
Propylisopropylacetic acid (PIA), a constitutional isomer of
valproic acid, uncompetitively inhibits arachidonic acid
acylation by rat acyl-CoA synthetase 4: a potential drug for
bipolar disorder

Hiren R. Modi1,*, Mireille Basselin1, Ameer Y. Taha1, Lei O. Li2, Rosalind A. Coleman2, Meir
Bialer3, and Stanley I. Rapoport1
1Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of
Health, Bethesda, MD, USA
2Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
3Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University
of Jerusalem, Jerusalem, Israel

Abstract
Background—Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate
arachidonic acid (AA) turnover (deacylation-reacylation) in brain phospholipids, when given
chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is
teratogenic, reduces AA turnover by inhibiting the brain acyl-CoA synthetase (Acsl)-4 mediated
acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also
inhibit Acsl-4 catalyzed acylation, and thus have potential anti-BD action.

Methods—Rat Acsl4-flag protein was expressed in E. coli, and the ability of three VPA
analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-
methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to
inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis-Menten kinetics.

Results—Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively
by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID,
MTMCD and sodium butyrate had no inhibitory effect.

Conclusions—PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests
that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if
so, may be effective as a non-teratogenic mood stabilizer in BD patients.
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Introduction
Valproic acid (VPA; 2-propylpentanoic acid; di-n-propylacetic acid, Figure 1), an eight-
carbon, branched side-chain dicarboxylic acid, is an anticonvulsant that also is FDA-
approved to treat bipolar disorder (BD) [1, 2]. However, VPA can produce unwanted
clinical side effects, including hepatotoxicity, weight gain and metabolic disturbances [3–7].
It also is teratogenic, because it inhibits the chromatin-modifying enzyme, histone
deacetylase [8, 9]. As such, it poses a significant fetal risk in pregnant women taking the
drug [10], thus justifying the need for a non-teratogenic yet equipotent mood-stabilizer that
may act by the same mechanism as VPA. Identifying a pharmacological brain target of VPA
with regard to BD could lead to the rational development of effective VPA-like compounds
with fewer side effects, including teratogenicity.

One suggested target of VPA, as well as of the other FDA-approved mood stabilizers,
lithium, carbamazepine and lamotrigine, is the brain arachidonic acid (AA, 20:4n–6)
cascade [11–13]. This suggestion is based on evidence that VPA as well as the other mood
stabilizers, when given chronically to rats to produce therapeutically relevant plasma
concentrations, downregulate markers of the brain AA cascade [11–13]. Since markers of
the cascade are upregulated in the postmortem BD brain, in association with excitotoxicity,
neuroinflammation, apoptosis and synaptic loss [14–16], dampening by the drugs of the
brain AA cascade may contribute to their efficacy in BD [12, 13].

AA can be released from membrane phospholipid by an AA-selective calcium-dependent
cytosolic phospholipase A2 (cPLA2) in response to excitotoxicity or inflammation
associated with microglial activation and increased cytokine production [17–21], and these
neuropathological processes are found in BD [14–16]. AA also is liberated as a second
messenger at post-synaptic neuronal membranes during neurotransmission via dopaminergic
D2 receptors, muscarinic M1,3,5, serotonergic 5-HT2A/2C and glutamatergic N-methyl-D-
aspartate receptors, all of which are coupled to cPLA2. Neurotransmission involving these
receptors is disturbed in BD [13, 22–24]. After being hydrolyzed from the stereospecifically
number-2 position of membrane phospholipid by a PLA2, a portion of the released AA is
converted into pro-inflammatory lipid mediators including prostaglandin (PG)E2 and
multiple other bioactive metabolites [11, 25], whereas the majority (~97%) is reincorporated
into phospholipid via the serial actions of Acsl and acyltransferase.

When given chronically to rats to produce therapeutically relevant plasma levels, lithium
and carbamazepine, in addition to VPA, downregulated turnover (deacylation-reacylation
[26]) of AA but not of docosahexaenoic acid (DHA, 22:6n-6) or palmitic acid (16:0) in brain
phospholipid [27–30]. Downregulation of AA turnover by lithium and carbamazepine was
associated with decreased brain expression of cPLA2 IVA via reduced activity of one of its
transcription factor, activator protein-2. Chronic VPA did not affect this enzyme or
transcription factor, but its effect has been ascribed to uncompetitive inhibition of brain
acyl-CoA synthetase (Acsl, long-chain-fatty-acid--CoA ligase, E.C.6.2.1.3) 4, which
preferentially converts unesterified AA to acyl-CoA compared to other long chain fatty
acids, palmitic acid or DHA [31–33]. This was demonstrated by kinetic studies on a rat brain
microsomal fraction, and by using recombinant Acsl4. Rat tissue contains at least 5 ACSL
genes (ACSL1, ACSL3, ACSL4, ACSL5 and ACSL6v1 and ACSL6v2 splice variants) [34],
and the protein product of ACSL4, Acsl4, preferentially acylates AA [32, 33] and is found
in cell mitochondria, peroxisomes, microsomes and endoplasmic reticulum (http://

