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ABSTRACT

Motivation: Expression quantitative trait loci (eQTL) analysis links
variations in gene expression levels to genotypes. For modern
datasets, eQTL analysis is a computationally intensive task as it
involves testing for association of billions of transcript-SNP (single-
nucleotide polymorphism) pair. The heavy computational burden
makes eQTL analysis less popular and sometimes forces analysts
to restrict their attention to just a small subset of transcript-SNP
pairs. As more transcripts and SNPs get interrogated over a growing
number of samples, the demand for faster tools for eQTL analysis
grows stronger.
Results: We have developed a new software for computationally
efficient eQTL analysis called Matrix eQTL. In tests on large datasets,
it was 2–3 orders of magnitude faster than existing popular tools
for QTL/eQTL analysis, while finding the same eQTLs. The fast
performance is achieved by special preprocessing and expressing
the most computationally intensive part of the algorithm in terms
of large matrix operations. Matrix eQTL supports additive linear and
ANOVA models with covariates, including models with correlated and
heteroskedastic errors. The issue of multiple testing is addressed by
calculating false discovery rate; this can be done separately for cis-
and trans-eQTLs.
Availability: Matlab and R implementations are available for free at
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL
Contact: shabalin@email.unc.edu
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1 INTRODUCTION
The goal of expression quantitative trait loci (eQTL) analysis
is to identify single-nucleotide polymorphisms (SNPs) which are
significantly associated with expression of known genes. These
associations can help reveal biochemical processes underlying living
systems, discover the genetic factors causing certain diseases and
determine pathways that are affected by them. Expression QTL
analysis is used to determine hotspots [DNA regions affecting
multiple transcripts, Breitling et al. (2008)], construct causal
networks, discover subclasses of clinical phenotypes, and select
genes for clinical trials (see reviews of Gilad et al., 2008;
Kendziorski and Wang, 2006; Zhang and Liu, 2010).

There are various approaches to eQTL analysis. Most eQTL
studies perform separate testing for each transcript-SNP pair. The
association between expression and genotype can be tested for
using linear regression and ANOVA models, as well as non-
linear techniques including generalized linear and mixed models,
Bayessian regression (Servin and Stephens, 2007), and models
accounting for pedigree (Abecasis et al., 2001) and latent variables

(Leek and Storey, 2007). Several methods has been developed to
find groups of SNPs associated with expression of a single gene
(Hoggart et al., 2008; Kao et al., 1999; Lee et al., 2008; Zeng,
1993).

Expression QTL analysis is known to be computationally
intensive. The issue is most pronounced for modern eQTL datasets,
which have genotype measured over millions of SNPs and gene
expression over tens of thousands of transcripts. For such data, the
eQTL analysis involves over ten billion tests. The following three
studies, analyzing relatively small datasets, indicate that non-linear
methods can be prohibitively slow for large data. Degnan et al.
(2008) applied family-based association tests to a dataset with 142
samples. They tested only 40 227 transcript-SNP pairs and report
the total computation time to be ‘under 24 h on 20 processors in
parallel on a Linux cluster’. Ghazalpour et al. (2008) were running
efficient mixed-model association (EMMA), which is said to be
computationally efficient. They analyzed a dataset with 110 samples,
1813 SNPs, and 10 013 transcripts. They tested all transcript-SNP
pairs and report the computation time of ‘a few hours using a cluster
of 50 processors’. Listgarten et al. (2010) tested their method on
a dataset measuring 40 639 transcripts and 48 186 SNPs in 188
samples. They report that estimation took 10 h when parallelized
across 1100 processors (this is more than a processor-year). Note
that the dimensions of a modern eQTL dataset can greatly exceed
those in the examples above.

In this article, we present a new tool, Matrix eQTL, for fast
eQTL analysis of large datasets. Our tests show that Matrix eQTL
is 2–3 orders of magnitude faster than existing popular QTL/eQTL
software. Moreover, the computation time of Matrix eQTL stays
practically unchanged when covariates are added to the model.
Such performance is achieved, in particular, by expressing the most
computationally intensive part of the algorithm in terms of large
matrix operations. This allowed to implement the algorithm using
high-level programming languages, R and Matlab, relying on their
efficient implementation of matrix operations.

