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Abstract

The fast kinetics and bioorthogonal nature of the tetrazine trans-cyclooctene (TCO) ligation 

makes it a unique tool for PET probe construction. In this study, we report the development of 

an 18F-labeling system based on a CF3-substituted diphenyl-s-tetrazine derivative with the aim of 

maintaining high reactivity while increasing in vivo stability. c(RGDyK) was tagged by a CF3-

substituted diphenyl-s-tetrazine derivative via EDC-mediated coupling. The resulting tetrazine-

RGD conjugate was combined with a 19F-labeled TCO derivative to give HPLC standards. The 

analogous 18F-labeled TCO derivative was combined with the diphenyl-s-tetrazine-RGD at μM 

concentration. The resulting tracer was subjected to in vivo metabolic stability assessment, and 

microPET studies in murine U87MG xenograft models. The diphenyl-s-tetrazine-RGD combines 

with an 18F-labeled TCO in high yields (>97% decay-corrected on the basis of TCO) using only 4 

equiv of tetrazine-RGD relative to the 18F-labeled TCO (concentration calculated based on 

product’s specific activity). The radiochemical purity of the 18F-RGD peptides was >95% and the 

specific activity was 111 GBq/μmol. Noninvasive microPET experiments demonstrated that 18F-

RGD had integrin-specific tumor uptake in subcutaneous U87MG glioma. In vivo metabolic 

stability of 18F-RGD in blood, urine and major organs showed two major peaks: one corresponded 

to the Diels-Alder conjugate and the other was identified as the aromatized analog. A CF3-

substituted diphenyl-s-tetrazine displays excellent speed and efficiency in 18F-PET probe 

construction, providing nearly quantitative 18F labeling within minutes at low micromolar 

concentrations. The resulting conjugates display improved in vivo metabolic stability relative to 

our previously described system.

Corresponding Authors: jmfox@udel.edu; ziboli@med.unc.edu.
#These authors contributed equally to the research work.

HHS Public Access
Author manuscript
Bioconjug Chem. Author manuscript; available in PMC 2016 March 18.

Published in final edited form as:
Bioconjug Chem. 2015 March 18; 26(3): 435–442. doi:10.1021/acs.bioconjchem.5b00089.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Positron emission tomography (PET) is a powerful and highly sensitive imaging technology 

with the capacity to observe metabolic processes and track radiolabeled biomolecules in 

vivo.1 Of the various positron emitting radionuclides, 18F finds most extensive use due to its 

clinically attractive half-life (t1/2 = 110 min) and high positron efficiency (β+ = 99%). To 

date, clinical applications of PET have largely involved small molecule probes such 

as 18F-2-deoxy-2-fluoroglucose.2, 3 Currently, there is great interest in the development of 

peptidic and protein-based probes for 18F PET imaging, with a correlated need to develop 

methods for bioligand probe construction. New methods for probe construction must operate 

efficiently within the constraints of 18F-labeling chemistry, which include the limited 

nucleophilicity and short half-life of fluoride and the need to efficiently conjugate molecules 

at low concentrations relevant to radiochemical experimentation.

A variety of 18F-labeled synthons have been developed and successfully applied to a host of 

peptides and proteins for 18F-PET probe construction. The utility of many 18F PET probes is 

hindered by multistep probe syntheses where 18F is carried through multiple chemical 

intermediates—a major limitation given the technically demanding nature of 18F 

radiochemistry. For the conjugation of 18F to the biological ligand, peptides or proteins are 

often used in large excess in order to obtain reasonable yields for 18F attachment. 

Additionally, 18F-tagged proteins or large-peptides are often inseparable from their 

unlabeled precursors which can compromise the signal through competitive inhibition and 

result in low specific activity. Furthermore, sacrificing milligram quantities for labeling 

reactions is impractical for peptides or proteins that are not available in large quantity. 

Greatly needed are efficient and robust methods for labeling proteins and peptides by 18F at 

low concentrations.