Modi et al. Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.genecards.org/cgi-bin/carddisp.pl?gene=ACSL4&search=ACSL4


www.genecards.org/cgi-bin/carddisp.pl?gene=ACSL4&search=ACSL4). Acsl4 is the rate-
limiting enzyme that regulates AA reincorporation into brain phospholipid within the AA
deacylation-reacylation cycle [35, 36].

ACSL4 is highly expressed in newborn and adult mouse brain, especially in granule cells of
the dentate gyrus and the pyramidal cell layer of CA1 in the hippocampus, and the granular
cell layer and Purkinje cells of the cerebellum [37]. Additionally, a deficiency of the ACSL4
gene has been associated with X-linked mental retardation, microcephaly and other
congenital malformations in humans [38, 39]. The Alport syndrome with intellectual
disability is a contiguous gene deletion syndrome involving several genes on Xq22.3
including ACSL4 [40].

Using recombinant plasmids for the main ACSL's found in rat brain (ACSL3, ACSL4,
ACSL6v1 and ACSL6v2), we reported that VPA selectively and uncompetitively inhibited
incorporation of AA into AA-CoA by Acsl4 [32]. VPA did not equally reduce activation of
palmitate or DHA to their acyl-CoAs, consistent with observations on rat brain microsomal
extracts [31, 41]. There also was no inhibitory effect of lithium on AA conversion to AA-
CoA [32].

In view of VPA's clinical teratogenic and hepatotoxic side-effects (see above), and of
evidence that it reduces AA turnover in rat brain in vivo and uncompetitively inhibits
recombinant Acsl4 in vitro, we thought it of interest to test whether non-teratogenic VPA
structural analogues also would inhibit conversion of AA to AA-CoA by Acsl4 in vitro, as
potential new agents with fewer side effects than VPA for treating BD. To do this, we used
in vitro Michaelis-Menten kinetics to test inhibition of Acsl4 by the VPA analogues,
propylisopropylacetic acid (PIA, 2-isopropylpentanoic acid), propylisopropylacetamide
(PID), and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD) (Figure 1).
They were chosen because they do not inhibit histone deacetylase at relevant clinical doses
tested in mice [42] and should not be teratogenic [43, 44], and because their published
pharmacokinetic and anticonvulsant profiles suggest in vivo bioactivity and brain
penetration [43, 45]. Each has eight carbon atoms in its chemical structure, like VPA. PID is
an amide derivative, MTMCD is an amide cyclopropyl derivative, and PIA is a
constitutional isomer of VPA (Figure 1). We also used sodium butyrate as a negative
control. Butyrate is a 4-carbon analog of VPA that does inhibit histone deacetylase [42].

Briefly, we found that Acsl4-mediated conversion of AA to AA-CoA was inhibited
uncompetitively by PIA, with a inhibitory constant Ki less than reported for VPA [32]. PID,
MTMCD or butyrate had no inhibitory action. An abstract of part of this work has been
published [46].

Materials and Methods
Reagents

[1-14C]AA (50 mCi/mmol) was purchased from Moravek Biochemicals (Brea, CA).
Unlabeled AA, sodium butyrate, coenzyme A, and ATP were purchased from Sigma (St.
Louis, MO). Racemic PIA was obtained from the National Institute of Mental Health's
Chemical Synthesis and Drug Supply Program (Research Triangle Park, NC). PID and
MTMCD were synthesized according to published procedures [47].

Preparation of bacterial lysate
Recombinant plasmids for rat liver ACSL4-Flag were expressed in E. coli strain BL21-
codonPlus (DE3)-RIL [48]. As a negative control, the same strain, transformed with the
empty vector, was used under identical conditions. Recombinant Acsl-Flag proteins were
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induced with 1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) at A600=1.0. E. coli
were grown in Terrific Broth medium supplemented with carbenicillin (final concentration
50 μg/ml) at 37°C and shaken at 206 rpm for 6 h. Cells were harvested by centrifugation at
4000 g for 20 min in a Sorval (Newton, CT) SA-600 rotor at 4°C after the 6-h induction
period. The cell pellet was resuspended in a buffer containing 10 mM HEPES (pH 7.8) and
0.5 mM EDTA, and sonicated on ice with six 10-s bursts each followed by a 10-s rest, using
a cell disruptor sonicator (Heat Systems Ultrasonics, Farmingdale, NY) at setting 4. Lysate
aliquots were stored at −80°C for enzyme assay. Protein concentrations were determined by
the Bradford method [49].