Matrix eQTL tests for association between each SNP and each
transcript by modeling the effect of genotype as either additive linear
(least squares model) or categorical (ANOVA model). Optionally,
Matrix eQTL can test for the significance of genotype-covariate
interaction. Matrix eQTL does not require genotypes to be discrete
unless ANOVA model is chosen. The models can include covariates
to account for such factors as gender, clinical variables, population
structure and surrogate variables. Matrix eQTL also supports
heteroscedastic and correlated errors to account for relatedness of
the samples. Matrix eQTL performs a separate test for each gene-
SNP pair and corrects for multiple comparisons by calculating false
discovery rate (FDR, Benjamini and Hochberg, 1995). It is known
that the SNPs located near a gene are more likely to affect its
expression. To account for this fact, Matrix eQTL supports separate
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p-value thresholds and FDR calculation for local (cis-) and distant
(trans-) eQTLs.

It can often be helpful to make a Q–Q plot or a histogram of all
p-values, including those that did not pass the significance threshold.
These plots can be used to assess the quality of data preprocessing
and model selection. Matrix eQTL can record the distribution of
all p-values by counting the number of p-values that fall in user-
supplied histogram bins. These counts are then used to create Q–Q
plots or histograms of the p-values.

2 RESULTS
We measured the performance of Matrix eQTL and six programs
for QTL and eQTL analysis: Plink (Purcell et al., 2007), Merlin
(Abecasis et al., 2001), R/qtl (Broman et al., 2003), snpMatrix
(Leung, 2007), eMap (Sun, 2009) and FastMap (Gatti et al., 2009).
Plink is a command line toolset for whole genome association
analysis. It is a general purpose tool written in C/C++ not
particularly optimized for eQTL analysis. Merlin is a command line
tool for fast pedigree analysis written in C/C++. It is designed for
analysis in pedigree, but has an option for analysis of unrelated
samples. R/qtl, snpMatrix and eMap are R packages for QTL/eQTL
analysis. Part of eMap is coded in C and requires GSL library
(GNU Scientific Library). FastMap is a fast association mapping
tool written in Java. It uses the discrete nature of genotype data to
speed up calculations. FastMap is optimized for permutation-based
testing.Among selected tools, only FastMap and eMap do not handle
covariates. Note that FastMap is the only tool out of seven that has
a graphical user interface.

All methods except R/qtl were set to use the simple linear
model to test for association between levels of gene expression
and frequencies of the minor allele of the genotype. R/qtl does not
support the simple linear model and was set to estimate the ANOVA
model (Haley–Knott method).

We estimated the time that Matrix eQTL and other eQTL tools
require to analyze a typical modern eQTL dataset. As the model
dataset we chose cystic fibrosis (CF) dataset from Wright et al.
(2011). The dataset contains genotype information for 573 337 SNPs
and the gene expression measurements for 22 011 transcripts for 840
patients.

We applied eQTL methods to a randomly generated dataset
containing 2201 genes and 57 333 genes across 840 samples,
which is ∼10% of the number of genes and SNPs in the CF
dataset. The performance of all eQTL tools depends dominantly
on the dimensions of the dataset, and the computation time is
approximately linear with respect to the number of genes and
the number of SNPs. We used this observation to estimate the
time required for the analysis of the full dataset. The performance
of each method is reported in Table 1. Matrix eQTL requires
only 9–12 s to analyze the test dataset. This did not allow us
to make precise estimates of its performance, so we applied
Matrix eQTL to the whole dataset and reported the performance in
Table 1.

To reduce the output we set the p-value threshold at 10−5 level
for each method with such option. The specifications of the machine
used to run the tests (except eMap, which does not run on Windows)
are provided at the end of Section 3. All methods that support
covariates were additionally tested with 10 covariates set to the first
10 eigenvectors of the genotype sample covariance matrix.

Table 1. Estimated performance of various eQTL software on the CF dataset

Method\No. of covariates Zero Ten

Plink 9.4 583.3 days
Merlin 19.6 20.0 days
R/qtl (Revolution R) 1.0 4.7 days
snpMatrix 3.2 5.1 days
eMap 17.8 N/A days
FastMap 10.3 N/A hours
Matrix eQTL (Matlab) 11.8 11.8 minutes
Matrix eQTL (Revolution R) 14.6 14.6 minutes
Matrix eQTL (R, Goto BLAS) 19.4 19.4 minutes

The time for all methods is projected from tests on a dataset with 2201 genes and
57 333 SNPs. The timings projections for Matrix eQTL implementations were refined
by applying them to the complete dataset.

