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Abstract

Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) 

superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins 

from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own 

aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an 

additional Asp that functions as an acid/base catalyst and an active site well-structured prior to 

phosphorylation in HAD phosphatases. Both features contribute to substantially faster reactions 

than for response regulators. To investigate mechanisms underlying the functional differences 

between response regulators and HAD phosphatases, we characterized five double mutants of the 

response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra 

Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only 

CheY DR (Arg as anchor) exhibited enhanced rates of both autophosphorylation with 

phosphoramidate and autodephosphorylation compared to wild type CheY. Crystal structures of 

CheY DR complexed with MoO4
2− or WO4

2− revealed active site hydrogen-bonding networks 

similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction 

with a leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR 

reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical 

analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without 

phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in 

the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of 

catalytic and structural features of HAD phosphatases.
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Bacteria monitor the extracellular milieu, respond to metabolic conditions and effect 

virulence using two component signaling systems1, 2. Each two-component system is 

minimally comprised of a histidine kinase that detects the signal and a partner response 

regulator that executes an output response. The response regulator acts as an allosteric 

molecular switch that is turned on and off by the reversible phosphorylation of an aspartyl 

residue. Although histidine kinases and phosphatases often regulate rates of response 

regulator phosphorylation and dephosphorylation in vivo, the response regulator receiver 

domain contains the conserved catalytic residues necessary and sufficient for both reactions. 

The ability to self-catalyze phosphoryl chemistry allows for response regulator 

autophosphorylation using small molecule phosphodonors, such as acetyl phosphate (AcP: 

CH3CO2PO3
2−) or phosphoramidate (PAM; NH3

+PO3
2−)3, 4, as well as subsequent 

hydrolytic autodephosphorylation5. Autophosphorylation occurs via in-line nucleophilic 

attack by the conserved Asp (D) on the phosphorus atom of the phosphodonor and 

autodephosphorylation progresses by a water molecule attacking the phosphorus within the 

phosphoaspartate (Figure 1B)6. Both substitution reactions occur with inversion of 

stereochemistry around the phosphorus atom. The proposed transition states for both 

reactions are believed to be stabilized by a conserved active site that includes a bound 

divalent cation [(coordinated by a conserved pair of acid residues (DD)], as well as 

threonine/serine (T) and lysine (K) residues (Figure 1A,B).

Phosphatases within the haloacid dehalogenase (HAD) superfamily share a highly similar 

active site and catalyze the same fundamental chemistry as response regulator receiver 

domains7–10. Like receiver domains, HAD phosphatases have a set of conserved active site 

residues located on the loops that follow β-strands within a domain that consists of an 

alternating pattern of β-strands and α-helices. Although the primary sequences of receiver 

domains and HAD phosphatases are related by circular permutation7, 10, the relative 

Immormino et al. Page 2

Biochemistry. Author manuscript; available in PMC 2016 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



locations of the conserved D, K, T, DD, and divalent cation within receivers and HAD 

active sites are strikingly similar (Figure 1A). Directly analogous to the 

autophosphorylation/autodephosphorylation reactions of response regulators, HAD 

phosphatases catalyze dephosphorylation of their substrates via a two-step mechanism using 

a phosphoaspartate enzyme intermediate that is subsequently hydrolyzed (Figure 1B)11, 12. 

HAD phosphatases have a broad range of natural substrates, many of which are 

phosphomonoesters such as phosphorylated sugars9 and phosphoproteins13. Despite the 

similar active sites, HAD phosphatases typically exhibit rate constants ~102–104 fold greater 

than response regulators14. This difference highlights the different roles for the 

phosphorylated intermediate in the two families. HAD phosphatases evolved to catalyze 

dephosphorylation and typically only briefly exist as phosphorylated enzyme intermediates. 

In contrast, response regulators must persist in the phosphorylated (activated) form to 

facilitate signal transduction, and have dephosphorylation kinetics on the timescale of the 

processes they regulate15.

Two features of HAD phosphatases that likely contribute to their faster kinetics are an 

additional conserved Asp residue positioned two residues C-terminal to the site of 

phosphorylation (position D+2) and an active site so well structured to stabilize the 

transition state as to be capable of distorting the shape of substrate analogs11. The additional 

Asp acts alternately as a catalytic acid and base in the two phosphatase half reactions16–18 

(Figure 1B) and is often anchored in position by a semi-conserved residue (often an Arg, 

Lys, Thr, Trp, or Tyr) at position T+2 (two residues C-terminal to the conserved Ser/Thr), 

which helps to maintain the active site structure11. In contrast, position D+2 is rarely an Asp 

in response regulators, accounting for less than 2% of response regulator sequences in a 

survey (Immormino and Bourret, unpublished) of ~14,000 sequences from the MiST2.119 

database. In addition, response regulators are dynamic proteins that exhibit modest but 

functionally important conformational changes at the active site and allosterically linked 

surfaces. Residue T+2 lies on a particularly mobile loop20, 21. Despite these differences with 

HAD phosphatases, the residues at positions D+2 and T+2 in response regulators have been 

identified as playing roles in modulation of both autophosphorylation and 

autodephosphorylation reactions15, 22, 23. Furthermore, the D+2 and T+2 residues interact 

with each other in multiple X-ray crystal structures of response regulator receiver 

domains15, 24

In order to more fully understand the mechanistic similarities and differences between 

response regulators and HAD phosphatases, we explored the effect of placing an Asp at 

position D+2 and a partner residue at T+2 in the response regulator Escherichia coli CheY. 

CheY consists only of a receiver domain and has been used extensively as a model system to 

elucidate kinetic determinants that modulate receiver domain phosphotransfer reactions22, 23 

as well as the allosteric conformational changes linked to phosphorylation21, 25. Of a set of 

five CheY double mutants designed to mimic the HAD active site, CheY DR (an Asp at D+2 

and an Arg at T+2) uniquely exhibited enhanced rate constants for both autophosphorylation 

and autodephosphorylation. Structural and biochemical analysis indicated that the enhanced 

kinetics of CheY DR could be explained by partial acquisition of some properties of HAD 

phosphatases. Crystal structures of CheY DR complexed with MoO4
2− or WO4

2− revealed a 
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CheY backbone in a fully activated conformation and an active site hydrogen bonding 

network between Asp at D+2 and the Arg at T+2 that positioned the Asp to interact with the 

leaving group atom of the phosphodonor (for autophosphorylation) or the attacking water 

molecule (for autodephosphorylation). However pH profiles of autocatalytic rate constants 

did not indicate an altered pKa for the Asp at D+2 as would be predicted for function as a 

true acid/base catalyst. CheY DR also exhibited an enhanced binding affinity for the target 

peptide FliM1–16 relative to wild type CheY, suggesting that a shift toward an activated (i.e. 

phosphorylated/FliM binding) global conformation provided a more complete active site 

mold as exhibited by HAD phosphatases.

