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Abstract

In two-component signal transduction systems (TCSs), responses to stimuli are mediated through 

phosphotransfer between protein components. Canonical TCSs use His → Asp phosphotransfer in 

which phosphoryl groups are transferred from a conserved His on a sensory histidine kinase (HK) 

to a conserved Asp on a response regulator (RR). RRs contain the catalytic core of His → Asp 

phosphotransfer, evidenced by the ability of RRs to autophosphorylate with small molecule 

analogs of phospho-His proteins. Phosphorelays are a more complex variation of TCSs that 

additionally utilize Asp → His phosphotransfer through the use of an additional component, the 

histidine-containing phosphotransfer domain (Hpt), which reacts with RRs both as phosphodonors 

and phosphoacceptors. Here we show that imidazole has features of a rudimentary Hpt. Imidazole 

acted as a nucleophile and attacked phosphorylated RRs (RR-P) to produce 

monophosphoimidazole (MPI) and unphosphorylated RR. Phosphotransfer from RR-P to 

imidazole required the intact RR active site, indicating that the RR provided the core catalytic 

machinery for Asp → His phosphotransfer. Imidazole functioned in an artificial phosphorelay to 

transfer phosphoryl groups between unrelated RRs. The X-ray crystal structure of an activated 

RR•imidazole complex showed imidazole oriented in the RR active site similarly to the His of an 

Hpt. Imidazole interacted with RR non-conserved active site residues, which influenced the 

relative reactivity of RR-P with imidazole versus water. Rate constants for reaction of imidazole 

or MPI with chimeric RRs suggested that the RR active site contributes to the kinetic preferences 

exhibited by the YPD1 Hpt.
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Microorganisms across all domains of life as well as slime molds and plants use two-

component systems (TCSs) to mediate responses to stimuli1, 2. TCSs regulate many different 
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biological functions from development and motility1 to antibiotic resistance3, 4 and 

virulence5, 6. In TCSs, the “signal” is transmitted amongst protein components through the 

transfer of phosphoryl groups. The initial phosphotransfer event occurs when the sensory 

component, the stimulus-regulated histidine kinase (HK), catalyzes phosphotransfer from 

ATP to its own conserved His. Phosphotransfer proceeds to a conserved Asp on the receiver 

domain of the response-mediation component, the response regulator (RR). Phosphorylation 

activates the RR to carry out its output function, e.g. transcription regulation. Finally, 

termination of the signal results from phosphotransfer from the RR Asp to water. Thus, the 

typical pathway for phosphotransfer in a canonical TCS is ATP → His → Asp → H2O.

Phosphorelays are a more complex variation of TCSs in which phosphotransfer follows an 

ATP → His1 → Asp1 → His2 → Asp2 pathway7, 8. Bacteria contain some of the most well 

characterized phosphorelays9–12 and the vast majority of TCSs found in plants and fungi are 

phosphorelays7. In phosphorelays, the sensory HK (His1) transfers the phosphoryl group to 

a RR receiver domain (Asp1) that does not have an output function. The phosphoryl group is 

then transferred to His2 on a histidine-containing phosphotransfer domain (Hpt) domain, 

and then to a RR (Asp2), which executes the output response. In phosphorelays, signal 

termination often occurs by reverse phosphotransfer (Asp2 → His2 → Asp1 → H2O)9, 13. In 

contrast to canonical TCSs, phosphotransfer from Asp → His is essential for function in 

phosphorelays.

Optimal functioning of any TCS requires meticulous regulation of the flow of phosphoryl 

groups on and off of RR(s). In phosphorelays, the varied kinetics and directionality of 

phosphotransfer for different Hpt/RR pairs14 reflects multiple roles for Hpt domains in 

directing phosphoryl group flow. In addition to acting as both the source and recipient of RR 

phosphoryl groups, some Hpts can transfer phosphoryl groups to three RRs, to provide a 

branch point in a signaling circuit7, 15, or bind to a RR-P to prevent its dephosphorylation16. 

Bidirectional phosphotransfer to one response regulator and unidirectional phosphotransfer 

to another response regulator allows the second response regulator to act as a phosphate sink 

for the first17. The structural determinants, of either Hpts or RRs, that underlie the variation 

in directionality and kinetics of phosphoryl group flow are not currently known. In 

particular, protein determinants that favor or disfavor Asp → His phosphotransfer have not 

been elucidated.

Small molecule analogs of phosphoproteins have been extremely useful in probing the 

catalytic contributions of protein components in His → Asp phosphotransfer. Two small 

molecule phosphodonors, monophosphoimidazole (MPI) and phosphoramidate (PAM), 

represent progressively reduced portions of the His-P side chain. The observation that RRs 

can autophosphorylate with small molecule phosphodonors demonstrated that RRs contain 

the core catalytic machinery for His → Asp phosphotransfer18. Small molecule 

phosphodonors have been used to assign the additional catalytic contributions of HKs19, the 

RR linker and effector domains20, and the global conformation of the receiver domain21 in 

His → Asp phosphotransfer.

In light of the significant advances in the dissection of contributions of TCS protein domains 

to His → Asp phosphotransfer reactions that came about as a result of the discovery of small 
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molecule phosphodonors, we sought a small molecular phosphoacceptor to dissect 

contributions to Asp → His phosphotransfer. Here we show that imidazole, the functional 

group of His, acts as a small molecule phosphoacceptor in Asp → His phosphotransfer. 

Imidazole accelerated the dephosphorylation, when compared to autodephosphorylation 

with water, of RRs CheY and PhoB by nucleophilic attack on the phospho-Asp. The 

discovery that imidazole is a recipient in phosphotransfer from RRs suggests that RRs 

contain the core catalytic machinery for Asp → His phosphotransfer. Furthermore, when 

imidazole was used in place of an Hpt in an artificial phosphorelay, phosphotransfer 

between non-partner protein components was achieved, suggesting that imidazole can act as 

a rudimentary Hpt. Determination of a co-crystal structure showed that imidazole orients in 

the RR active site similarly to the His of an Hpt poised for attack on the phospho-Asp. The 

imidazole interacted with nonconserved residues in the RR active site, and altering those 

amino acids changed the relative reactivities of a phosphorylated RR toward imidazole and 

water. Quantitative comparison of phosphotransfer reactions between various RRs and either 

Hpts or imidazole indicated that although the RR is the primary catalyst and dictated at least 

some of the preference displayed by a particular Hpt for different RRs, the Hpt is essential 

for high affinity binding between reactants and the primary contributor to overall reaction 

speed.