In 2008, we described methods for synthesizing trans-cyclooctene derivatives4 and applying 

them in fast bioorthogonal reactions with tetrazines.5 With strained TCO derivatives, rate 

constants of k2 > 106 M−1s−1 have been measured.6–9 Contemporaneous with the initial 

study of TCO, several groups described reactions of tetrazines with derivatives of 

norbornene10 or the Reppe anhydride,11 with a measured rate constant of k2 = 1.9 M−1s−1 at 

20 °C in PBS for norbornene conjugation. Recently, cyclopropenes,12, 13 

cyclooctynes,6, 14, 15 and terminal alkenes16 have also been used as dienophiles for tetrazine 

ligation. While each of these dienophiles offers complementary advantages, TCO 

derivatives display the fastest rate constants.

The tetrazine-TCO ligation has become broadly used for research in nuclear medicine 

including applications in pretargeted imaging,17–19 and studies have been directed toward 

optimizing and improving the pharmacokinetics and pharmacodynamics for systems based 

on dipyridyl-s-tetrazine and monoaryltetrazines.7, 17–25 In 2010, Robillard first showed that 

the tetrazine ligation method could be applied in a pre-targeted antibody using single photon 

emission computed tomography (SPECT).23 More recently, Robillard has described factors 

that contribute to the in vivo stability of TCO’s toward isomerization,7 and clearing agents 

have been developed that improve tumor-to-blood (125 fold) ratios.22 Weissleder has shown 

that polymer modified tetrazines can be used for in vivo bioorthogonal labeling and PET 
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imaging using an 18F-labeled TCO derivative.20 More recently, Weissleder and Lewis 

reported a pretargeting approach for PET imaging based on this method and demonstrated 

dramatically reduced nontargeted organ uptake.24 Recently, the reaction of a 11C-labeled 

tetrazine with a TCO derivative was described,26 and Kuntner and Mikula described the 

development of a 18F-labeled tetrazine with favorable pharmacokinetic properties.25

In 2010, we developed a radiolabeling method for bioconjugation based on the Diels-Alder 

reaction between dipyridyl-s-tetrazines and an 18F-labeled trans-cyclooctene.27 As shown in 

Figure 1, 18F-labeled TCO 2 could be obtained in high radiochemical yield (71%) by 

combining nosylate 1 with 18F-fluoride (100 mCi). 18F-2 is an effective reagent for 

creating 18F-labeled probes within seconds at low micromolar concentrations, and we have 

used this reagent to make cyclic RGD (cRGD) and VEGF protein conjugates for cancer 

imaging28, 29 and exendin-4 conjugates for applications in insulinoma imaging and diabetes 

monitoring.30 Notably, these conjugates were synthesized without using a large excess of 

the peptidic labeling precursor (Figure 1b). Avoiding excess labeling precursor is critically 

important for proteins and large polypeptides such as exendin-4 (MW 4775), where the 

labeled and unlabeled peptide are not readily separable, and unlabeled peptide can 

significantly decrease signal due to competitive inhibition.30 Weissleder and Lewis have 

also used 18F-2 in a number of applications including a recent demonstration of pretargeted 

imaging.24

An important factor that has not received significant attention is the metabolic stability of 

tetrazine-TCO conjugates. Dipyridyl-s-tetrazine-based probes with good pharmacokinetic 

properties have been constructed through conjugation to large peptides (exendin-4)30 or by 

including PEG-spacers in antibody-pretargeting studies.7, 22, 23 We also described that 18F-

trans-cyclooctene 2 undergoes very rapid conjugation with a dipyridyl-s-tetrazine-cRGD 

construct, and the resulting isomeric conjugates 4b can be used to image tumors in mice 