As reported earlier [32], we demonstrated using Western blotting and a specific anti-Flag
M2 monoclonal antibody, that the enzyme preparation that we are studying was a single
Acsl 4 isoenzyme, whereas the empty control showed no immunostaining.

Acsl4 activity assay
Acsl4 activity was measured using 1–3 μg protein as previously described [32]. The assay
medium contained 175 mM Tris-HCl pH 7.4, 8 mM MgCl2, 5 mM dithiothreitol, 10 mM
ATP, 0.25 mM CoA, 0.01 mM EDTA, and 5 μM [14C]AA in 0.5 mM Triton X-100, and
increasing concentrations of unlabeled AA in a total volume of 200 μl. PIA (0, 5, 10 or15
mM in ethanol), PID (10 mM in water) or MTMCD (10 mM in water), was added directly to
the reaction mixture during inhibition assays. The drug controls consisted of the respective
vehicle without the drug. As an additional negative control, sodium butyrate (a short-chain
VPA analog) was added to the reaction mixture at 60 mM [32]. Assays were performed at
37°C for 5 min with shaking. The reaction was started by adding 15 μl bacterial lysate to the
reaction mixture, and was terminated by adding 1 ml Dole's Reagent (isopropanol:heptane:
1M H2SO4, 80:20:2, by vol). In a preliminary experiment, the pH of reaction mixtures
spiked with VPA and sodium butyrate at concentrations of 60 mM was measured using a pH
meter. The pH (7.4) remained constant at these drug concentrations.

Unesterified fatty acids were extracted using two 2-ml heptane washes, and acyl-CoA
radioactivity was measured by liquid scintillation counting. As a negative control, Acsl
enzyme activity of the E. coli cell lysate lacking a gene coding for ACSL-Flag was
measured with AA as substrate as described above. The results were corrected for blanks
(samples without cell lysates added and samples analyzed in the absence of fatty acids). The
negative control (empty vector) activity were compared with Acsl4 to make sure that the
signal to noise ratio was adequate between the test and negative control at each
concentration of AA.

Analysis and Statistics
Initial reaction velocity V was plotted against AA concentration for each PIA analogue
concentration Io, and the plots were fitted by least squares to a hyperbolic Michaelis–Menten
model using GraphPad Prism version 5.00 (GraphPad Software, San Diego, CA). Km (μM)
and Vmax (nmol/min/mg protein) were calculated by the following equation, in which V is
reaction velocity (nmol acyl-CoA formed/min/mg enzyme protein, e.g. nmol/min/mg
protein) at a given AA substrate concentration, S (μM)

(1)

The model in which the substrate (i.e. AA) inhibits the reaction velocity can be described as
[50],
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(2)

A model that involves both substrate inhibition and uncompetitive inhibition by the inhibitor
Io can be represented as,

(3)

where Ki is the enzyme inhibition constant.

Data were plotted as a function of inhibitor concentration Io, for PIA, PID and MTMCD or
sodium butyrate, and the enzyme inhibition constant (Ki) was derived from the ascending
part of the plot. Lineweaver–Burke plots of 1/V vs. 1/S in the presence of different inhibitor
concentrations were plotted [50].

Selection of model
To determine which inhibition model best described the data, we utilized the Akaike
Information Criterion (AIC) [51],

(4)

where k = number of parameters and L = maximized value of the likelihood function of the
model. For small sample sizes, the AIC is corrected and is given as AICc [52],

(5)

where ss is the sum of squares from the fit, N is the number of experimental observations
and K is the number of parameters in the model. As the goodness of fit of a model to the
measured data improves, the value of AIC declines. Therefore, AICc is a formal method to
evaluate model quality and simplicity.

The probability that the model is correct can be determined by the following equation, where
Δ is the difference between AIC scores [52]

(6)

For this study with AA as a substrate, the lowest AICc was found for the “uncompetitive
inhibition” model, as reported for VPA [32, 50].

Data are presented as mean ± S.D. Linear regression analyses for obtaining Km, Vmax, Ki
and other parameters were made using GraphPad Prism Version 5.0 (GraphPad Software,).