EXPERIMENTAL PROCEDURES

Mutagenesis and protein purification

Untagged versions of Escherichia coli wild type CheY (CheYwt), CheY F14E N59M E89R 

(CheYlarge), and CheY F14Q N59K E89Y (CheYMPI), and CheA were purified as 

described22, 23. The plasmids encoding His6-tagged CheY N59A E89A (CheYsmall), CheY 

N59Q E89F (CheYSLN1), CheY N59Q E89S (CheYSSK1), CheY N59V A88G E89N 

(CheYSKN7) were made using QuikChange (Agilent) with pKC124 as template. CheYsmall, 

CheYSLN1, CheYSSK1, CheYSKN7 were purified as described25 and removal of the His6-tag 

by thrombin cleavage left three additional residues (GSH) on the N-terminus. Additional N-

terminal residues do not affect CheY autodephosphorylation25 or autophosphorylation24. 

His6-tagged fusions of E. coli PhoR193-431 and PhoB1-127 (wild type and F20D) were 

purified as described24. The His6-tag was cleaved from wild type PhoB1-127 leaving an 

additional (GSH) at the N-terminus and PhoB1-127 F20D was used with the His6-tag intact. 

The F20D substitution prevents formation of a non-physiological dimer of PhoB26. PhoB 

F20D exhibits autophosphorylation and autodephosphorylation properties indistinguishable 

from wild type PhoB24, 27. However, phosphotransfer from PhoR and PhoR-phosphatase 

susceptibility are diminished27. All proteins were purified using size exclusion 

chromatography as a final step to remove cleaved peptides, imidazole, and other impurities.

CheY dephosphorylation rate constant measurement by 32P

The effect of imidazole on CheY dephosphorylation was probed with modifications of a 

previously described method for measuring RR autodephosphorylation by following the loss 

of 32P 25. Purified [32P]CheA-P (1.5 μM) was mixed with CheY (15 μM) in 35 mM Tris at 

pH 7.5 and 10 mM MgCl2. After 10 s, to allow for sufficient phosphotransfer, imidazole 

was added. For determination of pH-dependence of the imidazole-mediated 
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dephosphorylation reaction, 250 mM imidazole was added at pH 4.9 (buffered with 250 mM 

sodium acetate) or pH 8.2 (buffered with 250 mM Tris). For determination of 

dephosphorylation rate constants of CheYMPI and CheYSKN7, the ratio of CheY (30 μM) to 

[32P]CheA-P (0.30 μM) was increased to allow for rapid phosphotransfer. The 

phosphotransfer buffer was 5 mM Tris at pH 7.5 and 10 mM MgCl2. Next, imidazole (20 

μM - 20 mM for CheYMPI, 2.5 mM – 50 mM for CheYSKN7) was added in 100 mM sodium 

bicarbonate at pH 10.3. Autophosphorylation with MPI is negligible at pH 10.328. For 

experiments with CheYMPI under conditions that allowed for simultaneous phosphorylation 

and dephosphorylation, measurements were completed at pH 7.5 with 30 μM CheYMPI, 0.30 

μM [32P]CheA-P, and 50 mM imidazole (brought to pH 7.6 using HCl) in 35 mM Tris at pH 

7.5 and 10 mM MgCl2. For all reactions, the final pH of mixed components was confirmed. 

Aliquots were removed at designated time points and quenched with an equal volume of 2X 

SDS sample buffer. Reaction components were separated by SDS-PAGE, and loss of 

radiolabel from CheY was detected using a phosphorimager. The signals were quantified 

using pixel volume analysis in which the background signal was manually subtracted. The 

amounts of CheY-P were plotted versus time and fit to one phase exponentials, yielding first 

order rate constants (kobs). Second order rate constants were the slopes calculated by 

plotting kobs versus imidazole concentration. All 32P experiments were completed at room 

temperature.

PhoB dephosphorylation assayed by 32P

[32P]PhoB-P was monitored to qualitatively determine whether imidazole accelerated 

dephosphorylation. His6-tagged PhoR (4 μM) was incubated with 0.3 mM [γ-32P]ATP in 35 

mM Tris pH 8.0, 3.5 mM MgCl2, and 35 mM KCl for 30 minutes at room temperature. The 

reaction mix containing [32P]PhoR-P was then pipetted onto ~ 200 μL of a Ni-NTA Agarose 

(Qiagen) slurry (equilibrated in 35 mM Tris pH 8.0, 3.5 mM MgCl2, and 35 mM KCl 

buffer) on a 0.22 μm PVDF centrifugal filter column (Millipore). The column was 

centrifuged, then washed multiple times with PhoR autophosphorylation buffer to remove 

excess ATP. PhoB (90 μM in 60 μL of PhoR autophosphorylation buffer) was added directly 

to the beads, mixed, and incubated for 5 min on the column at room temperature to allow for 

sufficient phosphotransfer. The column was centrifuged to obtain [32P]PhoB-P. 60 μL of 

[32P]PhoB-P was mixed with either 20 μL of 2 M imidazole or 20 μL of PhoR 

autophosphorylation buffer. Time courses were completed and analyzed by electrophoresis 

and phosphorimaging as described above for CheY.

TLC analysis of phosphorylated small molecules

To identify small molecules containing [32P]phosphoryl groups in reaction mixtures, 

components were separated by thin layer chromatography (TLC). For each time point, a 1 

μL aliquot was spotted onto cellulose PEI-F plates (Baker) and the remainder was used to 

separate proteins by SDS-PAGE. The TLC running buffer was 0.52 M lithium chloride and 

1% (v/v) acetic acid29. Plates were air-dried and radiolabel was detected using a 

phosphorimager. Rf values were calculated and compared to Rf values of non-radiolabeled 

standards visualized by reacting with an assay spray as described by Bochner et al.30. Rf 

values for experimental data [0.3 ± 0.001 (SD) for Pi, 0.6 ± 0.02 for MPI] were similar to Rf 
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values for standards [0.3 ± 0.02 for Pi, 0.6 ± 0.05 for MPI]. The MPI used for a non-

radiolabeled standard was synthesized as described31.