(Fig. 1c). Here, a relatively high level of organ uptake in the liver and kidneys was observed, 

presumably due to the hydrophobic nature of the probe. Because of the high residence time 

in the liver, we expected that this system would provide a good platform to test and improve 

the metabolic stability of tetrazine-based probes. In our study on 4b, an attempt to re-isolate 

radioactive 4b from the major organs, urine and blood of a mouse was not unsuccessful, and 

only hydrophilic degradation products were observed by radio-HPLC analysis. We 

hypothesized that the imines of 4b, flanked with electron withdrawing pyridines, may be 

susceptible to nucleophilic attack and thereby provide a possible handle for degradation. We 

also hypothesized that a conjugate (Fig 1d) with less electron withdrawing aromatic groups 

would be more stable. Here, we describe a 3,6-diphenyl-s-tetrazine derivative that displays 

fast conjugation rates toward 18F-2 and gives conjugates with improved metabolic stability 

in an in vivo mouse study. 18F-labeling yields are discussed and the metabolic stability of 

the 18F-2 tagged cRGD conjugate is described. The PET probe was evaluated for integrin 

αvβ3 imaging in U87MG tumor-bearing mice by microPET.
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RESULTS

Chemistry

The CF3-substituted diphenyl-s-tetrazine 635 was prepared by an improved two-step 

procedure and elaborated by EDC coupling to cRGD derivative 7 (Fig. 2a) To gauge the 

reactivity of derivatives of diaryltetrazine 6, stopped flow kinetic analysis was used to 

measure the rate of the Diels-Alder reaction between tetrazine derivative 8 and equatorially 

substituted trans-cyclooctene derivative 9, the precursor to 18F-2 (Fig. 2). The 

undecaethylene glycol sidechain of 8 was added to enhance water solubility. In water/MeOH 

(6:4, v/v) at 25 °C, a second order rate constant k2 = 1000 ± 100 M−1s−1 was measured.

The cycloaddition reaction of tetrazine-cRGD 7 and 19F-2 provided 18F-cRGD conjugates 

10, which were used as radiolabeling standards and for the integrin receptor binding assay. 

Consistent with the high reactivity of 8, the pink color of tetrazine-cRGD 7 disappeared 

immediately upon mixing with 19F-2. The identity of the 19F-cRGD conjugates 10 were 

confirmed by LC-MS. As expected based from prior observation and a model study,5, 9, 36 

both aromatized conjugates 10b were formed in addition to dihydropyridazine conjugates 

10a (Fig. 3a,b). Collectively, we refer to the mixture of aromatic and dihydropyridazine 

conjugates as 10.

Radiochemistry
18F-labeled trans-cyclooctene (18F-2) was produced using the protocol developed in our 

laboratories,27 and utilized in radiolabeling experiments with tetrazine-cRGD derivative 7 
(Fig. 4). With only a 4-fold excess of 7 (4 μM) relative to 18F-2 (1 μM, calculated based on 

the specific activity of 18F-10a), a 97% radiochemical yield of 18F-10a was obtained (Fig. 

4b). The specific activity of 18F-10 was determined to be 3.0 ± 1.0 Ci/μmol after purification 

by comparing the UV absorption with standard titration curve.

Cell Integrin Receptor-Binding Assay

Receptor-binding affinity studies of 19F-10 and unmodified c(RGDyK) toward αvβ3 integrin 

were performed using αvβ3 integrin–positive U87MG cells. Binding on the cell membrane 

allows cross-linking and integrin receptor multimerization, through which multivalent 

binding and clustering of receptor is studied in the natural context of the integrin. We 

compared the receptor-binding affinity of 19F-10 with that of unlabeled c(RGDyK) by 

performing competitive displacement studies with 125I-echistatin (Fig. 3c). Both 19F-10 and 

unmodified c(RGDyK) peptides inhibited the binding of 125I-echistatin to αvβ3 integrin–

positive U87MG cells. The IC50 value for 19F-10 and c(RGDyK) was 39.8 ± 4.5 and 19.6 ± 

3.2 nmol/L, respectively. Thus, the fluoride incorporation via tetrazine ligation into the 

cRGD peptide had minimal effect on binding affinity to the αvβ3 receptors.