EXPERIMENTAL PROCEDURES

Site-directed Mutagenesis and Protein Purification

Genes encoding the CheY variants [referred to as CheY (D+2)(T+2), i.e. CheY DR, CheY 

DK, CheY DY, CheY DQ, and CheY DT) were generated by QuikChange mutagenesis 

(Agilent Technologies) of pKC126, a pET28a derived vector encoding wild type Escherichia 

coli CheY with an N-terminal thrombin-cleavable hexa-histidine tag. The substitutions at T

+2 were chosen based on anchoring residues (Arg, Lys, Thr, Trp, Tyr) found in HAD 

phosphatase structures11. A Trp substitution at T+2 was not constructed because our assays 

of reaction kinetics depend on fluorescence of the unique Trp present at D+1 in wild type 

CheY. A Gln substitution at T+2 was tested because its size and chemical properties were 

potentially compatible with anchoring the Asp at D+2. After thrombin cleavage, an extra 

GlySerHis was present at the CheY N-terminus, which does not affect CheY 

autophosphorylation26 or autodephosphorylation27 kinetics. Variation at the N-terminus is 

not known to affect the structure of the active site, located on the opposite side of the 

receiver domain. Overexpression of the CheY DX variants was performed with BL21(DE3) 

cells containing the appropriate pKC1 plasmid. Briefly, 1 L lysogeny broth containing 30 

μg/ml kanamycin was inoculated with 15 mL of overnight culture and grown to an OD600 of 

1.0. The culture was then induced with 1 mM isopropyl-β-D-1-thiogalactopyranoside at 

room temperature overnight. Cell lysates (in 50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 10 

mM imidazole) were purified by Ni-NTA agarose (Qiagen) chromatography. The eluted 

protein (in 50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 150 mM imidazole) was incubated 

with human α-thrombin (Haemolytic Technologies Inc.) at a 1:6000 (w/w; thrombin:CheY) 

ratio overnight at room temperature. A final purification step to separate CheY from 

thrombin and the cleaved tag was gel filtration (Superdex75 16/60, GE) in TMG buffer (25 

mM Tris pH 7.5, 5 mM MgCl2, 10% v/v glycerol). Wild type CheY and the T+2 single 

mutants (CheY NK, NR, NA, NY, NQ) were expressed and purified as previously 

described28. Briefly, K0641recA containing pRS329 or mutant plasmids were grown to an 

OD600 of 1.0 and induced with 100 μg/mL β-indole acrylic acid at 37°C overnight. Cell 

lysates in TMG buffer were purified by dye-affinity chromatography (Affigel-Blue, Bio-

Rad) followed by size-exclusion chromatography (Superdex 75, GE Healthcare). 

Concentrations for all purified CheY preparations were determined spectrophotometrically 

using an extinction coefficient at 280 nm of 0.727 (mg/mL)−1 cm−1 4.
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Fluorescence Measurement of CheY Autophosphorylation and Autodephosphorylation 
Kinetics

With the exception of CheY DR and CheY DK autophosphorylation reactions, 

autophosphorylation and autodephosphorylation time courses were measured by continuous 

monitoring of CheY intrinsic tryptophan fluorescence on a Perkin-Elmer LS-50B 

spectrofluorimeter with an Applied Photophysics (Surrey, U.K.) RX2000 rapid mixer 

accessory (dead time = 8 ms) and Perkin-Elmer FL WINLAB V.1.1 software as previously 

described23, 30. The kinetics of CheY DR and CheY DK autophosphorylation were too fast 

to be measured using the LS-50B, so measurements were made using a Jobin Yvon 

FluoroLog 322 spectrofluorimeter (response time = 3 ms) equipped with a F-3009 μFlow 

stopped flow apparatus (dead time < 5 ms) and associated DATAMAX Version 2 software 

at the UNC Macromolecular Interactions Facility. In each case, the excitation and emission 

wavelengths were set to 295 nm and 346 nm respectively and samples were maintained at a 

constant temperature of 25°C with a circulating water bath. Data points were recorded at 20 

msec intervals on the LS-50B and 10 msec intervals on the FluorLog 322.

For autophosphorylation experiments, equal volumes of 10 μM CheY and varying 

concentrations of phosphodonor- each in 100 mM HEPES, pH 7.0, 10 mM MgCl2 -were 

mixed. The phosphodonor was either phosphoramidate (PAM) with four final reaction 

concentrations ranging from 0.5–30 mM or acetyl phosphate (AcP) with four final reaction 

concentrations ranging from 10–50 mM. Because ionic strength affects CheY 

autophosphorylation kinetics31, 32, KCl was added to the phosphodonor solution to maintain 

a constant ionic strength of 300 mM (phosphodonor plus KCl). Time courses monitoring the 

accumulation of CheY-P were fit to a single exponential decay model to determine kobs. The 

data were further analyzed based on the following reaction scheme3, 32 (illustrated with 

PAM as phosphodonor):

Scheme 1. 

where KS is the equilibrium dissociation constant for formation of the noncovalent complex 

between CheY and PAM, kphos is the rate constant for phosphotransfer within the complex, 

and kdephos is the autodephosphorylation rate constant. kobs is a function of the kinetic 

parameters from scheme 1 as follows32:

(eqn. 1)

For each CheY variant, kobs was measured at four different phosphodonor concentrations. 

Plots of kobs versus phosphodonor concentration were linear in all cases and the slope gave 

the apparent bimolecular rate constant, kphos/KS.
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Rate constants for CheY autodephosphorylation were determined using the pH jump 

method27, 32. Mutant or wild type CheY (10 μM in 10 mM HEPES pH 7.0, 20 mM MgCl2) 

was phosphorylated with PAM at ~five times the concentration of PAM required to 

phosphorylate half of the CheY at steady state. The sample was then mixed using the rapid 

mixing accessory with an equal volume of pH jump buffer (200 mM sodium carbonate, pH 

10.2), which drastically retards the phosphorylation reaction, so that the observed time 

course for increase in fluorescence reflects the dephosphorylation reaction alone. Each time 

course was fit to a single exponential decay to determine the first order rate constant, 

kdephos. CheY autodephosphorylation rate constants determined by the pH jump method and 

by loss of radioactive phosphoryl groups agree within a factor of less than two27.

Rapid Dilution Assay to Determine the pH Dependence of Autodephosphorylation

The effect of pH on autodephosphorylation was tested with a rapid dilution assay. To isolate 

the dephosphorylation reaction, 100 μM CheY in autophosphorylation buffer was first 

phosphorylated with PAM (50 mM for wild type CheY, or 5 mM for CheY DR and CheY 

DY) in a 15 μL reaction volume. The reaction was then diluted 100-fold with 10 mM MgCl2 

and 100 mM of one of the following buffers: sodium carbonate, pH 10.2; Tris, pH 8.9; Tris, 

pH 8.0; HEPES, pH 7.0; MES, pH 6.5; sodium cacodylate, pH 5.9; sodium citrate, pH 5; or 

sodium acetate, pH 4.5. The phosphorylation and dilution were performed in a 1.5 mL 

quartz fluorescence cuvette while monitoring Trp fluorescence. The observed pseudo first-

order rate of autophosphorylation is proportional to the concentration of phosphodonor and 

thus is reduced by two orders of magnitude upon dilution. The observed change in 

fluorescence for these experiments (kobs, eqn. 1) following dilution is dominated by the 

kdephos term.

Autophosphorylation pH Profiles

The pH dependence of autophosphorylation was measured using a variation of the 

autophosphorylation assay described above. Briefly, equal volumes of 10 μM CheY and a 

phosphodonor solution of 5 mM PAM and 95 mM KCl were mixed using the rapid mixer 

accessory. Both CheY and phosphodonor were suspended in the set of pH buffers consisting 

of 10 mM MgCl2 and 100 mM buffer as described for the rapid dilution assay. The observed 

rate constant (kobs, eqn. 1) reflects contributions from both rate constants for 

autophosphorylation (kphos/KS) and autodephosphorylation (kdephos). To separate the effect 

of pH on kphos/KS, the kdephos value determined using the pH jump method was subtracted 

from kobs giving equation 2. To more readily compare the CheY mutants, kobs - kdephos was 

normalized to the value at pH 6.5 giving equation 3.

(eqn. 2)

(eqn. 3)
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Enzyme Activity Towards Para-Nitro-Phenyl Phosphate

Wild type CheY or CheY DR (18.4 μM) was added to 200 mM para-nitro-phenyl phosphate 

(pNPP, Sigma) in a 1.0 mL cuvette and the optical density at 450 nm read continuously to 

monitor the release of para-nitrophenolate. The buffers (present at 100 mM) were sodium 

salts of HEPES (pH 7.0), cacodylate (pH 6.5), citrate (5.0), or acetate (4.5). All buffers 

contained 10 mM MgCl2. The positive controls were the HAD phosphatase E. coli YbiV33 

or calf intestinal phosphatase.

