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ABSTRACT

Motivation: Genotype imputation has become an indispensible step

in genome-wide association studies (GWAS). Imputation accuracy,

directly influencing downstream analysis, has shown to be improved

using re-sequencing-based reference panels; however, this comes at

the cost of high computational burden due to the huge number of

potentially imputable markers (tens of millions) discovered through

sequencing a large number of individuals. Therefore, there is an

increasing need for access to imputation quality information without

actually conducting imputation. To facilitate this process, we have

established a publicly available SNP and indel imputability database,

aiming to provide direct access to imputation accuracy information for

markers identified by the 1000 Genomes Project across four major

populations and covering multiple GWAS genotyping platforms.

Results: SNP and indel imputability information can be retrieved

through a user-friendly interface by providing the ID(s) of the desired

variant(s) or by specifying the desired genomic region. The query re-

sults can be refined by selecting relevant GWAS genotyping plat-

form(s). This is the first database providing variant imputability

information specific to each continental group and to each genotyping

platform. In Filipino individuals from the Cebu Longitudinal Health and

Nutrition Survey, our database can achieve an area under the

receiver-operating characteristic curve of 0.97, 0.91, 0.88 and 0.79

for markers with minor allele frequency45%, 3–5%, 1–3% and 0.5–

1%, respectively. Specifically, by filtering out 48.6% of markers (cor-

responding to a reduction of up to 48.6% in computational costs for

actual imputation) based on the imputability information in our data-

base, we can remove 77%, 58%, 51% and 42% of the poorly imputed

markers at the cost of only 0.3%, 0.8%, 1.5% and 4.6% of the

well-imputed markers with minor allele frequency 45%, 3–5%,

1–3% and 0.5–1%, respectively.
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1 INTRODUCTION

Genotype imputation has proven to be a powerful tool in

genome-wide association studies (GWAS) by facilitating fine
mapping and the merging of datasets from different genotyping

platforms (Li et al., 2009; Marchini and Howie, 2010). It is a way

to predict genotypes computationally based on linkage disequi-

librium patterns instead of obtaining genotypes by laboratory-

based procedure (Browning and Yu, 2009; Howie et al., 2011; Li

et al., 2010). As it has been shown to directly affect downstream

analysis, imputation accuracy needs to be taken into consider-

ation when designing and performing GWAS (Zheng et al.,

2011). For instance, at the study design stage, a question of

interest would be which commercially available genotyping plat-

form can provide the optimal imputation quality genome-wide

or in certain genomic region(s) of interest. Such a question can be

answered by assessing the imputation accuracy of relevant vari-

ants. However, there has been no resource available to provide

variant imputability information without actually performing

imputation.
A commonly used evaluation method is to mask a subset of

markers, impute their dosages and compare those dosages with

the true (masked) genotypes for those markers (Li et al., 2010).

This method, however, can only be used after genotypes have

already been obtained and therefore cannot help guide study

design decisions. In addition, the evaluation procedure can be

computationally costly because of the requirement of conducting

imputation, particularly with the emergence of reference panels

built through re-sequencing efforts (Sampson et al., 2012). To

facilitate genetic studies in the era of genomic re-sequencing, we

have built a database containing imputation accuracy informa-

tion for SNPs and indels identified from the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2010), a

sequencing-based reference resource, which has demonstrated

its potential for enhancing the power of genetic association stu-

dies in the post-GWAS era (Day-Williams et al., 2011; Holm

et al., 2011; Huang et al., 2012). The assessment of marker

imputability was carried out through a leave-one-out imputation

procedure: a single individual serves as the imputation target,

and imputation is performed using haplotypes from all the

other individuals as reference. Imputation accuracy was quanti-

fied within each of the four major continental groups surveyed

by the 1000 Genomes Project. We anticipate this database

containing imputation accuracy information searchable by

continental group and by GWAS genotyping platform will be

a useful resource for geneticists in this sequencing era.

2 DATA SETUP AND RETRIEVAL

Database: The database contains imputation quality information

(as measured by dosage r2, the squared Pearson correlation

coefficient between the imputed dosage—ranging continuously*To whom correspondence should be addressed.
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from 0 to 2—and the observed/masked genotypes—taking values
0, 1 or 2 copies of a given allele) for every non-singleton SNP and
indel discovered by and passing default quality filters in the 1000

Genomes Project (The 1000 Genomes Project Consortium,
2010). The dosage r2 of each variant reflects its potential imput-
ation accuracy when conducting imputation using haplotypes

from the 1000 Genomes Project as reference. Imputability infor-
mation is available for multiple genotyping platforms, and
separately for each of the four major continental groups