Two methods, Matrix eQTL (for R) and R/qtl were sensitive to
the version of basic linear algebra subroutine (BLAS) installed in
R (see Section 3.7 for more about BLAS). We ran both methods
in three different settings: standard R installation, R with GOTO
BLAS (Goto and Geijn, 2008) by Ei-Ji Nakama, and Revolution
R. We observed that the methods demonstrated better performance
in Revolution R, so we report only corresponding times for R/qtl
in Table 1. The code for generating the test dataset and running
the tests is available at Matrix eQTL website. We note that the
methods that use linear regression models in the analysis (Plink,
snpMatrix and FastMap) report the same test statistics and p-values
as Matrix eQTL.

Matrix eQTL was the fastest tool among tested, with <1 s
difference between runs with and without covariates. It is followed
by FastMap which was 50 times slower than Matrix eQTL. Note that
the good performance of FastMap comes at the expense of a limited
set of supported models (no covariates, only discrete genotypes).
Third was R/qtl, which was 122 times slower Matrix eQTL when
tested without covariates and 574 times otherwise. SnpMatrix was
384 times slower Matrix eQTL without covariates in the model and
618 times with them. Plink, Merlin and eMap were at least 1145
times slower than Matrix eQTL.

The timing in Table 1 does not include the time required to load
the data. Each method loaded the test dataset in just few minutes.
We also tested the ability of each method to load the full CF dataset.
We observed that R packages that use standard R functions to load
the data, R/qtl and eMap, were the slowest. They required excessive
amounts of RAM (>24 GB) and took hours to load the data. The
remaining tools have demonstrated a good performance loading the
data: FastMap — 18.4 min, Merlin — 12.3 min, Plink — 9.0 min,
Matrix eQTL — 5.7 min and snpMatrix — 3.3 min. SnpMatrix was
incredibly fast loading the genotype data (only 22 s), but it still relied
on standard R functions to load the expression matrix.

The performance of Martix eQTL depends on the choice of the
model and other parameters. Table 1 shows that for the simple linear
regression model Matrix eQTL (Rev R) performs the analysis in 14.6
min. The analysis using ANOVA model takes twice as long (29.1
min). Testing for significance of genotype-covariate interaction takes
slightly longer than ANOVA model (32.7 min). Testing additive
linear model with correlated errors takes 15.4 min. Addition of
covariates has almost no effect on the performance of Matrix eQTL
regardless of the model. Recording the distribution of all 12 billion
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p-values adds 11 min to the running time. Cis-only analysis, which
tests only gene-SNP pairs within 1 million base pairs of each other,
takes only 3.6 min. Combined cis and trans eQTL analysis with
separate p-value thresholds (10−3 and 10−5) and FDR calculation
takes 16.6 min.

2.1 Computational efficiency
It is widely believed that the performance of most programs
implemented in R and Matlab can be greatly improved if they are
rewritten using a low-level programming language such as C/C++.
Using simple calculations, presented below, we argue that this is not
the case for both implementations of Matrix eQTL.

The most computationally intensive part of the Matrix eQTL
algorithm is the calculation of correlations using large matrix
multiplications. As we point out in Section 3, the complexity of this
part of the algorithm is equal to twice the product of the number of
transcripts, the number of SNPs, and the number of samples. Thus,
for the CF dataset the complexity of the Matrix eQTL algorithm is
bounded from below by

2·573,337 ·22,011·840=2.12·1013floating point operations.

According to the specifications of the processor of the test machine,
it is theoretically capable of performing 38.4 billion floating point
operations per second. The ratio of these numbers gives us the best
theoretically possible time for a Matrix eQTL implementation of
9.2 min. Dividing the best theoretically possible time by the time
observed in practice, we get the lower bound on the efficiency of
Matrix eQTL implementations: 63% for R and 78% for Matlab.

3 METHODS
The Matrix eQTL algorithm employs multiple optimizations. In what follows
we first describe the algorithm for the simple linear regression model, which
does not include covariates and assumes uncorrelated homoskedastic errors.
Then, we extend the algorithm to handle ANOVA model, additive covariates,
and heteroskedastic and correlated errors.