Artificial phosphorelay

All of the artificial phosphorelay reactions contained 50 mM Tris (pH 7.5), 10 mM MgCl2, 

30 μM [γ-32P]ATP, and 3 μM His6-PhoR. In addition, reactions contained different 

combinations of the following: 25 μM His6-tagged PhoB F20D, 25 μM CheYMPI, and 50 

mM imidazole. Reactions were initiated by the addition of the [γ-32P]ATP and incubated for 

90 minutes at room temperature before separation by SDS-PAGE. Radiolabel was detected 

with a phosphorimager. Control experiments were completed using CheYwt instead of 

CheYMPI.

Crystallization, data collection, structure solution and refinement

Crystals of the CheYMPI • BeF3
− • Mn2+ • imidazole complex were made by hanging drop 

vapor diffusion using crystallization conditions similar to those used for CheYMPI • BeF3
− • 

Mn2+ 32. BeF3
− binds CheY tightly and is a stable phosphoryl group analog that is used 

because of the rapid autodephosphorylation of CheY. Although Mg2+ is the physiologically 

relevant divalent cation, Mn2+ supports CheY phosphorylation24 and dephosphorylation33. 

Each drop contained 1.5 μL of a mixture containing: 2.1 mg/mL CheYMPI, 1 mM MnCl2, 1 

mM BeCl2, 10 mM NaF, and 200 mM imidazole. Additionally, each drop contained 1.5 μL 

of well solution: 100 mM Tris – pH 8.4, 2.1–2.4 M ammonium sulfate, and 8% (v/v) 

glycerol.

Crystals took several days to a week to grow to maximal size. Crystals were moved to 

cryprotectant as described previously34. The cover slip was moved sequentially to well 

solutions containing the same initial well solutions but with 11% (v/v) glycerol then 15% 

(v/v) glycerol. The crystals were then flash cooled in liquid nitrogen.

Data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-BM 

beamline at the Advanced Photon Source, Argonne National Laboratory. Data were 

collected at a wavelength of 1 Å. Three datasets were processed automatically using the 

cmdxds tools provided by SER-CAT35. Data collection statistics are shown in Table 1. 

Phases were determined by molecular replacement using Phaser-MR from the PHENIX 

suite36 using a single copy of the structure 3FFW32 (the structure of CheYMPI in the absence 

of imidazole) with all ligands stripped away. Two copies of CheYMPI • BeF3
− • Mn2+ • 

imidazole were found in each asymmetric unit. The best model and electron density maps 

were examined using Coot37. After manual intervention by stepped real-space refinement 

with rotamers and visual inspection, computation refinement and automated water additions 

were performed with phenix.refine36. Following manual intervention with Coot, occupancy 

refinement was attempted for all ligands with BUSTER38. BUSTER did suggest a small 

difference in occupancy for the two imidazoles. Following another cycle of manual 

intervention, the structure was examined by PDB_REDO39. Final refined statistics are 

shown in Table 1. Ramachandran plots show no dihedral angles in disallowed regions. All 

three data sets showed nearly identical positioning of the imidazoles and showed no 

significant differences in the protein or ligands.
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CheY dephosphorylation rate constant measurement by pH jump/stopped-flow 
fluorescence

The basic method19, 25 was developed to measure CheY autodephosphorylation kinetics and 

exploits the strong pH-dependence of RR autophosphorylation with PAM (negligible at pH 

10.3) coupled with the near pH-independence of autodephosphorylation over the same pH 

range28. Thus, a rapid jump in the pH of an equilibrium solution containing CheY-P and 

excess PAM at neutral pH results in CheY-P autodephosphorylation that can be 

quantitatively monitored with Trp fluorescence. Here, we measured CheY 

dephosphorylation rates in the absence and presence of imidazole. The instrument was a 

Perkin Elmer LS-50B spectrofluorimeter interfaced with an Applied Photophysics RX-2000 

stopped-flow accessory. All fluorescence experiments were completed at 25°C. One 

stopped-flow syringe contained 20 μM wild type or mutant CheY and PAM [450 μM for 

CheYlarge, 1.4 mM for CheYSLN1, 5 mM for CheYSSK1, 15 mM for CheYwt and CheYsmall] 

in 5 mM Tris at pH 7.5 and 10 mM MgCl2. PAM is not commercially available and was 

synthesized as described40. The different PAM concentrations were chosen in light of 

different rate constants of PAM autophosphorylation25. The other syringe contained 200 

mM sodium bicarbonate at pH 10.3 and 0–500 mM imidazole (0–1.0 M imidazole for 

CheYlarge) or 0–100 mM hydroxylamine. Fluorescence traces were fit to a one-phase 

exponential. The first order rate constants (kobs) thus obtained were plotted versus imidazole 

concentration and, in all cases, the relationship approximated linearity. The slopes of the 

best-fit lines gave the second order rate constants, kdephos,imid. Dephosphorylation data 

reported for CheYMPI was determined using 32P because CheYMPI exhibited fluorescence 

characteristics that complicated interpretation of results. Changes in CheYMPI fluorescence 

upon pH jump were ~30% of the expected change based on autophosphorylation 

fluorescence traces. The kobs values for CheYMPI measured by pH jump agreed with those 

determined by 32P at low imidazole concentrations but then appeared to saturate at high 

imidazole concentration. Therefore, the fluorescence change at high imidazole appeared to 

be dominated by other changes to the environment of the Trp besides the loss of the 

phosphoryl group, which was the focus of this study.

Dephosphoryaton rate constants of CheYSKN7 were determined by 32P because 

autophosphorylation of CheYSKN7 with small molecule phosphodonors was not detectable.