Fluorescence Measurement of Binding Between CheY and FliM1–16

Binding affinities between the peptide MGDSILSQAEIDALLN, which corresponds to the 

amino terminal 16 residues of E. coli FliM (FliM1–16), and CheY were measured using 

tryptophan fluorescence as previously described34, 35. FliM1–16 (10 – 1000 μM final 

concentration) was titrated into 5 μM CheY in autodephosphorylation buffer (10 mM 

HEPES, pH 7.0, 20 mM MgCl2) and the resulting fluorescence quench was monitored. The 

measured intensities were corrected for dilution and Kd values were determined using Prism 

(GraphPad) to fit the data to a one-site binding model.

Crystallization, Data Collection, Structure Solution, and Refinement

Crystals of CheY DX mutants were grown by hanging drop vapor diffusion at room 

temperature. Crystals of the CheY·BeF3
−·Mn2+ complexes were obtained by adding 20 mM 

MnCl2, 1 mM BeCl2, and 10 mM NaF to the CheY variants (at 4.3–8.9 mg/mL) prior to 

crystallization. Diffraction quality crystals were found in conditions36 ranging from 1.6–2.4 

M ammonium sulfate, 5% (v/v) glycerol, 100 mM Tris, pH 7.5–8.25 with a drop ratio of 1:1 

protein:reservoir buffer. Crystals of the CheY variants in the absence of BeF3
− were 

obtained using 120–160 mM calcium acetate, 100 mM sodium cacodylate, pH 6.0, 20 mM 

MnCl2, and 28–31% (v/v) PEG8000 as the reservoir solution with a 1:1 drop ratio37. 

Crystals generally grew overnight or over the course of less than one week in various forms. 

For conditions with BeF3
−, the main crystal type was rhombic bipyramidal, but several of 

the CheY variants also formed rod shaped crystals, which tended to diffract better.

CheY·BeF3
−·Mn2+ and CheY·Mn2+ crystals were cryoprotected with glycerol as previously 

described15, or by serial transfers through buffers with increasing amounts of glycerol. 

Cryoprotected crystals were flash cooled in liquid nitrogen in preparation for data collection. 

X-ray diffraction images were collected at the SERCAT beamlines 22-BM and 22-ID at 

APS. Diffraction data were reduced and scaled using HKL200038 or XDS39.

Structures were also obtained for CheY DR bound to MoO4
2− or WO4

2−. The crystals were 

grown from conditions similar to the CheY·BeF3
−·Mn2+ complexes (2.45–2.6 M ammonium 

sulfate, 5% (v/v) glycerol, 100 mM Tris, pH 7.5). Prior to setting up crystallization drops, 20 

mM MnCl2, and either 2 mM ammonium molybdate or 10 mM sodium tungstate were 

added to CheY DR and incubated for 10 min. Single anomalous dispersion (SAD) data was 

collected at the LI absorption edge of tungsten (1.02631 Å) to 2.1 Å resolution for both 

complexes (Table 2). At this wavelength tungsten, molybdenum, and manganese have 

anomalous signals of 12.2 e−1, 1.3 e−1 and 1.4 e−1 respectively40, allowing for confident 
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distinction of molybdate and tungstate from sulfate ions (0.25 e−1) present at up to 2.6 M in 

the crystallization buffer.

Initial phases for the CheY crystals were obtained by molecular replacement using PDB 

entry 1FQW41 (CheY·BeF3
−·Mg2+ with CheY in the activated conformation) or 3CHY42 

(apo-CheY with CheY in an unactivated conformation) as the search models. Initial models 

were improved by iterative rounds of model building in Coot43 and structure refinement 

with PHENIX44. Prior to deposition, the models were validated using MolProbity45. Tables 

2, 3, and S1 contain summaries of diffraction data and refinement statistics. For structural 

comparisons, Cα RMSD (root-mean-square deviation) values were determined using the 

align command in PyMOL (PyMOL Molecular Graphics System, Version 1.4, Schrödinger, 

LLC.).

RESULTS

A CheY HAD Mimic Exhibited Enhanced Rates of Both Autophosphorylation and 
Autodephosphorylation

The faster reaction kinetics observed for HAD phosphatases relative to response regulators 

are due in part to an additional conserved active site Asp at position D+2 [two residues from 

the phosphorylatable Asp (D)]. The Asp at D+2 is often held in place via hydrogen bonding 

or salt bridge interactions with a residue at position T+211, thus orienting the Asp side chain 

for direct interaction with the leaving group (during formation of the Asp-P intermediate) or 

with the water oxygen (during hydrolysis of the Asp-P intermediate) (Figure 1B). To assess 

the impact of the presence of an Asp at D+2 in response regulators with various potential 

anchoring residues at T+2, we constructed a set of five CheY DX proteins where D 

represents the substitution of an Asp at position D+2 (Asn59 in wild type CheY) and X is 

the substitution of either Arg, Gln, Lys, Thr or Tyr, at position T+2 (Glu89 in wild type 

CheY). For CheY, the two steps that correspond to the HAD phosphatase half reactions 

(autophosphorylation and autodephosphorylation, respectively) can be monitored 

independently and with high precision using stopped-flow fluorescence and exploiting the 

difference in tryptophan emission for phosphorylated and unphosphorylated CheY.

Measured bimolecular rate constants (kphos/Ks) for autophosphorylation of CheY DX double 

mutants with the phosphodonors acetyl phosphate (AcP) and phosphoramidate (PAM) as 

well as autodephosphorylation rate constants (kdephos) are listed in Table 1. Because the goal 

of the current study was to assess the extent to which the CheY scaffold can kinetically and 

mechanistically mimic an HAD phosphatase by utilizing an aspartate at position D+2 as an 

additional catalytic residue, the rate constants were compared to those of the analogous 

CheY single mutants with an Asn (the wild type residue) at position D+2 and the same 

residue at T+2, reported in a previous study23. For autophosphorylation with AcP, the five 

CheY DX variants for which comparison was possible gave reduced rate constants (between 

~7–26 fold) relative to the matched CheY NX single mutant, indicating that the Asp at D+2 

actually had detrimental effects on kinetics, opposite the expected result for successful 

mimicry of catalysis by HAD phosphatases. This result is consistent with the previously 

observed deleterious effect of net negative charge of D+2/T+2 side chains for CheY 
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autophosphorylation with AcP23, which likely masked any potential specific catalytic 

function of the Asp at D+2.

In contrast to the AcP results, there was significant variation in the rate constants for the 

CheY DX variants relative to the CheY NX mutants for autophosphorylation with PAM 

(Table 1). We previously found that rate constant variation for CheY autophosphorylation 

with zwitterionic PAM correlates with the nonpolar surface area of D+2/T+2 side chains23 

and the rate constants for the CheY NX set largely reflects these differences. Three of the 

five CheY HAD mimics (CheY DY, DQ, and DK) gave PAM autophosphorylation rate 

constants that were within three-fold of the corresponding CheY NX variant, indicating that 

the Asp at D+2 functioned similarly to the Asn. CheY DT exhibited an autophosphorylation 

rate constant for PAM that was less than that of any measured CheY NX protein23, again 

suggesting no special contribution from the Asp at D+2. The CheY NT mutant was not 

available for direct comparison, and CheY DT was not characterized further. CheY DR, 

however, exhibited a PAM autophosphorylation rate constant that was about nine-fold 

greater than CheY NR (and ~90-fold greater than wild type CheY), suggesting that the 

negative charge of the Asp at D+2 functioned in catalysis. Furthermore, CheY DR was also 

the only CheY DX variant with a substantially enhanced autodephosphorylation rate 

constant. Whereas CheY DY, DQ, and DK all gave autodephosphorylation rate constants 

within ~three-fold of the CheY NX analog, CheY DR gave an autodephosphorylation rate 

constant ~30-times that of CheY NR (and ~six-fold greater than wild type CheY). Thus 

CheY DR is the most probable candidate for a CheY HAD mimic in which the Asp at D+2 

plays a catalytic role that is dependent on the acidic side chain.

Accelerated reaction rates for CheY DR are not due to acid/base catalysis

One possible mechanism to account for the accelerated reaction rates for both CheY DR 

autophosphorylation with PAM and autodephosphorylation (Table 1) could be that the Asp 

at position D+2 acts as an acid/base catalyst, as in the HAD phosphatases (Figure 1B). 