Results
As previously described, Acsl4-mediated conversion of AA to AA-CoA showed substrate
inhibition [32]. The kinetics of the Acsl4-mediated reactions using AA as a substrate
without an inhibitor followed a simple Michaelis-Menten model, with pooled mean Km and
Vmax of 4.12 ± 0.56 μM, and 132.6 ± 8.81 nmol/min/mg (n = 3) respectively, among the
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different experiments. These values are comparable to previously reported means of 4.98 ±
1.41 μM and 143 ± 11.1 nmol/min/mg, respectively, for Acsl4 [32].

PIA inhibited AA to AA-CoA conversion by Acsl4 with a Ki of 11.44 ± 1.28 mM (n = 3)
(Figure 2A). When calculating the Lineweaver-Burke plots in Figure 2B, we considered
substrate AA concentrations only in the rising phase of the V vs. [AA] curves, from 0 to 35
μM AA, since at higher AA concentrations the enzyme showed substrate inhibition (Figure
2A). Inhibition by PIA, determined by graphical analysis of the Lineweaver-Burke plots
showing parallel slopes, was consistent with an uncompetitive inhibition mechanism (Figure
2B) [50]. The difference between AICc values for the uncompetitive and noncompetitive
enzyme inhibition models was 3.491 (Eq. 5), which means that the probability that the
uncompetitive model was correct, was 85%, compared to 15% for the noncompetitive model
(Eq. 6).

PID and MTMCD did not inhibit Acsl4-mediated conversion of AA to AA-CoA, with
inhibitor concentrations as high as 10 mM (Figures 3A and 3B). As an additional control, we
measured Acsl4 activity in the presence of sodium butyrate, the 4-carbon analog of VPA
that also inhibits histone deacetylase [42]. As reported [32], sodium butyrate did not inhibit
Acsl4 activity at a concentration of 60 mM (Figure 3C).

Discussion
We examined inhibition of the conversion of AA to AA-CoA by rat recombinant Acsl4 in
vitro by each of three non-teratogenic VPA analogues, PIA, PID and MTMCD, and of
sodium butyrate, a 4-carbon teratogenic analogue, using our previously published method
[53]. Similar to VPA, PIA inhibited Acsl4 conversion by an uncompetitive acylation
mechanism, whereas PID, MTMCD or butyrate had no measurable inhibitory effect. PIA
inhibited Acls4 activity with a Ki of 11.4 mM, half the reported Ki of 25 mM for VPA [32].
An uncompetitive pattern of inhibition using Michaelis-Menten kinetics was consistent with
the parallel Lineweaver-Burke plots of Figure 2B, and was demonstrated to have a high
probability compared with other mechanisms using the Akaike Information Criterion (AIC).
Uncompetitive inhibition implies that PIA binds to the Acsl4-AA substrate complex at a
different binding site than does substrate AA, and causes a conformational change that
reduces enzyme activity and conversion rate [50]. A similar model was derived for
inhibition by VPA of Acsl4 activity [32].

Acsl4 mediated conversion of AA to AA-CoA also showed substrate inhibition (Figure 2A),
with best-fit values for Km and Vmax of 4.12 ± 0.56 μM, and 132.6 ± 8.81 nmol/min/mg,
respectively, comparable to values of 4.98 ± 1.41 μM and 143.3 ± 11.1 nmol/min/mg,
respectively, that were reported previously [32].

PIA inhibited recombinant Acls4 activity with a Ki of 11.4 mM. In comparison, VPA
inhibited AA acylation by recombinant Acsl4 in vitro at a Ki of 25 mM, about twice that of
PIA, suggesting that PIA would be more effective in vivo on an equi-concentration basis.
Rat brain PIA concentrations have not been reported, although penetration occurs, based on
its anticonvulsant effects in rats [43], whereas the mean brain VPA concentration is
estimated as 1.0 – 1.5 mM after VPA administration at a therapeutically relevant dose (200
mg/kg, i.p.) that selectively reduces AA turnover in rat brain phospholipid [27, 32, 54–56].
The discrepancy between the in vitro concentration required for Acsl4 inhibition and the
estimated mean therapeutic brain level for VPA was reconciled by evidence that VPA can
accumulate, via a short-chain fatty acid transporter, within cellular mitochondria,
microsomes and other organelles in which Acsl4 also is found [37, 39, 57–59]. Similar
considerations may apply to PIA, which also is a short chain fatty acid. For both PIA and
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VPA, their in vitro kinetic inhibition constant for Acsl4 may differ from the actual in vivo
value, since it may depend on bath conditions such as pH, temperature, salt and ATP
concentrations, and on the absence of fatty acid transport proteins that are present in vivo
[60]. At clinical therapeutic levels, VPA can be hepatotoxic, and it can be teratogenic in
pregnant women because it inhibits histone deacetylase [8, 9, 43]. PIA is less teratogenic
than VPA. It is not teratogenic at 3.6 mmol/kg in mice compared to marked teratogenicity of
VPA at this dose, but its teratogenicity at higher doses remains to be further evaluated [43,
61, 62], and it does not inhibit histone deacetylase in vitro [42]. Although PID and MTMCD
have equal or better anticonvulsant activity in the rat than does VPA [43, 45], neither
compound inhibited Acsl4 in this study. These differences distinguish between
anticonvulsant activity and anti-BD activity of these drugs, and suggest that they have
different mechanisms of action in each of the two disorders. Similarly, the clinically useful
anticonvulsants, topiramate and gabapentin, do not measurably affect rat brain AA
metabolism [63–66].