In vivo Metabolism of 18F-10

The metabolic stability of 18F-10 was determined in mouse blood, urine and in liver and 

kidney homogenates at 2 h after tracer injection. The extraction efficiency of all organs was 

between 56% and 98%. The lowest extraction efficiency was found for the kidney 
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homogenates and the highest extraction efficiency was from blood sample. The intact probes 

were 75%, 51%, 57%, and 62% for blood, kidney, liver, and urine samples respectively (Fig. 

5). The major metabolites correlate well with the aromatized product. These results showed 

that the new probe displayed significantly higher stability than previous dipyridyl 

analogs.27, 29

microPET Studies

The localization of 18F-10 in human U87MG tumor-bearing nude mice (n = 5) was 

performed by multiple time-point static microPET scans. Figure 6a shows microPET images 

of a female mouse at different times after injection of 7.4 MBq (200 μCi) of 18F-10. All 

microPET images were decay corrected. The tumor was clearly visualized with good 

contrast. Fig. 6b shows the microPET images with a blocking dose of unlabeled c(RGDyK) 

peptide coinjection. The tumor uptake of the radio probe was clearly reduced. The 

microPET imaging study demonstrated high and specific binding of 18F-10 to human 

U87MG tumors. Quantification of activity accumulation in the tumor and major organs (Fig. 

6c) was determined by biodistribution studies conducted 2 h post injection.

DISCUSSION

Although dipyridyl-s-tetrazine conjugates with 18F-2 can be created rapidly and efficiently, 

in prior studies on RGD-based imaging29 we observed that these conjugates have only 

moderate metabolic stability in vivo. We hypothesized that a conjugate with less electron 

withdrawing phenyl groups would be more stable, and in line with prior observations may 

spontaneously oxidize to give aromatic pyridazine products that are also highly stable.5, 9 To 

test this hypothesis, we prepared the diphenyl-s-tetrazine derivatives 7 and 8 from precursor 

6. Compound 8 reacts with trans-cyclooctene derivative 9 in water/MeOH (6:4, v/v) at 25 

°C with k2 = 1000 ± 100 M−1 s−1. When compared under similar conditions, the rate of 

reactivity for the CF3-substititued tetrazine 8 falls within an order of reactivity of the faster 

dipyridyl-s-tetrazine derivatives 3.6, 37

Encouraged by the efficient reactivity of 8 with 9, we reacted the cRGD-diphenyl-s-tetrazine 

derivative 7 with 19F-2 to provide conjugate 10a, a mixture of isomers (Fig. 3a). In line with 

observations from model compounds,36 we found that 10a partially oxidized spontaneously 

in solution to provide aromatic 10b. Shown in Fig. 3b is the HPLC–MS trace of the Diels-

Alder conjugate from 7 (10 μM) and 19F–2 (10 μM) analyzed after standing overnight in 

aqueous solution. As expected,5, 9 in addition to peaks from the dihydroaromatic Diels-

Alder adducts 10a (m/z 1176), we also observed the aromatized pyridizine adducts 10b (m/z 

1178). As shown in Fig. 3c, the receptor-binding affinity of 10 was compared to that of 

unlabeled c(RGDyK) by performing competitive displacement studies with 125I-echistatin. 

The 19F-cRGD conjugate 10 was comparable to the unlabeled cyclic RGD peptide in the 

ability to inhibit the binding of 125I-echistatin to αvβ3 integrin–positive U87MG cells.