Acidic residues (Asp or Glu) that act as acid/base catalysts typically have pKa values near 

neutral46 so that appreciable amounts of both the protonated and unprotonated forms are 

present. If the Asp at D+2 in CheY DR acts as a catalytic base in autodephosphorylation, 

then pH profiles for CheY DR autodephosphorylation might be expected to exhibit a 

transition towards lower rate constants in the mildly acidic pH range, in contrast to wild type 

CheY, for which autodephosphorylation rate constants are essentially pH independent over a 

broad pH range4. However, the autodephosphorylation rate constants for CheY DR, CheY 

DY, and wild type CheY were essentially constant over a wide pH range (4.5–10.2) (Figure 

2A). Thus, none of the three tested CheY variants contain a residue with pKa > ~4.5 that 

contributes to catalysis in its deprotonated state, as would be expected for a base catalyst.

We also considered the possibility that acid catalysis could account for the accelerated rate 

of CheY DR autophosphorylation with PAM (Table 1). However, at pH 7.0 (the pH at 

which the rate constant was measured), PAM exists as a zwitterion with a protonated 

nitrogen (+1) and two oxygen monoanions (−2). Thus, for PAM, the proton is already 

present on the leaving group atom and acid catalysis by the enzyme is not required. PAM 

loses the nitrogen proton with a pKa of ~8.0 and wild type CheY reacts with PAM only 
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under pH conditions where the nitrogen is protonated4. We investigated the possibility that 

CheY DR autophosphorylation may exhibit a broader pH range than wild type CheY, which 

could reflect acid catalysis by a residue with pKa >~7. However, the normalized pH 

dependences of PAM autophosphorylation for wild type CheY and CheY DR (as well as 

CheY DK, DY, and DQ; Figure 2B) were virtually superimposable despite large differences 

in absolute rates. All of the pH profiles had a transition that correlated with the pKa of 

PAM47, thus giving no positive evidence for acid catalysis by CheY DR.

Finally, we tested the ability of CheY DR to hydrolyze para-nitro-phenyl phosphate (pNPP). 

Many HAD phosphatases readily react with pNPP14, a phosphomonoester whose rate of 

hydrolysis would be expected to benefit greatly from acid catalysis. However, CheY DR 

exhibited no detectable reactivity towards pNPP over the pH range 4.5–7.5 (data not 

shown). Although a negative result, taken together with the pH profile results (Figure 2), we 

conclude that it is unlikely that the Asp at D+2 in CheY DR acted as a true acid/base catalyst 

in the phosphorylation and dephosphorylation reactions.

Structures of CheY DR Complexed with WO4
2− or MoO4

2−

Without evidence for acid/base catalysis, structural analysis was used to gain insight into the 

mechanism by which CheY DR uniquely enhanced rates of both CheY autophosphorylation 

and autodephosphorylation. We obtained high quality crystals of CheY DR complexed with 

Mn2+ and the phosphate analogs molybdate (MoO4
2−) or tungstate (WO4

2−). The CheY 

DR·MoO4
2−·Mn2+ and CheY DR·WO4

2−·Mn2+ structures, both solved to 2.1 Å resolution 

(Table 2), represent the first structures of which we are aware of receiver domains 

complexed with these ions. The presence of MoO4
2− or WO4

2− was confirmed by 

calculation of anomalous difference Fourier maps using phases calculated from the 

molecular replacement solution. As seen in Figures 3 and S1, the >4 σ peak for molybdenum 

and a >15 σ peak for tungsten indicate that the ions are bound at the active site.

The CheY DR co-crystal structures were analyzed for both global backbone conformation 

and details of the active site. Like all receiver domains, CheY is an allosteric protein and 

exhibits both ‘unactivated’ and ‘activated’ global conformations for signal transduction, 

with the activated signaling conformation dominating in the phosphorylated state. The 

conserved differences between unactivated and activated receiver domain conformations are 

evident in comparison of structures of the unphosphorylated domain with structures of 

models of the phosphorylated protein, most often using the phosphoryl analog BeF3
− 41. The 

phosphoprotein intermediate is generally too labile to isolate in crystals. In both the 

MoO4
2−and WO4

2− structures, the CheY backbone and relevant side chains displayed all the 

hallmarks of a fully activated receiver domain including rotameric switching of residues 

Y106 and T87 and a ~4 Å shift of the β4α4 loop. The global similarity (Figure 3A) was 

reflected in Cα RMSD values of 0.182 and 0.217 Å in comparison of CheY·BeF3
−·Mn2+ 

(PDB entry 1FQW) to CheY DR·MoO4
2−·Mn2+ and CheY DR·WO4

2−·Mn2+, respectively. 

In contrast, the Cα RMSD values for comparison of CheY DR·MoO4
2−·Mn2+, CheY 

DR·WO4
2−·Mn2+, and CheY·BeF3

−·Mn2+ to the unactive CheY•Mg 2+ structure (PDB entry 

2CHE) were 0.874, 0.882, and 0.841 Å, respectively.
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Close-up views of the active sites show that both the MoO4
2− and WO4

2− anions retained an 

essentially tetrahedral geometry (Figure 3, Figure S1 for 2Fo-Fc density maps). In both 

structures, three of the four oxygen atoms from the anion essentially overlay positions 

occupied by the three fluorine atoms in structures of CheY•BeF3
−•Mn2+ (Figure 3A, inset) 

and the three oxygen atoms make identical interactions with protein atoms as the fluorines in 

the BeF3
− structure. However, the stereochemistry of the MoO4

2− or WO4
2− is inverted 

relative to the BeF3
−

, with the fourth oxygen atom projecting out towards solvent (Figure 

3A, inset). This arrangement suggests that these structures are models of substrate binding to 

CheY prior to phosphorylation or models of the dephosphorylated protein before 

dissociation of the phosphate product. In this context, the fourth oxygen atom would be in 

the location of the leaving group atom during autophosphorylation or the water oxygen 

during autodephosphorylation.

Further examination of the active site revealed a network of interactions involving the 

MoO4
2− or WO4

2− anion and the D+2/T+2 side chains. One of the key active site 

interactions in HAD phosphatases is the interaction between the Asp at D+2 and a polar 

residue at T+2, which positions the Asp appropriately for catalysis and stabilizes the active 

site structure11. In wild type CheY, the Asn at D+2 is oriented away from the Glu at T+2 

and away from the active site. A simple rotamer switch, observed in some structures of 

mutant CheY15, 48, however, allows the D+2 Asn residue to extend toward T+2 and the 

active site. In both the CheY DR·MoO4
2−·Mn2+ and CheY DR·WO4

2−·Mn2+ structures, the 

side chain of the Asp at D+2 assumes the rotamer directed towards the active site and forms 

a bidentate salt bridge with the Arg at T+2 (Figure 3B,C). Both the nature of the Asp (D

+2)/Arg (T+2) interactions and the consequent positioning of the Asp at D+2 are highly 

similar to interactions seen in HAD phosphatases.

The adoption of the HAD phosphatase-like positioning of the Asp at D+2 in CheY DR puts 

the side chain carboxylate within hydrogen bonding distance of the apical oxygen of the 

bound molybdate or tungstate anion (Figure 3B,C). Similar hydrogen bonding interactions 

could occur between the carboxylate side chain and the leaving group atom of a small 

molecule phosphodonor during phosphorylation, or an attacking water molecule during 

dephosphorylation, both of which would occupy nearly the same position in space as the 

apical oxygen atom. Thus the orientation and novel interactions observed for D+2 and T+2 

in the CheY DR co-crystal complexes with MoO4
2− and WO4

2− likely contribute to the 

accelerated autophosphorylation and autodephosphorylation rates of CheY DR.