CheY autophosphorylation rate constant measurement using stopped-flow fluorescence

Autophosphorylation rate constants were measured at 25°C for CheYSLN1 and CheYSSK1 

using MPI as the phosphodonor as previously described in23. The stopped-flow syringes 

contained 1) 5 μM CheY, 100 mM Hepes at pH 7.0, 10 mM MgCl2 and 2) varying 

concentrations of MPI (50 μM – 1.6 mM), 100 mM Hepes at pH 7.0, 10 mM MgCl2, 200 

mM KCl. Because salt concentration was much greater than maximal MPI concentration, 

the ionic strength was approximately the same in each experiment, and varied by < 0.3%.
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RESULTS

Imidazole stimulates dephosphorylation of the RR CheY

Because imidazole is the functional group of His, there was reason to speculate that 

imidazole would react with phosphorylated RRs. To determine whether imidazole affects 

dephosphorylation of CheYwt-P, loss of [32P]CheY-P was followed (Fig. 1A). In the 

absence of imidazole, dephosphorylation occurred with a half-life of ~15 s, consistent with 

CheY autodephosphorylation41. In the presence of 100 mM imidazole, loss of 32P was 

considerably faster (half-life < 2 s) than the autodephosphorylation of CheY. These results 

were confirmed by monitoring a unique Trp in the CheY active site18. Fluorescence time 

courses that monitored CheY-P dephosphorylation showed that the presence of imidazole 

enhanced the rate relative to CheY-P autodephosphorylation (Fig. 1B).

Imidazole enhances dephosphorylation by acting as a nucleophile

Two possible mechanisms were considered for the observed acceleration of CheY-P 

dephosphorylation with imidazole. First, imidazole could act to enhance the known 

hydrolysis reaction, producing Pi – the same product as autodephosphorylation. Precedence 

for this mechanism is provided by RR phosphatases, which enhance hydrolysis by orienting 

the attacking water molecule42–46. Alternatively, imidazole could act as the nucleophile in 

the reaction, producing MPI. To determine the mechanism of acceleration of CheY-P 

dephosphorylation, [32P]-small molecule reaction products were analyzed by thin-layer 

chromatography (TLC). [32P]MPI was produced in the presence of imidazole (Fig. 2A), 

consistent with imidazole acting as the nucleophile.

Nucleophilic activity of imidazole is pH-dependent47, 48. At a pH below the pKa of 6.0, 

imidazole is mostly protonated and unable to act as a nucleophile. Above the pKa, imidazole 

is mostly deprotonated and able to act as a nucleophile. Imidazole was added to [32P]CheY-

P either at pH 4.9 or at pH 8.2. The samples were separated using SDS-PAGE (to follow 

[32P]CheY-P) or by TLC (to follow 32P-labeled small molecules). At pH 4.9, there was no 

enhancement of CheY dephosphorylation by 250 mM imidazole (half life ~ 20 s−1; similar 

to autodephosphorylation), and the amount of [32P]MPI produced was barely detectable 

above background (Fig. 2B–C). In contrast, at pH 8.2, dephosphorylation was enhanced by 

imidazole (half life < 2 s) and [32P]MPI was detected.

To test whether another nucleophile could enhance dephosphorylation of CheYwt to the 

same extent as imidazole, dephosphorylation was measured in the presence of 

hydroxylamine. Hydroxylamine is a highly reactive nucleophile towards acyl phosphates49 

and could potentially rapidly dephosphorylate CheY-P. Monitoring CheY-P 

dephosphorylation by pH-jump fluorescence, hydroxylamine did not accelerate 

dephosphorylation of CheY-P to the same extent as imidazole (Fig. 3A).

Imidazole-mediated dephosphorylation requires the intact RR active site

To further characterize the reaction of CheY-P with imidazole and probe its generality to 

other RRs, multiple experiments were completed.
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Imidazole can act as a nucleophile against acyl phosphates in the absence of protein or other 

catalyst49. To test whether the dephosphorylation reaction with imidazole was dependent on 

catalysis by the folded CheY protein, the dephosphorylation reaction of denatured CheY-P 

with imidazole was assessed. Imidazole (250 mM) was incubated for 40 minutes with 

[32P]CheY-P that had been denatured in 2% SDS. Subsequent analysis by phosphorimaging 

(Fig. 3B) showed no detectable loss of [32P]CheY-P relative to a control that did not contain 

imidazole. Thus, the reaction between CheY-P and imidazole required folded CheY-P 

protein. In contrast, hydroxylamine (250 mM), which reacted only weakly with folded 

CheY-P (Fig. 3A) completely dephosphorylated denatured [32P]CheY-P (Fig. 3B), likely 

due to increased solvent exposure of the acyl phosphate group.

The requirement for folded protein for the reaction of CheY-P with imidazole suggested that 

additional features of the RR active site might be required. RR dephosphorylation by 

hydrolysis requires an active site divalent metal ion such as Mg2+ 33, 41. Removal of the 

metal inhibits both autophosphorylation and autodephosphorylation. To determine whether 

the metal is required for dephosphorylation with imidazole, the Trp fluorescence of CheY 

was monitored during addition of various chemicals. CheY-P was generated by incubating 

12 μM CheY with 20 mM PAM in 50 mM Tris 7.5 and 14 mM MgCl2. The metal was then 

removed from the active site of CheY-P by addition of 250 mM EDTA. Next, 1.1 M 

imidazole was added, which resulted in only minimal dephosphorylation (data not shown). 

The little dephosphorylation that did occur was likely due to some small portion of CheY-P 

remaining metal bound. Rapid dephosphorylation (~2 s half life, faster than the reaction with 

water) occurred when the system was replenished with 440 mM Mg2+. Thus, Mg2+ is also 

required for catalysis of the reaction between imidazole and CheY-P.

As the functional group of His, imidazole could be a moiety recognized by RRs in general. 

To probe for generality, another RR, PhoB-P, was reacted with imidazole. 500 mM 

imidazole enhanced [32P]PhoB-P dephosphorylation by at least 10-fold (Fig. 4A) suggesting 

that imidazole can react with RRs in general.

Finally, because imidazole undergoes nucleophilic attack on phosphoramidates31, 48, we 

tested whether imidazole reacted with the His-P of an HK. The HK [32P]CheA-P (1 μM) 

was incubated with 0–500 mM imidazole in 5 mM Tris pH 7.5 and 10 mM MgCl2. After an 

hour-long incubation with imidazole, loss of [32P]CheA-P was not detectable (Fig. 4B). The 

data described above indicate that the intact RR active site is required for dephosphorylation 

with imidazole.

Phosphoryl groups reversibly transfer between CheYMPI and imidazole

In the experiments described so far, imidazole-mediated RR-P dephosphorylation was 

observed under essentially irreversible reaction conditions that (by choice of pH and/or 

CheY variant) precluded significant re-phosphorylation of CheY. To further characterize the 

relationship between RRs and imidazole, reactions were carried out under conditions that 

did not inhibit CheY re-phosphorylation with the MPI product. CheYMPI was chosen for this 

analysis because it is a variant that previously exhibited enhanced ability to 

autophosphorylate with MPI23.
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Paradoxically, [32P]CheYMPI-P persisted longer in the presence than in the absence of 

imidazole; 50 mM imidazole increased the apparent half-life by nearly three fold (~21 

minutes) (Fig. 5) compared to the half-life in the absence of imidazole [~8 minutes22]. 