To study the stability of the 18F-labeled Diels-Alder conjugates, an in vivo metabolic study 

was carried out by injecting 18F-10 into an athymic nude mouse that was sacrificed 2 h post 

injection. The organ uptake by the kidneys and liver for 18F-10 (Fig. 6) is similar to what 
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was observed with dipyridyl-s-tetrazine-RGD construct 4b (Fig. 1c). As shown previously, 

the organ uptake was greatly reduced when the more hydrophilic probe 4a based on the 

exendin-4 ligand (Fig. 1b) was used to image a GLP-1R positive tumor in mice.30 Similarly, 

we anticipate that the pharmacokinetic/pharmacodynamic properties of probes related to 4a 
will readily be improved with protein-based probes, or with peptide-based probes where 

hydrophilic spacer molecules are employed. For the present study to investigate the stability 

of the tetrazine-TCO conjugate in vivo, the organ uptake of 18F-10 was considered 

advantageous as it allowed study of probe that had been retained in these organs. Thus, 

major tissues were collected and homogenized, and the activity was extracted and analyzed 

by HPLC (Fig. 5). Fractions were collected each minute and radioactivity measured with the 

γ-counter. The average fraction of intact tracer was significantly improved relative to the 

first generation system 4b (Fig. 1c), where only degradation products were observed by 

HPLC in similar attempts to recover radioactivity from blood, urine and organs of the 

animal. For 18F-10, a hydrophilic byproduct was not observed by HPLC analysis, and the 

probe was detected with high fidelity in extracts from the kidneys, liver, blood and urine. To 

ensure that there was not a hydrophilic byproduct in the homogenates, we also analyzed the 

aqueous phase from the blood sample. The HPLC profile was very similar to that from the 

organic phase. In each of the metabolic extracts, two peaks were observed. Upon 

comparison of the HPLC data (Fig. 5) and LC/MS (Fig. 3b) data with cold conjugates it was 

concluded that one peak corresponded to the dihydropyridizine isomers of 18F-10a, and the 

other peak to the aromatized isomers 18F-10b. One limitation of using 18F-2 is the high 

number of isomeric conjugates that are formed upon conjugation with unsymmetrical 

tetrazines, which may present an issue for clinical translation. Efforts to ameliorate this issue 

by using higher symmetry cyclooctene derivatives are in progress.

18F-10 exhibited good metabolic stability in vivo, and injection of 18F-10 into a U87MG 

mouse model resulted in an effective method for αvβ3 imaging. The integrin αvβ3 receptor 

specificity was confirmed by blocking experiments, in which unlabeled cRGD was 

administered prior to the injection of the 18F-10 (Fig. 6). Thus, this labeling system has 

improved product stability, and no defluorination of 18F-10 was observed as no visible bone 

uptake was observed in any of the microPET scans. We also performed PBS stability study 

on newly synthesized 18F-10. Around 28% of product got aromatized at 2 h post incubation 

(Fig S2).

A major advantage of the tetrazine ligation lies in the ability to enable fast reactivity at low 

micromolar concentrations within minutes and without an excess of either reactant. After 

demonstrating that the tetrazine 7 is robust and that conjugates with 18F-2 have good 

stability in vivo, we explored the lower limit of concentration for the 18F labeling reaction. 

As benchmarks, the decay-corrected labeling yield was 35–45% when N-

succinimidyl-4-18F-fluorobenzoate was combined with an RGD derivative at 0.11 mM,38 

and 70% when an RGD derivative at 1.8 mM was labeled with 18F by Cu-catalyzed azide/

alkyne cycloaddition.39 By contrast, the tetrazine–TCO ligation reaction is nearly 

quantitative at a concentration that is more dilute by more than 3 orders of magnitude (Fig. 

4). Thus, a 97% radiochemical yield of 18F-10 was obtained in 5 minutes when 18F-2 (4 

μCi/μL, 1 μM) was combined with only 4 equiv. of 7 (0.4 μg, 0.4nmol, 4 μM). We believe 
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that this combination of fast reactivity to yield metabolically stable conjugates should 

continue to enable applications in 18F-based labeling and imaging.