Residues at Positions D+2 and T+2 Do Not Interact in the Activated Conformations of the 
Other CheY HAD Mimics

To assess whether the details of the active site hydrogen bonding network were unique to 

CheY DR, co-crystal structures of other CheY HAD mimics (CheY DQ, DY, and DK) 

complexed with Mn2+ and BeF3
− were solved to between 1.55 and 2.4 Å resolution (Table 

3). In all of the co-crystal structures, the CheY backbone was quite similar to that of 

activated wild type CheY (PDB entry 1FQW)41, with Cα RMSDs of 0.263 Å, CheY DK; 

0.260 Å, CheY DY; and 0.255 Å, CheY DQ. In contrast to CheY DR·MoO4
2−·Mn2+ and 

CheY DR·WO4
2−·Mn2+, the Asp at D+2 is oriented away from the active site pocket and is 
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not anchored by the polar residue at position T+2 in CheY DQ, CheY DK, and CheY DY 

complexed with BeF3
− and Mn2+ (Figure 4B, C, D). We also solved the crystal structure of 

CheY DR complexed with Mn2+ and BeF3
−. Interestingly, the CheY DR·BeF3

−·Mn2+ 

complex crystallized in the orthorhombic space group P21221 rather than the more common 

P212121 space group observed previously for many BeF3
− bound CheY co-crystal 

structures, likely accounting for the slightly higher RMSD (Cα RMSD of 0.633 Å) relative 

to wild type CheY·BeF3
−·Mn2+ (PDB entry 1FQW). With the P21221 packing environment, 

the Asp at D+2 formed a salt bridge with Arg19 from helix α1 of a symmetry related 

molecule and not with the Arg at T+2 within the same monomer (Figure 4F). However, the 

CheY DR Asp residue at position D+2 was still oriented in the appropriate position for 

catalysis (Figure 4E).

Enhanced Binding of FliM1–16 to CheY DR Indicates a More Activated Conformational 
Landscape

The bidendate salt bridge between the Asp at D+2 and the Arg at T+2 observed in the CheY 

DR·MoO4
2−·Mn2+ and CheY DR·WO4

2−·Mn2+ complexes, reminiscent of similar hydrogen 

bonding networks seen in the active sites of HAD phosphatases, raised the possibility that 

the CheY DR mutant had an enhanced propensity to adopt the activated conformation. To 

assess this possibility, we measured binding affinities for the N-terminal peptide of the 

flagellar motor protein FliM (FliM1–16) using tryptophan fluorescence49, 50 (Table 4). A 

population of CheY shifted toward a fully activated signaling conformation - either by 

phosphorylation or mutation - exhibits tighter binding to FliM1–16
49, 50. FliM1–16 binds to a 

CheY surface distinct from the active site, so FliM1–16 binding affinity serves as a measure 

of CheY conformation independent of active site modification. The measured Kd for wild 

type CheY (370 μM) compares reasonably to a previously published measurement from our 

lab (280 μM)34. Notably, CheY DR exhibited a binding constant (Kd of 65 μM) that was 

nearly six-fold tighter than wild type CheY and three-fold tighter than CheY NR. The Kd of 

65 μM is also less than three-fold weaker than reported values for FliM1–16 binding to 

phosphorylated wild type CheY (Kd = 26–27 μM) 34, 49, believed to be largely in an 

activated conformation. The increased affinity of CheY DR for FliM1–16 indicates that 

CheY DR has an enhanced propensity to acquire an activated conformation in the absence of 

phosphorylation. In turn, the enhanced propensity might be due to stabilization of the 

activated conformation of CheY DR by the interactions between the Asp at D+2 and the Arg 

at T+2 observed in the crystal structures.

The highly structured active site “scaffold” or “mold” of HAD phosphatases is noted as one 

of the contributors to their fast catalytic rates11. Likewise, the shift to an activated 

conformation could have important implications regarding enhancement of 

autophosphorylation rates for CheY DR. Such models are consistent with earlier studies on 

the effect of switching the conformational state of CheY by binding the FliM1–16 peptide or 

the P2 domain of CheA30. A 160-fold increase in CheY autophosphorylation rate constant 

was observed for the activated versus unactivated state30, perhaps due to more optimal 

locations of conserved active site residues51. Thus, in addition to the positioning of the Asp 

at D+2, the enhanced autophosphorylation kinetics of CheY DR also likely have 

contributions from a shift toward the activated conformation. Though more modest, several 
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of the other CheY DX and NX mutants - CheY DK, NR, NK, and NY - also exhibited 

enhanced binding affinities for FliM1–16 relative to wild type CheY (Table 4). Thus, shift in 

relative activation also likely contribute to the enhanced PAM autophosphorylation rate 

constants for these CheYs (Table 1).

A shift to an activated conformation could potentially be evident from crystal structures of 

CheY solved in the absence of a phosphate or phosphoryl group analog. We solved four 

crystal structures to investigate this possibility. However, only the unactivated conformation 

was observed in crystal structures of CheY DR, DK, DY, or DQ complexed with Mn2+ in 

the absence of BeF3
− (Table S1). This suggests that the conditions used for crystallization 

preferentially stabilize the unactive conformation. Furthermore, the observation of CheY DR 

in the unactive conformation reveals that despite more facile transitions implied by the 

FliM1–16 binding data, CheY DR is still conformationally dynamic, and unlike the HAD 

phosphatases does not constitutively maintain a complete active site mold.

DISCUSSION

Meticulous regulation of the rates of both phosphorylation and dephosphorylation of 

response regulator signaling proteins is essential for effective signal transduction. Here we 

extend our use of CheY as a model system to elucidate mechanisms of response regulator 

rate modulation by assessing mechanistic similarities to a family of enzymes (HAD 

phosphatases) that catalyze nearly identical chemistry using a highly similar active site. 

Structural and biochemical characterization of a set of CheY double mutants designed to 

mimic the more efficient HAD phosphatases revealed that one of the engineered CheYs – 

CheY DR – acquired some properties of the HADs that resulted in enhanced reaction rate 

constants, although CheY DR appeared to fall short of bona fide acid/base catalysis or an 

active site preformed to fit the transition state. The results highlight the role of an active site 

hydrogen bonding network that allows direct interaction with the leaving group/nucleophile 

atom in rate enhancement of both autophosphorylation and dephosphorylation of response 

regulators. Additionally, the results provided insight into how the propensity to adopt the 

activated global conformation positively modulates response regulator catalysis.

Anchoring of the Asp at D+2 by the Residue at T+2 Enhances Catalysis in Both HAD 
Enzymes and CheY DR

The importance of ‘pinning’ the Asp at D+2 in position to enable function as an acid/base 

catalyst in HAD phosphatases is supported by a large body of structural and functional 

analysis11, 52–54. Pinning almost exclusively occurs through hydrogen bonding interactions 

between the side chains of the Asp at D+2 and the residue at position T+2, usually an Arg, 

Lys, Thr, Trp, or Tyr11. In the one HAD phosphatase of which we are aware that has been 

directly tested experimentally, substitution of the anchoring residue at T+2 (an arginine) 

results in a loss of hexose phosphate phosphatase catalytic activity similar in magnitude to 

substitution of the catalytic Asp at D+211.

Structures of CheY DR bound to the substrate/product analogs WO4
2− or MO4

2− revealed 

an active site configuration with features of a HAD phosphatase. The geometries of the 

bidentate salt bridge between the Asp and Arg side chains in CheY DR mimicked the Asp-
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Arg interactions in multiple HAD structures and placed the Asp at D+2 in the rotameric 

form (Figure 3B,C) to hydrogen bond with the apical oxygen atom of WO4
2−/MO4

2−, which 

occupied the space expected for the nucleophilic water oxygen or leaving group nitrogen. 

The unique interactions between the D+2 and T+2 side chains observed in CheY DR but 

absent from other CheY DX variants (Figure 4) correlate with the highest rate constants for 

catalysis of both PAM autophosphorylation and autodephosphorylation (Table 1).