Conversely, the apparent half-life of [32P]CheYwt-P was decreased when imidazole was 

added under similar conditions (Fig. 1A). TLC analysis of the reaction of CheYMPI-P with 

imidazole showed a rapid burst of [32P]MPI followed by the gradual consumption of 

[32P]MPI and accumulation of [32P]Pi (Fig. 5)-consistent with three reactions proceeding 

simultaneously. Starting with [32P]CheYMPI-P, imidazole rapidly dephosphorylated 

[32P]CheYMPI-P, producing a burst of [32P]MPI (Fig. 5). CheYMPI was able to then re-

phosphorylate to form [32P]CheYMPI-P, consuming the [32P]MPI. Subsequently, some 

[32P]CheYMPI-P was able to autodephosphorylate resulting in the accumulation of [32P]Pi. 

Because CheYMPI autophosphorylates with MPI23 much faster than it dephosphorylates 

with imidazole or water, the [32P]CheYMPI-P persisted longer than in the absence of 

imidazole.

Imidazole can act as a rudimentary Hpt in an artificial phosphorelay

The reversible phosphotransfer between CheYMPI and imidazole is analogous to reversible 

transfer between RRs and Hpts, and suggests that imidazole may be able to function in a 

manner reminiscent of an Hpt in a phosphorelay. An artificial phosphorelay was designed to 

test whether imidazole could transfer phosphoryl groups between different response 

regulators. To probe the robustness of such an ability, instead of just replacing the Hpt of a 

known phosphorelay with imidazole, the artificial phosphorelay was assembled from 

components that are not part of natural phosphorelays. Following progressive inclusion of 

phosphorelay components, transfer of phosphoryl groups was tracked (Fig. 6A). The 

PhoR193-431 HK cytoplasmic fragment was incubated with [32P]ATP, resulting in 

[32P]PhoR-P (lane 1). When PhoR partner RR PhoB1-127 F20D was added, phosphorylation 

of PhoB F20D was observed as expected (lane 2). His6-tagged PhoB1-127 F20D was used for 

clean separation from PhoR193-431 and CheYMPI on SDS-PAGE. When imidazole was 

added, there was a loss of [32P]PhoB F20D-P (lane 3), consistent with phosphotransfer from 

PhoB F20D to imidazole. If non-partner RR CheYMPI was added in the absence of 

imidazole, then the [32P]PhoB F20D-P remained and accumulation of [32P]CheYMPI-P was 

not detected (lane 4). However, if CheYMPI was added in the presence of imidazole, both 

loss of [32P]PhoB F20D-P and accumulation of [32P]CheYMPI-P were observed (lane 5). 

Thus, in the presence of imidazole, CheYMPI becomes phosphorylated though sequential 

phosphotransfer from ATP → PhoR → PhoB → imidazole → CheYMPI.

Control experiments for the artificial phosphorelay revealed that, under normal experimental 

conditions, CheYMPI was directly phosphorylated by PhoR (Fig. 6B). PhoB F20D had to be 

absent in order for crosstalk between PhoR and CheYMPI to occur (cf. lane 4 of Fig. 6A and 

Fig. 6B). Additionally, crosstalk was not observed between PhoR and CheYwt under the 

same conditions (data not shown). The ability of CheYMPI to accept phosphoryl groups from 

a nonpartner HK is consistent with CheYMPI having an enhanced affinity for the 

phosphorylated imidazole (MPI) moiety23.
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Nonconserved residues D+2, T+1, and T+2 interact with imidazole ring in the response 
regulator active site

To further explore the basis by which imidazole could act similarly to an Hpt in reactions 

with CheYMPI-P, three crystal structures of CheYMPI in complex with Mn2+, the stable 

phosphoryl group analog BeF3
−, and imidazole were determined to a resolution of 1.9–2.1Å 

(Table 1). To our knowledge, these represent the first structures of an activated response 

regulator complexed with a small molecule phosphoacceptor. Two imidazoles were found 

complexed with each of the two CheYMPI per asymmetric unit (Fig. 7A). However, the 

linear dependence of CheY-P dephosphorylation on imidazole concentration (Fig. 3A for 

wildtype CheY and data not shown for other CheY variants) strongly suggests that only one 

of the two imidazoles is involved in the dephosphorylation reaction. One imidazole, at full 

occupancy but likely irrelevant to the dephosphorylation reaction, was coordinated with the 

Mn2+, consistent with the affinity between imidazoles and transition metals exploited in the 

use of His-tagged proteins and Ni-affinity column50. The other imidazole, at partial 

occupancy, was positioned over the phosphomimic oriented for direct in-line attack of the 

phosphoryl group (Fig. 7). For six individual CheYMPI monomers, the closest atom from the 

imidazole was 3.4 ± 0.2 Å from the beryllium, consistent with the ability reported here of 

imidazole to dephosphorylate response regulators. Despite the lower occupancy of the 

imidazole poised for nucleophilic attack, clear electron density for the plane of the imidazole 

was observed in all three independent structures (Fig. 7B). Furthermore, when the CheYMPI 

• BeF3
− • Mn2+• imidazole structure was overlaid (Fig. 8) with two activated RR/Hpt 

complexes – SLN1 • BeF3
− • Mg2+ • YPD1 (PDB 2R25)51 and Spo0F • BeF3

− • Mg2+• 

Spo0B (PDB 2FTK)52 – the imidazole in the CheYMPI active site was oriented similarly to 

the imidazole moieties of the Hpt (YPD1 and Spo0B) histidines; all were positioned for in-

line attack.

