is not

known but may be related to either light intensity or to the novelty of monocular viewing as

a task or, further, differences in laterality of parasympathetic versus sympathetic control in

regulating pupillary response from other approached to autonomic assessment that have

been previously reported. The effect size for the difference of RHV with monocular viewing

was quite small and a sample size of more than 5000 would be necessary for enough power

to detect a difference. Thus, this result may also reflect more bilateral influence in

parasympathetic control than in sympathetic control.

Lowenstein and Loewenfeld (1950a,b) introduced the concept of the “psychosensory reflex”

where all forms of sensory input, except for light with accommodation, lead to pupillary

dilation. In addition to controlling for light entry into the eyes, the experimental apparatus

was designed to control for other possible asymmetrical afferent sensations that may

potentially influence brain activation. Thus, other than light from the monitor directly

penetrating the eye with monocular viewing, the authors are unaware of any asymmetric

sensory stimuli that could potentially affect the diameter of the pupil by a sympathetic

response according to the “psychosensory reflex.” There could be, however, the effect of

novelty in that monocular occlusion in a laboratory setting is a novel procedure. Novelty can

result in the greater allocation of attention and may explain the uniform shift in RHV

observed with monocular viewing regardless of eye (i.e., effect size for novelty>effect size

for monocular viewing).

There have been a few prior studies that have examined the size of the pupil in relation to

hemispheric stimulation. For example, in a study with transcranial magnetic stimulation

(TMS), Niehaus et al. 2001 found that independent of location, TMS induced pupillary

dilation. However, they also found that stimulation over the right central region evoked a

larger dilatation of the pupil than stimulation over the left. These results are consistent with

our findings and also correlate with previous literature that has provided evidence that the

right hemisphere primarily mediates the activity of the sympathetic nervous system.

Case studies and prior experiments have described cardiac-related changes related to

alterations of the ANS induced by cerebral hemispheric damage and especially to the insular

region (Oppenheimer et al., 1992; Oppenheimer & Cechetto, 1990, Hoffman & Rasmussen,

1953). However, the authors are unaware of prior studies reporting alterations of pupil size

as a function of right versus left hemispheric cortical infarctions. Although seizure induced
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ictal pupillary dilation is a common clinical finding, there are only a few cases reported of

pupillary miosis as a clinical manifestation of partial epileptic seizures. For example, Sadek

et al. (2011) reported a patient with epileptic seizures that started in the left hemisphere.

These seizures were associated with miosis, suggesting these left hemispheric seizures

activated the parasympathetic system. Whereas clinical and experimental data suggest the

presence of a “cortical pupillary constrictor area” the localization remains elusive. Some

have argued that the area localizes to the occipitoparietal region (Wang et al., 1931).

However, cases have reported localization to the temporal lobe (Afifi et al., 1990), temporo-

occipital region (Rosenberg, 1991) and middle parietal gyrus (Sadek et al., 2011).

Pupillography is an inexpensive, non-invasive and under-utilized measure (Low, 1997) of

ANS activity with high sensitivity and reproducibility (Bar et al., 2005). As stated by others,

perhaps this tool may further provide a “complimentary assessment of different aspects of

the ANS” (Daluwatte et al. 2012) and “reveal differential patterns in certain disease states”

(Bar et al., 2009). Pupillography also has strong potential applications as a noninvasive

measure of alterations in the ANS. The ability to derive reliable sympathetic and

parasympathetic measures without contact with a person is valuable in that it potentially

improves ecological validity and experimental efficiency. Evaluation of pupillography and

specifically the relationship of RHV to cognitive functions together with typical measures of

RSA will help further validate this technique. Furthermore, future studies directly examining

lateralized hemispheric activation with monocular viewing, by using other physiological

techniques, as well as studies of patients with specific lateralized lesions are needed to help

further examine the implications of our results. Finally, since our study suggests that

monocular viewing can systematically alter sympathetic functions, perhaps future studies

using monocular viewing as a therapy to restore ANS homeostasis may prove to be useful.
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Highlights

1. Based on the Sprague effect, constrained monocular viewing potentially

activates the contralateral hemisphere via the retinocollicular pathway.

2. Measures of pupil diameter and size fluctuation within the frequency of

respiration during constrained monocular viewing suggest a lateralized

sympathetic nervous system response.

3. Pupillary measures including diameter and hippus variability within the

respiration spectrum (RHV), may add a valuable, non-invasive means of

determining fluctuations of the ANS.
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Figure 1. a, b: Goggles for Left Monocular Viewing
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Figure 2. a, b: Goggles for Binocular Viewing
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Figure 3. Average pupil size under binocular viewing and monocular viewing condition (*p<0.05
with Repeated Measures ANOVA) [error bars = standard deviation]
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