[Europeans (EUR), Africans (AFR), Asians (ASN) and
Americans (AMR)]. Details regarding sub-population constitu-
ents of the continental groups can be found at ftp://ftp-trace.

ncbi.nih.gov/1000genomes/ftp/release/20110521/.
Methods: The dosage r2 of each variant was obtained using a

leave-one-out imputation procedure with MaCH-Admix (Liu
et al., 2012b; http://www.unc.edu/�yunmli/MaCH-Admix/)

[high Pearson correlation (0.85–0.94) with those obtained using
minimac (Howie et al., 2012) and IMPUTE2 (Howie et al.,
2011), and lower correlation (0.71–0.85) with those from

BEAGLE (Browning and Yu, 2009), data not shown] on samples
from the latest release of the 1000 Genomes Project (version 3
March 2012 release, 2184 haplotypes). We mimicked typical

GWAS imputation practice by masking genotypes at markers
absent from the selected genotyping platform and treating
them as untyped. These untyped markers were imputed in one

individual at a time using the haplotypes of all the remaining
individuals as reference (2182 haplotypes). The imputation
accuracy of each marker, measured by dosage r2, was calculated

separately in each of four continental groups currently available
in the 1000 Genomes Project. The genotyping platforms we have
evaluated include Affymetrix 5.0, Affymetrix 6.0, Affymetrix

Axiom, Illumina Human1M, Illumina Omni 5M and Illumina
Omni ZhongHua. The results of the assessment are searchable
through a publicly available database.

Usage: Our database can take as input either a list of marker
names or the start and end position of a genomic region on a
specified chromosome. Users can choose to view information

corresponding to one or more specific genotyping platforms.
Given the marker or region input and the choice of genotyping
platform, our database returns imputability information for vari-

ants of interest ordered by their genomic location according to
NCBI Build 37. Users have the option to display or to download
the imputability information for each continental group or the

maximum dosage r2 across the four continental groups (max-r2).
Moreover, users can filter results by max-r2. Markers with no
rsID follow chromosome:physical-coordinate nomenclature

(Supplementary Fig. S1A). In addition, for an SNP–indel pair
with the same genomic location, the SNP is always listed before
the indel (Supplementary Fig. S1B).

Examples: The first example shows the utility of our database
at the study design stage. Specifically, suppose an investigator
wants to decide between two genotyping platforms, Affymetrix

6.0 and Affymetrix Axiom, based on imputation accuracy within
a 1-kb region on chromosome 9p21 (22,095,555 to 22,096,555 bp)
harboring the SNP rs10757274 known to be associated with risk

of coronary heart disease and multiple related phenotypes
(Cunnington et al., 2010; McPherson et al., 2007). Our database
interface, the example query, as well as the results of the query

are shown in Figure 1. Given the regional input (start and end

position 22 095 555 and 22 096555 on chromosome 9), our data-

base returns a list of markers within the region (only the top

three are shown). For each marker, the database shows its

marker name, genomic location and dosage r2 for the two se-
lected genotyping platforms across four continental groups. To

ease comparison, users can choose to display max-r2 instead of r2

values for each population separately and/or filter by setting

non-zero max-r2 threshold. Based on what is shown in Figure

1, we would recommend the Axiom over the 6.0 panel, unless the

samples under study are Americans (e.g. Hispanic or African
Americans) and the SNP of primary interest is rs139492236.

Note that this is a toy example mainly meant to introduce the

interface of our database where we show only the top three

SNPs. For more realistic settings where the region of interest

typically includes many more markers, we recommend prioritiza-

tion of markers in the region (e.g. according to functional anno-
tation and/or evidence from existing association or functional

studies, if available), followed by the examination and compari-

son of the max-r2 distribution through ‘Download Results’ or

‘Genome-wide Graphical Comparison’. Such comparison of

imputation accuracy across platforms will facilitate decision

making regarding the choice of genotyping assays.
Once the investigator has decided on the genotyping platform,

a typical question is whether specific markers or markers in

specific regions of interest can be imputed well (e.g. novel vari-
ants or associated regions identified in other cohorts). When

computational resources are limited or when an investigator is

interested in a considerable number of markers/regions, imput-

ability information can help prioritize markers/regions that

have the potential to be well-imputed as well as avoid wasting

resources on markers/regions that have little potential for
high-quality imputation. As shown in Figure 1, our database

contains four dosage r2 values (one for each continental group)

for each marker, given a genotyping platform. As false-negatives

(markers that can be well-imputed but with bad predicted

imputation accuracy such that one would not perform actual

imputation) are typically more costly than false-positives

(the consequence would be wasted computational resources on
markers/regions that are truly not imputable), we recommend

using the maximum dosage r2 across the four continental

groups (max-r2) to guide decisions, particularly for samples

involving admixed individuals. Figure 2 shows the

Fig. 1. The SNP and indel imputability database interface
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receiver-operating characteristic curve for data from the Cebu

Longitudinal Health and Nutrition Survey (CLHNS) when

max-r2 is used for thresholding. In this cohort of Filipinos

(Adair et al., 2011; Marvelle et al., 2007), we have 81 individuals

who have both Affymetrix 5.0 (Lange et al., 2010) and

Metabochip (Croteau-Chonka et al., 2012) genotypes. We

imputed the Metabochip SNPs from the Affymetrix 5.0 data,

using haplotypes from the 1000 Genomes Project as reference.