For the CheYMPI • BeF3
− • Mn2+ • imidazole structures (PDB 5D2C, 5DGC, 5DKF), 

residues at positions D+2 (two positions C-terminal to the site of phosphorylation, K in 

CheYMPI), T+1 (one position C-terminal to the conserved Thr/Ser, A in CheYMPI), and T+2 

(two positions C-terminal to the conserved Thr/Ser, Y in CheYMPI) were in direct contact 

with the imidazole through van der Waal’s interactions. Similar interactions were observed 

between residues at D+2, T+1, and T+2 on the SLN1 receiver domain and the histidine of 

YPD1. In both cases, non-conserved active site residues at D+2, T+1, and T+2 formed a 

discrete pocket around the imidazole (Fig. 8A). These observations suggest a role for non-

conserved active site residues in RRs in the reaction with imidazole, and, potentially, with 

Hpts. This is direct evidence that imidazole is able to fulfill some of the function of an Hpt 

in a similar fashion to the Hpt.

Non-conserved active site residues influence dephosphorylation with imidazole

Active sites of RRs consist of five conserved residues and several residues that vary 

amongst different RRs53. Non-conserved active site residues modulate 

autophosphorylation23 and autodephosphorylation22, 32 of RRs. Because structural analysis 

of CheYMPI complexed with imidazole, as well as of the SLN1 receiver domain complexed 

with the YPD1 Hpt protein, showed that non-conserved residues at D+2, T+1, and T+2 

could facilitate appropriate orientation of the imidazole in the active site, it seemed logical 
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that these three residues might influence the rates of dephosphorylation with imidazole. Ala 

occupies position T+1 in about half of response regulators, so dephosphorylation rate 

constants with imidazole were measured for a set of CheY mutants containing Ala at T+1 

and various substitutions at D+2 and T+2. The initial set of mutants explored four distinct 

active site environments: CheYwt contains the polar amino acids Asn at D+2 and Glu at T

+2. CheYsmall represents a reduced active site in which the D+2 and T+2 residues are both 

Ala. With CheYlarge, a previously solved crystal structure indicates that the large Met and 

Arg side chains (D+2 and T+2, respectively) could potentially occlude the active site, 

hindering interaction between the nucleophile and the phospho-Asp32. CheYMPI (Lys at D

+2 and Tyr at T+2) is highly reactive with MPI [103-fold faster autophosphorylation than 

CheYwt 23], possibly reflective of enhanced affinity for the imidazole moiety. Rate constants 

for imidazole-mediated dephosphorylation of these four CheY variants varied over a ~20-

fold range (Table 2). Similarly, autodephosphorylation rate constants of this mutant set span 

a ~30-fold range; however, the rank order from fastest to slowest varied considerably for 

imidazole versus water-mediated dephosphorylation. For the mutants studied here, the 

relative sensitivity to imidazole, defined by the ratio of imidazole-mediated to water-

mediated dephosphorylation rate constants, varied over a 100-fold range. All of the CheY-P 

variants were at least 1000-fold more reactive with imidazole than with water. The 

differences in reactivity were potentially due to the chemical properties of imidazole and/or 

due to features of the RR active site.

Non-conserved active site residues influence phosphorylation reactions in CheY variants 
that mimic phosphorelay receiver domains

Considering the previous results that imidazole could function in some ways similarly to an 

Hpt, we next used imidazole as a tool to dissect the contributions of response regulator and 

Hpt proteins to Asp → His phosphotransfer reactions. To our knowledge, the yeast 

osmosensing phosphorelay is the only phosphorelay system for which rate constants have 

been measured for His → Asp and Asp → His phosphotransfer events14. The system 

contains one Hpt, YPD1, which interacts with three different receiver domains: SLN1, 

SSK1, and SKN7. YPD1 reacts differentially with each receiver domain (Tables 3 & 4) such 

that phosphotransfer is: rapid in both directions with SLN1, rapid to SSK1 and does not 

occur from SSK1 to YPD1, and slow in both directions with SKN7. Although 

phosphotransfer rate constants varied between YPD1 and each of the receiver domains, 

binding constants were similar (1.4–7.8 μM14), suggesting that the variation in 

phosphotransfer arises from the reaction chemistry. Because the three receiver domains all 

react with the same Hpt, it is logical to hypothesize that the receiver domains, and not the 

Hpt, contain the determinants of the relative reactivities. Alternatively, the differential 

reactivities may arise due to differences in interactions between the Hpt and each of the 

receiver domains; for example, binding may not align reactants optimally. We predicted 

that, based on the first hypothesis, reactions between RR-P and imidazole (analogous to Asp 

→ His phosphotransfer) or between MPI and RR (His → Asp) would reflect the relative 

reactivities observed in the yeast system. Based on the CheY. • BeF3
−. • Mn2+.• imidazole 

structure, variants of CheY were made that matched the three yeast receiver domains at the 

three non-conserved residues at D+2, T+1, and T+2, which interacted with the imidazole 

ring in both the CheY and SLN1 structures. Additionally, the CheY variants match the yeast 
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receiver domain active sites at conserved residues D (site of phosphorylation), T, K, and the 

two acids that coordinate the divalent metal (DD in CheY, ED in the yeast receiver 

domains).

Relative to each other, the yeast receiver domains SLN1 and SSK1 were faster than SKN7 

for His → Asp phosphotransfer14. Similarly, CheYSLN1 and CheYSSK1 were faster than 

CheYSKN7 for autophosphorylation with MPI (Table 3). In fact, autophosphorylation of 

CheYSKN7 with MPI (or two other small molecule phosphodonors, PAM and acetyl 

phosphate) was not detectable. To determine whether the failure of CheYSKN7 to 

autophosphorylate was a meaningful result or the trivial consequence of a nonfunctional 

protein, other activities of CheYSKN7 were assayed. Binding of Mg2+ (required for 

catalysis33) to CheYSKN7 was detected using fluorescence quenching (data not shown) and 

CheYSKN7 was phosphorylated in the presence of CheA and [32P]ATP (data not shown), 

indicating that CheYSKN7 is properly folded.

For Asp → His phosphotransfer, SLN1 transfers more rapidly than SKN7 to YPD1 (Table 

4)14. Asp → His phosphotransfer was not observed for SSK1-P and YPD114. This is likely 

due to formation of an inhibitory YPD1•SSK1-P complex that results in a ~200× reduction 

in autodephosphorylation of SSK1-P (i.e. reaction with water), presumably by steric 

occlusion of the active site. Consistent with comparisons between SLN1 and SKN7, 

CheYSLN1 was faster than CheYSKN7 for dephosphorylation with imidazole – though the 

difference was modest (Table 4).