3.1 Simple linear regression
The simple linear regression is one of the most commonly used models for
eQTL analysis. For each gene-SNP pair, with the SNP encoded by 0,1 and 2
according to the frequency of the minor allele, the association between gene
expression g and genotype s is assumed to be linear:

g=α+βs+ε, where ε∼ i.i.d. N(0,σ 2). (1)

The conventional algorithm for the analysis of the simple linear regression
model involves calculation of a number of variables including: the sample
means ḡ and s̄, the slope coefficient β̂, the intercept α̂, the residuals ei,
the total sum of squares SST and the residual sum of squares SSE. This
is followed by calculation of a test statistic, which can be t-statistic, F-
test or likelihood ratio (LR) test. Finally, the p-value is calculated for the
test statistic; this step can also be computationally intensive as it involves
calculation of incomplete beta or gamma functions.

For better performance, Matrix eQTL does not calculate p-value for every
transcript-SNP pair. Instead, for the test statistic of choice, we find the
threshold, such that test statistics exceeding the threshold are significant
at the required significance level. The test statistics for every transcript-SNP
pair are then compared with the threshold, and the p-values are calculated
only for those exceeding it. The number of significant transcript-SNP pairs
is usually much smaller than the number of tests, so the p-values and other
statistics of interest can be calculated for them in a much shorter time than
is required to find them.

The choice of the test statistic is important for the performance of the
method. It is natural to choose the test statistic that can be calculated faster,
among statistics of equal power. Observe that for the simple linear regression
(1), the common test statistics: t, F, R2 and LR, are equivalent and can be
expressed as functions of the sample correlation r =cor(g,s)

t =√
n−2

r√
1−r2

, F = t2 = (n−2)
r2

1−r2
,

R2 =r2, LR=−nlog(1−r2).

We choose the absolute value of the sample correlation |r| as the test
statistic for the simple linear regression and threshold it in search for
significant gene-SNP associations. Note that the correlation does not change
if we standardize the genotype and gene expression variables to have zero
mean and unit sum of squares∑

gi =0,
∑

g2
i =1,

∑
si =0,

∑
s2

i =1.

The standardization does not add complexity to the calculations as it has
to be performed only once for each transcript and once for each SNP, and it
greatly simplifies the calculation of the sample correlation

rgs =cor(s,g)=
∑

(si − s̄)(gi − ḡ)√∑
(si − s̄)2

∑
(gi − ḡ)2

=
∑

sigi =〈s,g〉,

where 〈s,g〉 denotes the inner product between vectors s and g. Now, let
S be the genotype matrix, with each row containing measurements for a
single SNP across samples. Let G be the gene expression matrix, with each
row containing measurements for a single gene across samples and let the
columns (samples) of matrices S and G match. Then the matrix of all gene-
SNP correlations can be calculated in one large matrix multiplication GST

as illustrated in Figure 1.
The number of tests in a modern eQTL study may exceed tens of billions

and the full correlation matrix GST would require hundreds of gigabytes of
RAM. To avoid excessive memory requirements we slice the data matrices
in blocks of up to 10 000 variables and perform the analysis separately for
each pair of blocks. Figure 1 illustrates the slicing and the calculation of the
correlation matrix.

The algorithm of Matrix eQTL for the simple linear regression is then:

(1) Split input matrices into blocks of up to 10 000 variables.

(2) Standardize variables of both gene expression and genotype matrices.

(3) For each pair of blocks:

(a) Calculate the corresponding block of the correlation matrix in
one matrix multiplication.

Fig. 1. Matrix of correlations can be calculated using multiplication of large
matrices. Due to the large number of tests the analysis performed in 10 000×
10 000 blocks.
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(b) Find correlations which have absolute value that exceeds a
predefined threshold.

(c) For the selected correlations, calculate and report the
corresponding test statistic, p-value, FDR and other variables
of interest.

3.2 Model with covariates
It is common to include covariates in an eQTL model to account for such
effects as population stratification, gender, age, white blood count and other
clinical variables. For simplicity, let us consider the model with one extra
covariate x,

g=α+γ x+βs+ε. (2)

As for the simple linear regression, various test statistics measuring the
significance of s, namely LR, F-test, and t-statistic, are equivalent. For fast
computations, the testing of model (2) can be reduced to testing of the simple
linear regression model (1) by orthogonalizing g and s with respect to x. The
algorithm for the analysis is then:

(1) Center variables g, x, and s to remove constant α from the model.