Hydrogen Bonding Interactions Versus Acid/Base Catalysis as Mechanisms of Catalysis

Despite the structural evidence that correlated the anchoring of Asp at D+2 with enhanced 

catalysis, our pH profile data indicated that CheY DR was unlikely to act as a true acid/base 

catalyst. The rate constants for CheY DR and DY autodephosphorylation were pH 

independent (Figure 2A), ruling out base catalysis. The autophosphorylation experiment to 

assess acid catalysis (Figure 2B) was less direct, because the PAM phosphodonor can 

acquire the proton required for reaction without assistance from CheY. However, the pH 

dependence of the bimolecular autophosphorylation rate constant was indistinguishable for 

all five CheY variants tested, indicating that the Asp at D+2 (absent from wild type CheY) 

likely does not act as an acid catalyst in CheY DR. The more compelling evidence that 

Asp59 is not a base catalyst in CheY DR also implies that the Asp at D+2 does not act as a 

dual acid/base catalyst in CheY DR as it does in HAD phosphatases.

Additional evidence against acid catalysis in CheY DR can be inferred from examination of 

autophosphorylation with AcP. AcP does not require protonation to react with CheY, but 

acid catalysis would be expected to accelerate the reaction. For the Asp at D+2 to serve as 

an acid catalyst, the pKa should be shifted to result in protonation near neutral pH. However, 

all of the CheY DX variants tested had substantially slower rate constants for reaction with 

AcP than their CheY NX counterparts (Table 1). Because negative charge at D+2 and T+2 

retards CheY autophosphorylation with AcP23, we can infer that the Asp at D+2 is likely 

unprotonated. Furthermore, exploratory experiments revealed no effect of pH on 

autophosphorylation of CheY DR with 100 mM AcP across the range pH 4.7 to 8.0 (data not 

shown), again suggesting the Asp at D+2 in CheY DR is not protonated and therefore does 

not act as an acid catalyst.

The rate enhancements of autophosphorylation with PAM and autodephosphorylation 

observed for CheY DR compared to CheY NR (Table 1) therefore must be due to effects of 

the oriented Asp side chain other than acid/base catalysis. For dephosphorylation, this could 

be positioning the water molecule for in-line nucleophilic attack. Positioning the water 

molecule as a mechanism to enhance response regulator dephosphorylation is the strategy 

used by multiple families of response regulator phosphatases. The CheX55, CheZ56, Rap57, 

and His KA_3 sensor kinase58 families of response regulator phosphatases all function by 

inserting a side chain (Gln, Asn, or Thr) into the active site of the response regulator to 

hydrogen bond with (and position) the attacking water molecule. For autophosphorylation 

by PAM, direct interaction between the carboxylate oxygen on the Asp at D+2 and the 

cationic nitrogen on PAM would be expected to enhance PAM binding through positive 

electrostatic interactions (salt bridge formation). This stabilizing interaction would be 
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expected to persist in the transition state where the nitrogen atom carries a partial positive 

charge.

The proposed introduction of hydrogen bonding interactions between the Asp at D+2 and 

nucleophilic/leaving group atoms as the mechanism of CheY DR rate enhancement (as well 

as the absence of acid/base catalysis) is consistent with the magnitude of reaction rate 

enhancements exhibited by CheY DR, which were ~101–102 greater than CheY NR or wild 

type CheY (Table 1). Response regulator phosphatases, which function by positioning the 

water, generally provide about one to two orders of magnitude increase in the rate 

dephosphorylation over that catalyzed by a response regulator in the absence of its 

phosphatase55, 56. There is also evidence from HAD phosphatases that orienting hydrogen 

bonds increase catalytic rates ~101–102 fold8, 59, 60. In contrast, the involvement of a bona 

fide catalytic acid/base typically increases rates by ~102–104 fold61.

What structural feature(s) present in HAD phosphatases but absent in CheY DR might 

account for the lack of acid/base catalysis for CheY DR? One structural difference is the 

HAD cap domain8, which, when closed over the active site, yields a relatively hydrophobic 

pocket. This hydrophobic environment facilitates the shift in pKa towards neutral for the 

catalytic Asp, allowing for acid/base catalysis46. Even the so-called “capless” HAD 

phosphatases, which typically dephosphorylate macromolecular substrates, benefit from a 

hydrophobic active site pocket created by the HAD/substrate interface62, 63. In contrast, 

CheY has a surface exposed active site and lacks a capping domain. CheY T+2 mutants that 

increase the nonpolar surface area at the active site do enhance autophosphorylation23, but 

are apparently not sufficient to functionally mimic a capping domain.

Global Conformation as a Kinetic Determinant for CheY DX

The active site for many HAD enzymes has been likened to a preformed mold where the 

catalytic residues are arranged similarly throughout the catalytic cycle11. In contrast, 

response regulators are allosteric proteins with activated and unactivated global 

conformational states that are in dynamic equilibrium21, 41. For unphosphorylated response 

regulators, the equilibrium lies towards the unactive conformation. However, ‘pushing’ the 

conformational equilibrium towards the activated conformation by mutation35, relief of 

inhibitory interactions with the output domain64, or providing a binding partner30, 65 can 

accelerate autophosphorylation more than 100-fold30, 64. Although the mechanistic basis for 

the rate enhancement is not fully understood, the structure of unphosphorylated CheY bound 

to FliM1–16
51 (which has many but not all of the features of a fully activated conformation) 

shows that the conserved Thr87 has shifted closer to the other catalytic residues and thus 

may provide a more complete active site mold, reminiscent of the HAD enzymes.

Our observation that unphosphorylated CheY DR exhibited enhanced binding to FliM1–16, 

the peptide target of phosphorylated CheY, provided compelling evidence of a shift to a 

conformation that is more active for both autophosphorylation and output signaling. FliM 

binds to the β4α4 surface on CheY, a surface distal from the active site whose topology is 

changed as a result of phosphorylation. The six-fold enhancement of FliM1–16 binding by 

CheY DR (Kd ~65 μM) relative to wild type CheY (Kd ~370 μM) is considerable compared 

to the ~10–14-fold30, 49 enhancement in FliM1–16 binding upon CheY phosphorylation. 
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However, it is clear that CheY DR, while shifted more towards an activated conformation 

than wild type CheY, is not ‘locked’ in the activated conformation. The structure of CheY 

DR•Mn2+ (no substrate, product, or phosphoryl group analog present) displayed an 

unactivated conformation. Although the backbone is in the fully activated conformation in 

the CheY DR complexes with MoO4
2− and WO4

2−, the presence of the substrate/product 

analog may tip the delicate energy balance between conformational states towards the 

activated conformation. Though more modest than CheY DR, several of the other CheY DX 

and NX mutants also displayed enhanced FliM binding affinities relative to wild type CheY 

(Table 4). Thus, these CheY mutants may also have conformational equilibria shifted 

towards a more activated conformation as a contribution to their enhanced 

autophosphorylation. For example, CheY DK and CheY NY, exhibited both enhanced 

autophosphorylation rate constants with PAM and modest (~two-fold) enhanced FliM 

binding relative to wild type CheY. It is tempting to speculate that the observed dual 

hydrogen bonding interactions between Asp at D+2 and Arg T+2 (Figure 3B,C) may 

contribute energy to the conformational shift of CheY DR. In the absence of a substrate/

product analog, the same additional interactions could lower the energy of the activated 

conformation. Conformation is expected to have less impact on the control of 

autodephosphorylation rates for response regulators because the reactant (CheY-P) is 

already in an activated conformation.

Structural Relationships Between Response Regulators and HAD Enzymes

The hallmarks of the CheY DR MoO4
2− and WO4

2− structures presented here were that 1) 

the CheY backbone was in the fully activated conformation and 2) the activated 

conformation enabled interactions between conserved active site features and the 

MoO4
2−/WO4

2− that directly mimicked those seen with HAD complexes. Together, these 

properties provide direct evidence in support of the notion that the nature of the 

protein:substrate or protein:product complexes in response regulators is highly similar to 

that of HAD phosphatases.