Taken together, the results reported in Tables 3 and 4 indicate that the receiver domain 

active site provides at least some of the determinants for the relative preferences in 

phosphotransfer reported between the YPD1 Hpt protein and the SLN1, SSK1, and SKN7 

receiver domains.

DISCUSSION

Phosphotransfer reactions in TCSs: Hpt domains allow bidirectional His/Asp 
phosphotransfer

To provide context for thinking about potential implications of the reactions of imidazole 

characterized here, we first summarize the phosphotransfer reactions known to occur in TCS 

proteins. Recall that HK DHp (dimerization and histidine phosphotransfer) domains and Hpt 

domains are phosphorylated on His residues, whereas RR proteins are phosphorylated on 

Asp residues. Therefore, in the ATP →HK DHp →RR →H2O phosphotransfer pathway of 

canonical TCSs, the phosphotransfer between HKs and RRs is His →Asp. Although 

phosphotransfer from RR →HK DHp has been observed in vitro54, 55, the physiologically 

relevant reaction between most HKs and RRs is believed to be unidirectional from HK 

→RR (see exception below). The inclusion of Hpt domains, however, which participate in 

bidirectional phosphotransfer, allows more complex phosphorelays. The typical 

phosphotransfer pathway in a phosphorelay is ATP →HK →RR1 →Hpt →RR2 →Hpt 

→RR1 →H2O11, 56. Thus, in addition to the HK DHp→RR phosphotransfer utilized in 

canonical TCSs, phosphorelays require a second type of His →Asp phosphotransfer (Hpt 

→RR), as well as Asp →His (RR →Hpt) phosphotransfer for function. In CheA-type HKs, 
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the DHp domain of a canonical HK is replaced by an Hpt domain57. The ability of Hpt 

domains to support bidirectional phosphotransfer can then allow reverse phosphotransfer 

from one RR through CheA to another RR that acts as a phosphate sink17: ATP →Hpt 

→RR1 →Hpt →RR2 →H2O.

Small molecule analogs as kinetic probes of TCSs

Autophosphorylation of RRs with PAM and MPI, small molecule analogs of phospho-His, 

has long been informative for dissecting catalytic contributions to His →Asp (HK DHp 

→RR or Hpt →RR) phosphotransfer reactions20, 23, 28. The imidazole-mediated 

dephosphorylation of RR-P reported here (RR-P + imidazole →RR + MPI) is the reverse of 

the autophosphorylation reaction with MPI. Analogously, this reaction is informative for the 

kinetic dissection of Asp →His phosphotransfer, which is characteristic of phosphorelays.

The reaction rates of a single Hpt protein for both His →Asp and Asp →His 

phosphotransfer can differ dramatically with different RRs14. The determinants contained in 

either Hpts or RRs that underlie the variation in kinetics, specificity, and directionality of 

Hpt ←→RR phosphotransfer reactions are not known. Here, we explore the use of 

imidazole to probe Asp →His phosphotransfer. Additionally, we used MPI to probe His 

→Asp phosphotransfer in the context of phosphorelays.

Receiver domain active sites account for some kinetic preference in phosphotransfer 
reactions involving Hpts

Comparing the properties of a phosphotransfer reaction between two proteins with a reaction 

in which one protein is replaced with a small molecule allows us to ask what the remaining 

protein can contribute to the reaction. Thus, in principle, replacement of an Hpt with 

imidazole could be used to assess the contributions of a RR to a RR-P →Hpt reaction. The 

fact that the reaction with imidazole occurred at all is evidence that the RR provides the core 

catalytic machinery for the chemistry (see section below). But the availability of co-crystal 

structures between CheY, BeF3
−, and imidazole (Fig. 7) allowed us to go further in 

dissecting contributors to the RR-P →Hpt reaction. Because the structure of CheYMPI 

complexed with imidazole revealed interactions between imidazole and non-conserved 

active site residues at D+2, T+1, and T+2, we could assess the contributions of the active 

site portion of the RR in regulating the degree of catalysis. We constructed three chimeric 

proteins, in which the active sites of three yeast response regulators were spliced onto the 

same RR backbone, CheY. The CheYSLN1, CheYSSK1, and CheYSKN7 chimeras matched 

the wild type yeast receiver domains at four out of five conserved active site residues (one of 

the conserved metal-coordinating acid residues was a D in CheY instead of the E found in 

the yeast RRs) as well as the three non-conserved positions. If the relative kinetics of the 

chimeras correlated with the relative kinetics of the yeast proteins, it could be concluded that 

differences in the RR active sites contribute to modulation of the variable kinetics in the 

yeast system.

The kinetics of phosphotransfer between the YPD1 Hpt and the three yeast receiver domains 

are saturable, allowing the measurement of binding constants (Kd) and first-order kinetic 

constants for catalysis (kmax)14. In contrast, reactions between CheY and small molecules 
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are not saturable at experimentally accessible concentrations58, so only bimolecular rate 

constants incorporating both binding and catalysis were obtained. For “Asp →His” 

phosphotransfer, CheYSLN1-P →imidazole was faster than CheYSKN7-P →imidazole (Table 

4), just as SLN1-P →YPD1 is faster than SKN7-P →YPD114. However, the difference in 

rate constants for the model reactions of CheY chimeras with imidazole was a modest four-

fold, whereas the difference in kmax for the phosphotransfer reactions between yeast RR-P 

and Hpt proteins was 70-fold. This suggests that the non-conserved active site residues in 

the receiver domains contribute to, but do not entirely account for, the differential 

reactivities for Asp →His phosphotransfer observed in the yeast phosphorelay.

For “His →Asp” phosphotransfer, rate constants for transfer from MPI to CheYSLN1, 

CheYSSK1, or CheYSKN7 resulted in the same rank order as rate constants (kmsx) for 

phosphotransfer from YPD1-P to SLN1, SSK1, or SKN7 (Table 3). In contrast to the Asp 

→His results, in this case, the rate constants (kphos/Ks) for the CheY chimeras spanned a 

range of more than four orders of magnitude, whereas the rate constants for the yeast 

receiver domains span two orders of magnitude. The correlation is consistent with the notion 

that the receiver domain non-conserved active site residues strongly contribute to the 

differential activities of multiple RRs with a single Hpt in His →Asp transfer.