CONCLUSION

A CF3-substituted 3,6-diphenyl-s-tetrazine derivative displays fast conjugation rates 

toward 18F-2, providing nearly quantitative 18F labeling was observed within minutes at low 

micromolar concentrations. This bioorthogonal ligation reaction was used to construct 

an 18F-cRGD conjugate, which was evaluated for integrin αvβ3 imaging in U87MG tumor-

bearing mice by microPET. The conjugate was further shown to display improved metabolic 

stability in an in vivo mouse study.

ASSOCIATED CONTENT

Experimental procedures, spectral data for all new compounds, kinetic plots, and HPLC 

traces. This material is available free of charge via the Internet at http://pubs.acs.org.

MATERIALS AND METHODS

All commercially available chemical reagents were used without further purification. The 

syringe filter and polyethersulfone membranes (pore size, 0.22 μm; diameter, 13 mm) were 

obtained from Nalge Nunc International (Rochester, NY). 125I-Echistatin was purchased 

from PerkinElmer (Piscataway, NJ). c(RGDyK) was obtained from Peptides International 

(Louisville, KY). All HPLC conditions are gradient. HPLC methods, NMR spectra and mass 

spectrometry details are listed in supplementary data. MicroPET scans were performed on a 

microPET R4 rodent model scanner (Siemens Medical Solutions USA, Inc., Knoxville, TN), 

or a GE eXplore Vista.

Chemistry

Detailed synthetic procedures and characterization details are provided as supporting 

material.

Stopped-flow kinetic analysis

The second order rate constant was measured under pseudo-first order conditions using an 

excess of TCO 9 by following the exponential decay of absorbance due to the tetrazine 

chromophore of 8 at 292 nm using an SX 18MV-R stopped-flow spectrophotometer 

(Applied Photophysics Ltd.). Thus, equal volumes of solutions of TCO 9 (0.50 mM, 1.0 mM 

or 2.0 mM in 60:40 water : methanol) and tetrazine 8 (0.050 mM in 60:40 water : methanol) 

were mixed in the stopped flow device. The final concentration of 8 was 25 μM, and 9 was 

0.25 mM, 0.50 mM or 1.0 mM. At each concentration, kinetic data was repeated nine times 

(triplicate runs on three independent samples) at 298 K. Thus, 27 rate measurements were 

made. The rate constant was determined by nonlinear regression analysis using Prism 

(GraphPad Software, Inc.). The mean second order rate constant under these conditions was 

measured to be 1000 +/− 100 M−1s−1.
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Radiochemistry

The 18F-labeled TCO (18F-2, Figure 1) was synthesized as reported.27 A solution of 0.4 mCi 

(14.8 MBq) 18F-2 in ethanol was added to different concentrations of tetrazine-cRGD 7 in 

DMSO (total volume 100 μL). After vigorous vortexing for 1 min at room temperature, the 

reaction was quenched with 1 mL 0.1% TFA in water and loaded onto a C-18 HPLC column 

to determine the labeling yield. With a loading of 7 at 4μM, probe 10 was obtained with 

97% labeling yield (Fig. 4). For small animal study, the HPLC fraction containing 18F-10 
was collected and the HPLC eluent was removed using a rotary evaporator. 18F-10 was 

reconstituted in 1 mL PBS and passed through a 0.22 μm syringe filter for animal injection.

Cell Integrin Receptor-Binding Assay

In vitro integrin-binding affinities and specificities of tetrazine-cRGD peptides were 

assessed via displacement cell binding assays using 125I-echistatin as the integrin-specific 

radioligand. Experiments were performed on the human glioblastoma U87MG cell line by 

modification of a method previously described.31

Animal Models

Animal procedures were performed according to a protocol approved by the UNC 

Institutional Animal Care and Use Committee. Human brain cancer carcinoma xenografts 

were induced by subcutaneous injection of 107 U87MG cells into the right front leg of 

female athymic nude mice. Three weeks after inoculation of the tumor cells, when the tumor 

reached 0.4–0.6 cm in diameter, the mice were used for microPET experiments.

