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ABSTRACT

Motivation: Advances in the field of cheminformatics have been
hindered by a lack of freely available tools. We have created
Chembench, a publicly available cheminformatics portal for analyzing
experimental chemical structure–activity data. Chembench provides
a broad range of tools for data visualization and embeds a
rigorous workflow for creating and validating predictive Quantitative
Structure–Activity Relationship models and using them for virtual
screening of chemical libraries to prioritize the compound selection
for drug discovery and/or chemical safety assessment.
Availability: Freely accessible at: http://chembench.mml.unc.edu
Contact: alex_tropsha@unc.edu
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1 INTRODUCTION
Within the last decade, cheminformatics has emerged as a
burgeoning discipline combining computational, statistical and
informational methodologies with key concepts in chemistry and
biology (Brown, 2005; Varnek and Tropsha, 2008). Cheminfor-
matics addresses the fundamental problem of structure–activity
(property) relationships as applied to many areas of chemical
and biological research, providing the ability to use models for
imputation of target activities or properties of untested compounds.

Opportunities for cheminformatics research have grown
significantly with the advent of parallel chemical synthesis and
high-throughput screening and publicly available data from projects
such as the Molecular Libraries Initiative (Austin et al., 2004). For
instance, PubChem (http://pubchem.ncbi.nlm.nih.gov/) currently
contains nearly 27 million chemical compound records; almost one
million of these have been tested in over 2600 bioassays with nearly
300 000 found active. Many other similarly structured databases
have emerged recently (Oprea and Tropsha, 2006), providing a
corpus of data rivaling the size and complexity of biological
databases that established the need for bioinformatics.

Despite the abundance of databases of biologically active
compounds in the public domain, the data remain largely
underexplored because of the dearth of public domain tools for
data analysis. Along with other recently emerging tools and toolkits
such as CDK (Kuhn et al., 2010) and OCHEM (http://ochem.eu/),
Chembench is poised to advance experimental research in chemical
genomics, drug discovery and chemical safety assessment.
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2 METHODS
Chembench is a Java-based system, built with freely available technologies
carefully chosen to ensure a stable, maintainable system. The front end of
the website uses Java Server Pages (JSPs; McPherson, 2000) with Javascript.
The Struts 2 framework (Roughley, 2007) provides the interface between data
on the JSPs and Java objects. Java objects are mapped to a relational database
using HIBERNATE (King et al., 2004).

Chembench implements several Quantitative Structure–Activity
Relationship (QSAR) modeling methods and uses several commercial
packages, i.e. MOLCONNZ (eduSoft, 2008), DRAGON (Talete, 2007),
MOE (Lin, 2000) and MACCS keys (Symyx, 2005) for descriptor generation.
The JChem suite (ChemAxon, 2010) is used for image generation and
standardization of compounds. Scripts for dataset visualization are executed
using MATLAB and R. Ensembles of QSAR models are built following
a well-established workflow (shown as a diagram under the Modeling
module) incorporating rigorous validation procedures (Tropsha, 2010). All
calculations are executed on a 350-node Beowulf Linux cluster provided by
UNC-Chapel Hill.

3 RESULTS
Chembench supports the following cheminformatics data analysis
tasks structured as modules. Each module can be used independently
or as part of an integrated study design.

• Dataset Creation: Chembench allows users to upload, store and
standardize (Fourches et al, 2010) a set of chemical structures.
To enable the QSAR modeling of a dataset, activity data for
each compound must also be provided. Available descriptors
are generated for each compound upon upload. An external set
to validate models can be selected manually or automatically.

• Dataset Visualization: Several tools are available. The user
can view the chemical structures, examine the distribution of
activities, and generate a structure–activity heat map, using
either Tanimoto similarity (Tanimoto, 1957) or Mahalanobis
distance measure (Mahalanobis, 1936), to check for obvious
relationships between global compound similarity and activity.

• Modeling: The modeling function allows the user to select
a modeling dataset (either one of his uploaded datasets or a
provided benchmark set) and build an ensemble of statistically
validated models (i.e. a predictor) of the target property.
Chembench currently supports model building with kNN
(Zheng and Tropsha, 2000) and random forest (Breiman, 2001)
techniques; support vector machines (Chang and Lin, 2001) are
currently under development. As listed in Section 2, several
commercial packages are used for descriptor generation.

• Model Validation: When selecting a completed predictor, the
user is provided with the detailed statistics for estimating the
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predictor’s robustness such as a plot of the predicted versus
actual activity for the external set, and the results of the
y-randomization test.

• Virtual screening: The user may predict a specific activity
or a spectrum of activities for a virtual chemical library
or a single compound; available libraries include NCI
diversity set (http://dtp.nci.nih.gov/branches/dscb/diversity_
explanation.html) DrugBank (Wishart et al., 2008), ChEMBL
(http://www.ebi.ac.uk/chembldb/) and Wombat (Olah et al.,
2007); the user may also upload his own library. Several
predictors developed by UNC’s Molecular Modeling Lab are
available and more are being added continuously. Prediction of
activity is limited by the applicability domain (Tropsha, 2010),
which may be tuned to provide more conservative or liberal
predictions.

The user has control over many of the modeling parameters
influencing the choice of descriptors, modeling algorithms, feature
selection and the internal validation. We distinguish typical and
advanced users, who are provided with differential options to control
modeling parameters. Upon submission, the job is placed in a queue
for execution and the user can monitor the status of the task or
request email notification when the job completes.

Eleven benchmark datasets with continuous activity values and
five datasets with binary activity values previously modeled and
published by our group are included under the Modeling module.
To illustrate the use of the portal, we have executed the embedded
workflow using all available QSAR techniques, Dragon descriptors
and default parameters for two benchmark sets. The highest external
R2-value for the blood–brain barrier permeability dataset (Zhang
et al., 2008) was 0.73 and the test set prediction accuracy for
discriminating Pgp substrates from inhibitors (de Cerqueira et al.,
1996) was 90%. Both results were in agreement with published
values; calculations took from several minutes to several hours
depending on the algorithm (random forest was faster than kNN).

Because there is a single workflow that supports a range of
different techniques, it is easy to re-do a modeling run with simple
changes. The presentation of statistics then allows the user to
make direct comparison between the alternative selections made
in modeling parameters. This is a significant difference from the
current practice in cheminformatics, where workflows tend to rely
on a single method or bundle a broad range of choices that are hard
to investigate individually.

4 DISCUSSION
Covering the expanse of cheminformatics tools, ranging from
chemical data visualization to creation of robust QSAR models
to identification of novel chemicals with a desired activity profile,
Chembench serves both the seasoned cheminformatician as well
as the bench scientist. With the abundance of publicly available
chemocentric data, this portal will enable knowledge mining and
hypothesis generation across the breadth of biomolecular inquiries,
from chemical properties and ADME characteristics to specific
target binding/phenotype to chemical toxicity.
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