Structures of HAD phosphatases containing a phosphate or a phosphate analog in the active 

site have served as informative models of enzyme:substrate complexes (e.g. Ref. 16) and it 

is notable that such structures constitute a significant fraction of the total HAD structures in 

current public databases. In our survey of 285 HAD structures (compiled from PDB 

searches for Pfam groups PF00702, PF03767, PF12689, and PF08645), we found 71 that 

contained inorganic phosphate, a phosphate analog, or a phosphate-containing substrate 

properly oriented in the HAD active site mold. In each of these structures the HAD 

phosphate analog structures show conserved interactions between three phosphate oxygen 

atoms (or equivalent) and the bound divalent metal ion, the conserved Thr, and Lys. These 

interactions are preserved in structures of many of the same HAD phosphatases complexed 

with planar molecules that model the transition state, and thus are likely to stay intact 

throughout the reaction cycle.

In contrast, in a survey of 255 receiver domain structures (excluding the structures presented 

in this report), we identified only seven PDB entries (four different response regulators) with 

HPO4
2− (phosphate) or HPO4

2− analog within the active site, even though many of the 
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structures were solved using crystals containing high concentrations of SO4
2−, a phosphate 

analog. Strikingly, in all seven of these structures (PDB entries 3GWG, 3H1G, 3H1F, 

3OO0, 3DGE, 1I3C, 1JLK)66–68, like the CheY DR·MoO4
2− and CheY DR·WO4

2− 

structures reported here, the receiver domain was in an activated global conformation. Of the 

seven entries, four also contained a divalent metal ion and in three of these four (PDB 

entries 3GWG, 3H1G, and 3OO0), there are direct interactions between the oxygen atoms of 

the phosphoryl analog (sulfate in all cases) and the M2+, Lys, and Thr, as observed in HAD 

phosphatase:substrate structures. To the best of our knowledge, no response regulator 

structures have been determined with an actual small molecule substrate bound to the active 

site. The paucity of structures for response regulators with a bound active site phosphate/

phosphate analog is likely because unphosphorylated response regulators are dominated by 

the unactivated conformation and only very weakly bind phosphate. In the same vein, the 

correlation between the presence of the activated conformation and a bound phosphate/

phosphate analog is consistent with the notion that the activated conformation of response 

regulators is the reactive molecule for phosphorylation26, 30, 64, 65 and further, that the 

interactions between active site residues and substrate/product molecules are highly similar 

to those in HAD phosphatases. Response regulator proteins such as CheY DR that form 

crystallizable complexes with phosphate analogs may serve as good candidates for which to 

attempt co-crystallization with substrate analogs or with planar transition state analogs, as 

has already been achieved for multiple HAD phosphatases.

Enzyme Families With Functionally Tuned Reaction Mechanisms

Receiver domains and HAD enzymes are distantly related and share structural similarities69. 

However, the reactions catalyzed by receiver domains and HAD phosphatases have diverged 

kinetically to fulfill different purposes. HAD phosphatases, with the conserved Asp at D+2 

providing acid/base catalysis, the anchoring residue at T+2, and a structured active site, 

support rapid hydrolysis of the phosphoryl group both from the substrate and the phospho-

enzyme intermediate. Receiver domains, lacking the catalytic Asp at D+2 and undergoing 

allosteric conformational changes, support a relatively stable phospho-enzyme intermediate 

for signal transduction. Our attempt to endow a receiver domain with HAD-like properties 

by engineering specific residues at positions D+2 and T+2 was partially successful.

A potentially analogous circumstance is provided by the GHKL protein superfamily, 

composed of gyrase-like topoisomerases, Hsp90 chaperones, histidine kinases, and MutL 

DNA repair enzymes70. Each constituent family contains a similar ATP-binding domain, 

which supports ATP hydrolysis in three (gyrases, Hsp90s, MutLs) of the four families. In 

each case, ATP hydrolysis is coupled to protein conformational changes associated with 

interactions with their macromolecular substrates71, 72. In contrast, in histidine kinases, the 

γ-phosphoryl group of ATP is transferred to a His residue instead of water. The phospho-His 

residue then fulfills a signal transduction function, serving as the phosphodonor for receiver 

domains. The absence of ATPase activity in the histidine kinases is hypothesized to be due 

to lack of a conserved Glu that serves as a catalytic base, as well as lack of a positively 

charged Lys or Arg that interacts with the γ-phosphoryl group of ATP70, 73, 74. Nevertheless, 

GHKL ATP-binding domains are sufficiently similar that radicicol, a drug that inhibits the 
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ATPase activities of Hsp90s and topoisomerases75, also inhibits the autophosphorylation 

activity of at least two histidine kinases76, 77.

To the best of our knowledge, restoration of ATPase activity in histidine kinases by 

introduction of the catalytic Glu found in GHL family members has not been attempted. 

However, engineering a monovalent cation binding site from a K family member into a 

GHL protein has been achieved78. When an Ala adjacent to the MutL cation binding site 

was replaced with a Pro found in kinases, the coordination of the ion in MutL changed (two 

ligands lost and two gained) to display the same coordination found in the kinase that 

inspired the Pro substitution. However, the binding site in the kinase is specific for 

potassium, whereas the mutant MutL binding site with the same coordination pattern is 

specific for sodium. As with our attempt to engineer HAD phosphatase properties into a 

receiver domain, transplanting a key amino acid onto a related protein backbone endowed 

the recipient with some, but not all, of the properties of the “donor” protein.
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ABBREVIATIONS

D the conserved phosphorylated aspartate shared by response regulators and 

HAD phosphatases

T the conserved threonine/serine shared by response regulators and HAD 

phosphatases

K the conserved lysine shared by response regulators and HAD phosphatases

DD the conserved acid residues that coordinate the Mg2+ shared by response 

regulators and HAD phosphatases

D+2 or T+2 the position in the primary sequence of response regulators or HAD 

phosphatases that is two residues carboxyl-terminal to D or T, respectively

CheY DX E. coli CheY double mutant with an Asp substituted for CheY Asn59 at 

position D+2 and X representing the residue substituted for CheY Glu89 at 

position T+2. AcP, acetyl phosphate
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Figure 1. 
Similarity of active site geometries and reaction chemistry of response regulators and HAD 

phosphatases. (A) Stereo view of superimposed active sites of E. coli CheY (gray sticks, 

PDB entry 1FQW) and Bacteroides thetaiotaomicron VPI-5482 hexose phosphate 

phosphatase (HPP) (green sticks, PDB entry 2RBK). The divalent cations are shown as 

purple (CheY) or green (HPP) spheres. The BeF3
− ion shown is present in the CheY 

structure. The VO4
2− that occupies the same location in HPP is not shown for clarity. D, 

DD, T, and K are defined in the text and are conserved in both families. Additionally, the 

residue at position D+2 is conserved as an Asp in HAD phosphatases. (B) Proposed trigonal 

bipyramidal transition states (black) for the phosphorylation (top) and dephosphorylation 

(bottom) substitution reactions of response regulators and HAD phosphatases. Conserved 

active site features involved in transition state stabilization that are shared by response 

regulators and HAD phosphatases (T, K, and Mg2+) are colored green. In addition, HAD 

phosphatases contain a conserved Asp at position D+2 (red) that acts sequentially as an acid 

(top) and base (bottom) catalyst and is anchored by the residue at position T+2 (red).
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Figure 2. 
pH sensitivities of autodephosphorylation and autophosphorylation rate constants. (A) 
Autodephosphorylation rate constants (mean and standard deviation, n≥3) are plotted for 

wild type CheY at 25 °C (squares), CheY DY at 25 °C (triangles), and CheY DR at 15 °C 

(inverted triangles). The rate constants were measured with fluorescence using the rapid 

dilution method. Horizontal lines indicate the autodephosphorylation rate constants 

measured by the pH jump method (pH 10.2). (B) Rate constants (mean and standard 

deviation, n 3) for autophosphorylation with PAM normalized to the rate at pH 6.5 for wild 

type CheY (red), CheY DR (green), CheY DK (orange), CheY DY (yellow), and CheY DQ 

(blue).
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Figure 3. 
X-ray crystal structures of CheY DR with bound MoO4

2− or WO4
2−. (A) Overlay of CheY 

DR·MoO4
2− ·Mn2+ (light gray ribbon), CheY DR·WO4

2− ·Mn2+ (dark gray ribbon), and 

wild type CheY·BeF3
− ·Mn2+ (PDB entry 1FQW, orange ribbon). Mn2+ ions are represented 

with purple spheres and the MoO4
2−, WO4

2−, or BeF3
− ions are shown as sticks with Mo 

and W (teal), Be (yellow), and F (white). The inset is a zoomed version of the active site 

ligands. (B) and (C) Close-up views of the active sites of CheY DR·MoO4
2− ·Mn2+ (B) and 

CheY DR·WO4
2− ·Mn2+ (C) using the same coloring as panel (A). In both structures, the 

Asp at D+2 is oriented to form a divalent salt bridge with the Arg at T+2. Additionally, the 

Asp at D+2 forms a hydrogen bond with the apical oxygen of the bound molybdate or 

tungstate. In panel B the anomalous difference Fourier map (yellow mesh) is contoured at 

4σ and has peaks that roughly correspond with the positions of the Mn and Mo atoms. 