Metabolic Stability

The metabolic stability of 18F-10 was evaluated in an athymic nude mouse bearing a 

U87MG tumor according a reported procedure.32 Detailed procedures are included as 

supplementary material.

microPET Studies

PET of tumor-bearing mice was performed on an eXplore Vista microPET/CT rodent model 

scanner using a reported method.33, 34 In brief, the mice were injected with 7.4 MBq of 18F-

RGD conjugate 10 with or without a blocking dose of unlabeled RGD peptide via the tail 

vein and then anesthetized with 2% isoflurane and placed near the center of the FOV of the 

microPET where the highest image resolution and sensitivity are obtained.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Synthesis of 18F-TCO 2. (b) Rapid 18F-labeling of a 4.8 kDa peptide takes place rapidly 

at low concentration using only a 2-fold excess of the peptide precursor. (c) Probe 4b has 

been used to image U87MG tumors in mice. (d) A new probe that can also be constructed 

rapidly and used for U87MG tumor imaging in mice with the added benefit of improved 

metabolic stability.
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Figure 2. 
(a) Synthesis of a cRGD-diphenyl-s-tetrazine conjugate. (b) The rate of the conjugation of 8 
with 9 was determined by stopped-flow kinetic analysis. (c) The exponential plot of the 

reaction of 8 (25 μM) and 9 (1.0 mM) in 40:60 MeOH:water was monitored at 292 nm. Data 

was recorded for 20 s at 298 K, with triplicate runs on three independent samples at three 

different concentrations (27 runs total). (d) The average of three observed rates k′ vs 

concentration of 9 for the reaction between 8 and 9. Under these pseudo-first order 

conditions the second order rate constant (k2) was determined by nonlinear regression to be 

1000 +/− 100 M−1s−1.
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Figure 3. 
(a) Conjugation of a cyclic-RGD-tetrazine 7 with F-TCO 2 gives conjugates 10a, which 

slowly oxidize to aromatic isomers 10b under ambient conditions in aqueous solution. (b) 

LC/MS analysis of the Diels-Alder conjugate from 19F–2 acquired after the sample had been 

allowed to stand overnight shows a mixture of aromatized and more slowly eluting 

dihydroaromatic products. Chromatographic resolution was higher and retention times 

longer in this LC/MS run than in radio-HPLC analyses (Fig 4, 5). (c) Cell-binding assay of 

c(RGDyK) and 19F-Diels-Alder conjugates 10 using U87MG cells (integrin αvβ3-positive 

human glioblastoma). The cell-binding affinity of the peptides was determined by 

performing competitive displacement studies with 125I-echistatin (n = 3).
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Figure 4. 
18F labeling by 18F-2 (1 μM) with differing concentrations of 7. The product 18F-10a is a 

mixture of regioisomers. (a) HPLC standard of 18F-2. (b) 97% radiochemical yield with 4 

equiv of 2. The specific activity of 18F-10 was determined to be 3.0 ± 1.0 Ci/μmol after 

purification by comparing the UV absorption with standard titration curve.
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Figure 5. 
Metabolic stability of 18F-10 in mouse blood and urine samples and in liver, and kidney 

homogenates at 1 h after injection. Fractions were collected every minute and radioactivity 

measured by γ-counter. The radio-HPLC profile of 18F-10 standard is also shown. In each of 

the metabolic extracts, two peaks were observed. One peak corresponded to 

dihydropyridizine isomers 18F-10a, the other peak corresponded to isomers of 

pyridizine 18F-10b.
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Figure 6. 
microPET images of athymic nude mice bearing U87MG tumor at 0.5, 1, and 2 h after 

injection of 18F-10 (a) without or (b) with a blocking dose of c(RGDyK) peptide (10 mg/kg 

body weight) (n = 5). Tumors are indicated by arrows. (c) bio-distribution study of 18F-10 in 

nude mice bearing U87MG tumor at 2 h p.i..
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