(2) Orthogonalize g and s with respect to x:

g̃=g−〈g,x〉x, s̃=s−〈s,x〉x.

(3) Perform the analysis for the simple linear regression g̃=β s̃+e using
one less degree of freedom for the test statistic to account for the
removed covariate.

3.3 ANOVA model
Another common approach to eQTL analysis is to include both additive
and dominant effect of the genotype. This is equivalent to treating each
genotype variable as categorical and modeling its effect on gene expression
with ANOVA model. ANOVA model can be viewed as a linear regression

g=α+β1s1 +β2s2 +ε (3)

where s1 = I(s=1) and s2 = I(s=2) are dummy variables constructed for the
SNP s. For this model, F-test and LR statistics for testing joint significance
of s1 and s2 are equivalent. Moreover, F and LR are monotone functions of
R2 for this model, and thus we use R2 as the test statistic. The test statistic can
be calculated efficiently if we orthogonalize the regressors. The algorithm
for the analysis is then:

(1) Center variables g, s1 and s2 to remove the constant α from the model.

(2) Orthogonalize s2 with respect to s1 for every marker

s̃2 =s2 −〈s2,s1〉s1,

(3) Standardize s1 and s̃2.

(4) Calculate test statistic: R2 =〈g,s〉2 +〈g,s̃2〉2 via large matrix
operations.

(5) The threshold for R2 and p-values can be derived from the formula
for F-test

F = (n−k−1)R2

k(1−R2)
,

where k =2 is the number of regressors (s1 and s2).

The same algorithm can be used to estimate the model with two marker-by-
marker variables, such as genotype and copy number variations. It can also
be generalized to test for joint significance of any subset of regressors.

3.4 Heteroskedastic and/or correlated errors
The previously described models assume the noise to be independent
and identically distributed across samples. However, the errors can be
heteroskedastic if the quality of the measurements differs across samples.
The errors may also be correlated if the samples are taken from related
individuals. To account for both possibilities, let us consider the model:

g=α+βs+u, where U ∼N(0,σ 2K) (4)

and K is a known positive-definite covariance matrix. To apply the previously
described methods to this problem we transform the input variables to make
the errors independent and identically distributed:

g̃=K−1/2g, s̃=K−1/2s, q̃=K−1/21n,

where 1n is a vector of length n with unit elements. The new model equation
is homoskedastic, has independent errors, but does not include a constant.

g̃=αq̃+β s̃+e, where e∼ i.i.d. N(0,σ 2) (5)

The model is tested using the algorithm for the linear model with covariates
with Step 1 (centering) omitted.

3.5 Q–Q plots and histograms of all p-values
Matrix eQTL has an option to record the distribution of all p-values. This is
done by counting the number of p-values that fall in user-defined histogram
bins. For better efficiency, Matrix eQTL collects this information without
calculation of the actual p-values. Instead, the histogram bins for p-values
are transformed into corresponding bins for the test statistic (which depends
on the model). Then, the number of test statistics that fall in each bin is
counted as part of eQTL analysis.

3.6 False discovery rate
Matrix eQTL calculates FDR only for the gene-SNP pairs that passed
user-defined significance threshold. The calculations follow Benjamini and
Hochberg (1995) procedure, adapted for the situation when not all p-values
are recorded.

Let p(1) <p(2) <...<p(K) be the p-values that passed the significance
threshold and let N be the total number of tests performed. Then the FDR
for the corresponding gene-SNP pairs is calculated as follows

q(K) = N

K
p(K),

q(i) =min

(
N

i
p(i),q(i+1)

)
, for i=1,...,K −1.

3.7 Matrix multiplication algorithms
Matrix eQTL gains its efficiency by expressing the most computationally
intensive part of the algorithm in terms of operations with large matrices.
The most time consuming operation is matrix multiplication. Naturally, the
performance of Matrix eQTL dependents strongly on the performance of
the employed BLAS. In Table 2, we compare the performance of matrix
multiplication for Matlab and different versions of R for Windows. For the
comparison we measured the time required to multiply two 4096 × 4096
matrices with elements set to random values uniformly distributed on [0,1].
To test the performance, the matrix multiplication was performed 10 times
and the best time is recorded. The test code is available at Matrix eQTL
website.