We computed the imputation accuracy in this sample

(CLHNS-specific dosage r2) by comparing the imputed dosages

with the genotypes obtained through genotyping using

Metabochip. The y-axis shows the proportion of poorly imputed

SNPs (CLHNS-specific dosage r250.2) removed and the x-axis

shows the proportion of well-imputed SNPs (CLHNS-specific

dosage r240.8) sacrificed for SNPs in different minor allele fre-

quency (MAF) categories (defined within CLHNS). Using a

max-r2 threshold of 0.7, which removes �15 million of the �31

million markers in the latest release from the 1000 Genomes

Project, we found that the database filters out 77%, 58%, 51%

and 42% of the poorly imputed SNPs (again, SNPs with

CLHNS-specific dosage r250.2) at the cost of 0.3%, 0.8%,

1.5% and 4.6% well-imputed markers (SNPs with

CLHNS-specific dosage r240.8) in the MAF categories of

45%, 3–5%, 1–3% and 0.5–1%, respectively. Using a different

threshold of 0.5 (0.9), which removes �12 (�20) million of the

�31 million markers, we can filter out 54%, 32%, 29% and 26%

(92%, 80%, 75% and 66%) of the poorly imputed SNPs at the

cost of 0.1%, 0.3%, 0.2% and 2.1% (4.8%, 6.1%, 7.5% and

17.2%) well-imputed SNPs. We also confirmed in samples of

Caucasians and samples of African Americans (data not shown)

that a max-r2 in the range of 0.5–0.8 serves as a reasonable thresh-

old in terms of a trade-off between sensitivity and specificity. The

actual threshold an investigator selects can be tailored according

to MAF and available computational resources (including both

CPU times and disk space). We and others have previously

observed lower imputation quality for rarer variants (Li, et al.,

2011a; Liu et al., 2012a; The International HapMap 3

Consortium, 2010). Our database now shows that imputation

quality of rarer variants is also more challenging for prediction

estimation: the total area under the receiver-operating character-

istic curve is 0.97, 0.91, 0.88 and 0.79, respectively, for markers

with MAF45%, 3–5%, 1–3% and 0.5–1%.

3 CONCLUSION

In summary, we have built a publicly available database for

marker imputability to aid genetic association studies in the

re-sequencing era (Fridley et al., 2010; Li, et al., 2011b;

Sampson et al., 2012). Reference panels built from re-sequencing

studies bring us the benefits of improved imputation accuracy

and the potential to impute low-frequency variants. These bene-

fits come, however, at the cost of heavy computational burden

for imputation if we impute every marker discovered by sequen-

cing, which is 430 million in the latest release from the 1000

Genomes Project. It is therefore desirable to have direct access

to marker imputability information without actually conducting

genotype imputation. Our marker imputability database pro-

vides direct access to imputation accuracy information for

SNPs and indels identified from the 1000 Genomes Project

across four major continental groups using multiple genotyping

platforms. We anticipate that this database will serve as a useful

resource for researchers in this re-sequencing era in terms of

design and analysis of genetic association studies. In addition,

although the database is developed mainly for guidance before

actual imputation, it can be used for post-imputation quality

assurance by comparing estimated r2 values in the imputed

study sample with those in our database in an SNP-specific

manner. Using a cohort of Filipinos, we estimate that we can,

with up to 48.6% reduced computation efforts (by imputing only

the top 51.4% markers according to imputation quality esti-

mated from individuals in the 1000 Genomes Project), filter

out 42–77% of poorly imputed markers at the cost of 0.3–

4.6% well-imputed markers. Finally, two caveats should be

kept in mind by database users. First, we record results from

the MaCH-Admix software. Although more than moderate

level of correlation is observed with results from other imputa-

tion software, caution needs to be taken when generalizing to

other imputation methods, particularly those that are not based

on the Li and Stephens model (Li and Stephens, 2003). Second,

loss of some typed markers due to quality control in real studies

could lead to reduced imputation quality of specific markers,

which cannot be modeled generically and are thus not reflected

by our database. We will update the database when new data

releases of the 1000 Genomes Project or new genotyping plat-

forms become available.
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