Similarly, in panel C, peaks are observed at 5σ (yellow mesh) for Mn and W, and 

additionally at 15σ (magenta mesh) for W. The relative peak heights and atom identities for 

the anomalous scattering atoms are consistent with expectations for the X-ray wavelength 

used [LI absorption edge of tungsten (1.02631 Å)]. Hydrogen bonding and electrostatic 

interactions are represented by light blue dashed lines and Mn2+ is represented as a purple 

sphere.
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Figure 4. 
Positioning of residues D+2 and T+2 in CheYs complexed with BeF3

− and Mn2+. In wild 

type CheY (A, PDB entry 1FQW), the side chain of Asn59 at position D+2 is directed away 

from Glu89 at position T+2 and is not positioned to interact with the leaving group atom (in 

autophosphorylation) or the nucleophilic water molecule (in autodephosphorylation). 

Similar orientations are observed for the Asp at D+2 in CheY DQ·BeF3
− ·Mn2+ (B, pink 

carbons), CheY DY·BeF3
− ·Mn2+ (C, cyan carbons), and CheY DK·BeF3

− ·Mn2+ (D, green 

carbons). The active site of CheY DR·BeF3
− ·Mn2+ (E/F, slate carbons) showed a 

reorientation of the Asp at D+2 toward the Arg at 89 and in position to aid catalysis. The 

Asp at D+2 in the CheY DR structure does not hydrogen bond with the Arg at T+2 as seen 

in the MO4
2− and WO4

2− structures, but instead interacts with Arg19 from helix α1 (grey) 

of a symmetry related molecule (F). In all panels, the BeF3
− is shown as yellow and white 

sticks and the M2+ as a purple sphere.
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Table 2

Summary of data collection and refinement statistics for CheY DR complexed with MoO4
2− or WO4

2−.

Diffraction Data CheY DR + MoO4
2−, Mn2+ CheY DR + WO4

2−, Mn2+

Diffraction Data Statistics

PDB code 3RVR 3RVS

Source APS 22-BM APS 22-BM

Space Group P212121 P212121

 a, b, c (Å) 53.51, 53.63, 161.84 53.56, 53.62, 162.82

 α, β, γ (°) 90, 90, 90 90, 90, 90

Wavelength (Å) 1.02631 1.02631

Resolution (Å)a 50-2.10 50-2.10

  (Last Shell) (Å) 2.15-2.10 2.15-2.10

Unique Reflections 27965 52812

Completeness (Last Shell) (%) 99.8 (100) 99.9 (100)

Average I/σI (Last Shell) 20.2 (5.3) 15.3 (4.3)

Redundancy (Last Shell) 7.0 (6.7) 11.2 (11.4)

Rsymb (Last Shell) (%) 7.2 (38.4) 11.3 (60.3)

Refinement Statistics

Refinement Package PHENIX 1.7_650 PHENIX 1.7_650

Resolution range (Å) 19.73-2.10 19.31-2.10

Reflections 27715 52807

Non-solvent atomsc 1995 1986

Solvent and hetero-atomsc 385 378

Molecules in Asymmetric Unit 2 2

Rms deviation from ideality

 Bond lengths (Å) 0.011 0.010

 Bond angles (°) 1.288 1.328

Rd value (%) 17.1 14.8

Rd free (%) 18.8 18.4

a
Resolution limit was defined as the highest resolution shell where the average I/σI was >2.

b
Rmerge = ΣhklΣi|Ii(hkl) - <I(hkl)> |/ΣhklΣII(hkl).

c
Non-hydrogen atoms, alternate atoms are counted once.

d
R = Σ | Fo - Fc |/ΣFo. ~5% of reflections were used to calculate Rfree.
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Table 3

Summary of data collection and refinement statistics for CheY•BeF3
−•Mn2+ complexes.

Diffraction Data
CheY DR + BeF3

−, 
Mn2+

CheY DK + BeF3
−, 

Mn2+
CheY DY + BeF3

−, 
Mn2+

CheY DQ + BeF3
−, 

Mn2+

Diffraction Data Statistics

PDB code 3RVL 3RVP 3RVN 3RVJ

Source APS 22-BM APS 22-ID APS 22-BM APS 22-BM

Space Group P21221 P212121 P212121 P212121

 a, b, c (Å) 37.63, 72.44, 107.28 53.49, 53.63, 160.42 53.44, 53.61, 161.31 53.58, 53.70, 160.66

 α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90

Wavelength (Å) 0.97933 1.00882 0.97933 1.0

Resolution (Å)a 50-1.55 50-2.40 50-2.25 50-2.10

 (Last Shell) (Å) 1.58-1.55 2.44-2.40 2.29-2.25 2.14-2.10

Unique Reflections 43539 18144 22709 26982

Completeness (Last Shell) (%) 99.3 (96.5) 96.9 (70.7) 99.8 (99.9) 96.3 (91.9)

Average I/σI (Last Shell) 18.8 (3.0) 22.3 (2.6) 12.8 (2.7) 14.4 (2.4)

Redundancy (Last Shell) 5.6 (4.0) 6.4 (3.1) 5.0 (4.4) 6.2 (4.7)

Rsymb (Last Shell) (%) 9.4 (40.3) 7.9 (33.7) 13.9 (53.1) 11.0 (62.4)

Refinement Statistics

Refinement Package PHENIX 1.7_650 PHENIX 1.7_650 PHENIX 1.7_650 PHENIX 1.7_650

Resolution range (Å) 25.92-1.55 44.58-2.40 27.6-2.25 27.6-2.10

Reflections 42133 17615 21750 26051

Non-solvent atomsc 1930 1990 1996 1986

Solvent and hetero-atomsc 453 288 323 325

Molecules in Asymmetric Unit 2 2 2 2

Rms deviation from ideality

 Bond lengths (Å) 0.015 0.007 0.007 0.007

 Bond angles (°) 1.588 1.058 1.110 1.095

Rd value (%) 15.6 17.3 18.6 17.7

Rd free (%) 18.2 21.5 22.5 20.1

a
Resolution limit was defined as the highest resolution shell where the average I/σI was >2.

b
Rmerge = ΣhklΣi|Ii(hkl) - <I(hkl)>|/ΣhklΣII(hkl).

c
Non-hydrogen atoms, alternate atoms are counted once.

d
R = Σ|Fo - Fc|/ΣFo. ~5% of reflections were used to calculate Rfree.
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Table 4

Equilibrium dissociation constants for CheY binding to FliM1–16 peptide.

CheY designation

Amino acid at position

Kd FliM1–16(μM)aD+2 T+2

DX set (HAD mimics)

 DR D R 65 ± 5

 DK D K 120 ± 8

 DY D Y 370 ± 30

 DQ D Q 380 ± 50

NX set

 NR N R 180 ± 9

 NK N K 230 ± 40

 NY N Y 160 ± 10

wild type N E 370 ± 20

a
Mean and standard deviation, n=3.
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