The standard installation of R for Windows (R Development Core Team,
2010) includes a generic BLAS, not optimized for any particular central
processing unit (CPU). The test finished in 98 and 77 s for 32 and 64 bit
versions of R, respectively. There are faster versions of BLAS available for
R called ATLAS (32 bit only) by (Whaley and Petitet, 2005) and GOTO
(64 bit only) by (Goto and Geijn, 2008) adapted for R by Ei-Ji Nakama
[http://prs.ism.ac.jp/∼nakama/SurviveGotoBLAS2/binary/windows/x64/].
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Table 2. Speed of various software multiplying 4096 × 4096 matrices

Package BLAS Time (s) Comment

R x32 2.14.1 Build-in 98.1
R x64 2.14.1 Build-in 77.0
R x32 2.14.1 Atlas C2D 16.5
R x64 2.14.1 Goto 5.5
Revolution R 4.3 Intel KML 3.8
Matlab R2010b Intel KML 3.8
Matlab R2010b Intel KML 1.8 Single precision
Matlab R2010b GPU CUDA 0.8 GTX 480, double
Matlab R2010b GPU CUDA 0.2 GTX 480, single

The matrix multiplication test on R with ATLAS BLAS finished in just
16.5 s. Next we tested Matlab and Revolution R, a commercial version
of R available free of charge for academic purposes. They both employ
Intel Kernel Math Library (KML), which is optimized for Intel CPUs (used
in the test machine). Both Intel KML and GOTO BLAS are able to use
multiple CPU cores and show 3–4 times better performance than ATLAS
BLAS in R. About twice better performance can be achieved by switching
from double to single precision calculations; we did not use this option in
Matrix eQTL to avoid loss of accuracy. Single precision calculations are
available only in Matlab. The last lines in the table show performance of
Nvidia GeForce GTX 480 GPU (graphics processing unit). It offers ten
times better performance than the best algorithm for the CPU for single
precision calculations. Matlab 2010b has a limited build-in support for
GPU-based calculations.

The complexity of the direct matrix multiplication algorithm for square
n×n matrices is O(n3). More asymptotically efficient methods have been
developed with complexity O(nlog2 7)≈O(n2.81) (Strassen, 1969) and even
O(n2.376) (Coppersmith and Winograd, 1990). However, in practice, the new
methods do not outperform the direct one even for relatively large matrices
(n≈2000), and in certain circumstances they may experience numerical
instability.

Specifications of the computer and software used for testing: CPU: Intel
Xeon X3430 (2.4 GHz, 4 cores, 38.4 Gflop); RAM: 16 GB DDR3; OS:
Windows 7 (64 bit); Matlab R2010b (64 bit); R 2.14.1; Revoluton R
Enterprise 4.3 (64 bit).

4 DISCUSSION AND CONCLUSION
Matrix eQTL can perform analyses that previously required days or
weeks in several minutes. QTL modelers who have only a handful
of phenotypes understand the importance of testing several different
models with covariates and interaction terms. Until now, this has not
been feasible with eQTL analyses due to the computational burden.
Matrix eQTL allows analysts to fit a variety of models with different
mixes of covariates in <1 h and compare the results. Likewise,
it allows analysts to compare different preprocessing and quality
control procedures. Furthermore, once an appropriate model has
been selected, Matrix eQTL can be used to determine permutation-
based significance thresholds in less time than most packages take
to generate nominal p-values. Matrix eQTL will greatly improve the
ability of analysts to find true eQTLs by fitting the right model and
choosing the best preprocessing and quality control procedures.

The utility of Matrix eQTL is not limited to association testing
between microarray and genotype data. Matrix eQTL was used by
Xia et al. (2012) to analyze RNA-seq data. RNA-seq data was
preprocessed by applying variance stabilizing transformation for the

Poisson counts and correcting for the differences in total read counts
across samples. Matrix eQTL can be used for the analysis pairs of
genetic/genomic datasets of various types, including measurements
of allele specific gene expression, genotype, methylation and copy
number variations. It can also be applied to find strongly dependent
variables within a single dataset (e.g. gene–gene interactions).

For the future versions of Matrix eQTL we plan to consider
several extensions and modification. First, we consider performing
calculation on GPUs, instead of the CPU. The tests in Section 3.7
suggest that use of GPU in Matrix eQTL may provide 10-fold
increase in the performance. We will also consider using Matrix
eQTL optimization techniques for fast estimation of more complex
models, such as multi-SNP models and generalized linear model (via
efficient score statistic).
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