In comparing the structures of VPA and the three analogues used in this study (Figure 1), a
free carboxylic group (Figure 1) would appear necessary for Acsl4 inhibition. Thus, PIA's
effect was absent when the hydroxyl group of its carboxylic acid moiety was replaced by an
amino group (PID and MTMCD). Furthermore, since butyrate did not inhibit Acsl4, a chain
of longer than four carbons appears necessary for inhibition.

X-ray crystallography might help to establish structure-activity relations for inhibition of
Acsl4 by identifying a common site for PIA and VPA binding. At present, X-ray
crystallography-derived structures for mammalian Acsl enzymes are unavailable, although
one has been published for the distantly related Acsl from Thermus thermophilus HB8. The
fatty acid binding pocket of this latter enzyme is at its N-terminus [67].

Brain AA metabolism and turnover are upregulated in animal models of neuroinflammation
and excitotoxicity [68–70], and AA metabolic markers are elevated in association with these
neuropathological processes in the postmortem BD brain [14–16]. Because lithium,
carbamazepine and VPA downregulate brain AA turnover and other AA metabolic markers
in rat brain [21, 28, 30, 71–75], their therapeutic efficacy in BD may depend on suppressing
the upregulated brain AA cascade of that disease. It remains to be determined whether the
observed inhibition by PIA of AA to AA-CoA conversion by recombinant Acsl4 in vitro
corresponds to its ability to also reduce metabolic markers of the AA cascade in vivo [27,
76], which would lend more justification to initiating a clinical trial with PIA in BD.

In conclusion, we have identified PIA as a new uncompetitive Acsl4 inhibitor, similar to
VPA. PIA has a lower Ki than does VPA, it does not inhibit histone deacetylase, and it is not
teratogenic up to a dose of 3.6 mmol/kg in mice [42, 43, 61, 62]. Thus, PIA may be of
interest for treating BD. Showing this also would argue that Acsl4 is a reasonable target for
developing new mood stabilizers to treat BD. However, further in vivo experiments are
required to claim that PIA would decrease AA turnover in rat brain phospholipids like VPA,
lithium and carbamazepine, which would justify the need for a clinical trial.
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Abbreviations

AA arachidonic acid

Acsl acyl-CoA synthetase

BD bipolar disorder

MTMCD N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide

PIA propylisopropylacetic acid

PID propylisopropylacetamide

VPA valproic acid
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Highlights

• Valproic acid's constitutional isomer, PIA, uncompetitively inhibit Acsl4

• Ki of PIA is 11.4 mM, compared to a published Ki of 25 mM for valproic acid.

• Like VPA, PIA may reduce AA turnover in brain phospholipids in
unanesthetized rats

• If so may be effective as a non-teratogenic mood stabilizer in BD patients.

• Justification for designing new Acsl4 inhibitors as potential less toxic drugs for
treating bipolar disorder.
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Figure 1.
Structures of VPA, PIA, PID and MTMCD.
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Figure 2.
(2A) Initial reaction velocity (V, nmol/min/mg protein) of Acsl-4 plotted against increasing
AA concentration [S] in the presence of 0, 5, 10, or 15 mM PIA [I]. Empty vector contains
no Acsl enzyme, and shows no activity.
(2B) Typical Lineweaver-Burke plot of the reciprocal of enzyme activity (1/V) against the
inverse of substrate concentration, 1/[S] (1/[AA]), with AA concentration range limited to
from 0 to 35 μM (see Results). The plot is typical of 3 experiments as indicated in text.
Parallel plots are characteristic of uncompetitive inhibition [50] put in correct reference
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Figure 3.
Initial reaction velocity V of Acsl-4 plotted against increasing AA concentration [S] in the
presence of (3A) 0 mM and 10 mM PID, (3B) 0 mM and 10 mM MTMCD, and (3C) 0 mM
and 60 mM sodium butyrate.
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