RRs contain the primary catalytic machinery for Asp to His phosphotransfer

In Asp →His phosphotransfer, the His residue on the Hpt acts as a nucleophile to attack the 

phospho-Asp on the RR-P, resulting in unphosphorylated RR and Hpt-P12, 14. In analogous 

fashion, imidazole was able to accept phosphoryl groups from both CheY-P and PhoB-P, 

resulting in unphosphorylated RR and MPI (Figs. 2, 4, 5 & 6). Analogous to an Hpt, 

imidazole was able to reversibly transfer phosphoryl groups with CheYMPI (Fig. 5) and 

acted in place of a His2 in an artificial phosphorelay (Fig. 6). Dephosphorylation of RRs 

with imidazole requires the intact RR active site, but does not require input from other 

proteins. Previous work established that RRs contain the catalytic core of His →Asp18, 28 

and Asp →H2O41, 45 phosphotransfer reactions. Zhao, et al. proposed that, in order to 

catalyze the phosphotransfer chemistry between Hpts and RRs, the RR conserved active site 

residues and divalent active site metal interact with the equatorial oxygens of the phosphoryl 

group, stabilizing the proposed trigonal bipyramidal transition state [Fig. 7 of 51]. The ability 

of RRs studied here to achieve phosphotransfer to imidazole in a fashion that required the 

intact metal-bound RR active site provides functional evidence that RRs are sufficient for 

catalysis of Asp →His phosphotransfer.

The ability of RRs to support reactions with imidazole and MPI, i.e. support phosphotransfer 

reactions in the absence of a protein partner, is consistent with the assertion59 that Hpt active 

sites have minimal known catalytic features beyond the phosphorylatable His. For Hpt 

domains that constitute the phosphorylation site of CheA-type HKs, several amino acids that 

form a hydrogen bonding network with the His are critical for phosphorylation with ATP60. 

However, alteration of similar residues in YPD1 had only modest effects on phosphotransfer 

reactions with SLN17, 14, 61. Replacement of a particular Gly with a larger residue had a 

substantial effect on the ability of YPD1 to support phosphotransfer, presumably due to 

blocking access of the receiver domain to the YPD1 His7. In summary, there does not appear 
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to be compelling evidence that specific Hpt residues other than the His make important 

contributions to catalysis of phosphotransfer with RRs.

Although not a primary contributor of catalytic machinery, Hpt proteins clearly do make 

important contributions to phosphotransfer reactions with RRs. The bimolecular rate 

constants for phosphotransfer between CheY and imidazole/MPI are many orders of 

magnitude slower than the corresponding rate constants for phosphotransfer between the 

yeast RRs and YPD1 (Tables 3 & 4). One means by which Hpts enhance phosphotransfer is 

through binding between phosphodonor and recipient through protein-protein interactions. 

Additionally, the Hpt domain could possibly enhance phosphotransfer by (i) orienting the 

His in the active site and/or (ii) acting as a cap and excluding water from the RR active site.

Imidazole orients similarly to Hpts in Asp →His phosphotransfer

Biochemical analysis of reactions between CheY-P (and PhoB-P) and imidazole showed the 

capability of the receiver domains to support Asp → His phosphotransfer. To explore the 

model reaction further, we determined the structure of CheYMPI complexed with imidazole 

and BeF3
- (Fig. 7) and compared it to the few reported structures of HKs or Hpts complexed 

with RRs and a phosphoryl group or phosphomimic. In the available structures of HK-P•RR 

(PDB 3KYI) or HK•BeF3
-•RR (PDB 4JAV) complexes, the His and Asp residues are not 

oriented to react with one another. We are aware of two co-crystal structures of RRs 

complexed with Hpts in the presence of a phosphomimic – Spo0F•BeF3
-•Mg2+•Spo0B 

(PDB 2FTK)52 and SLN1•BeF3
-•Mg2+•YPD1 (PDB 2R25)51. Note that these structures 

represent the two known classes of Hpt domains. Both classes form a four-helix bundle, but 

the Spo0B class is dimeric and apparently arose from degenerate HKs62, whereas more 

typical Hpt proteins are monomeric63. When the structure of CheYMPI•BeF3
-• 

Mn2+•imidazole was aligned with each RR•BeF3
-•Hpt co-crystal structure, the imidazole 

was oriented similarly to the His residues from both types of Hpts and positioned 

appropriately for nucleophilic attack (Fig. 8). In particular, the distances from the imidazole 

ring to the Be atom (P analog) were 3.4 ± 0.2 Å for imidazole alone, 3.6 ± 0.8 Å (from four 

separate protamers) for Spo0B, and 3.2 Å for YPD1.

Non-conserved active site residues differentiate between nucleophiles

In addition to similar orientation of the imidazole ring, alignment of the 

CheYMPI•BeF3
-•imidazole structure with two RR•BeF3

-•Hpt structures showed that non-

conserved active site residues in each RR (D+2, T+1, and T+2 in CheY and SLN1; D+2 and 

T+1 in Spo0F) interacted with the imidazole ring and formed a pocket directly over the 

phosphomimic. The overall suggestion was that non-conserved active site residues at D+2, T

+1 and T+2 functioned to orient the imidazole ring in the active site and could potentially 

influence catalysis. Residues at these positions influence autodephosphorylation reactions in 

receiver domains23, so it seemed reasonable to predict that residues at D+2, T+1, and T+2 

would influence dephosphorylation reactions with imidazole. In this work, imidazole-

mediated dephosphorylation of seven CheY variants was assessed (Tables 2 & 4). Rate 

constants for water and imidazole-mediated dephosphorylation spanned similar ranges – 29 

and 33-fold, respectively (Table 5). However, rank orders from fastest to slowest were 

different for water versus imidazole. As a result, the relative sensitivities of the CheY 
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variants to the two nucleophiles spanned a 110-fold range. The large range in relative 

sensitivities suggests that the non-conserved active site residues discriminate between water 

and imidazole as nucleophiles.

Considering the roles of RRs and Hpts in phosphotransfer reactions, the variation in relative 

sensitivities between CheY variants reported here may reflect some aspect of RR/Hpt 

function in phosphorelays. From the perspective of Hpts, one function in phosphorelays is to 

react differentially with multiple receiver domains14 (which we set out to probe with this 

work) while maintaining specificity to protect against cross reactivity with RRs from other 

TCSs in the cell10 (which we do not address experimentally with this work). From the 

perspective of RRs, one function in phosphorelays may be to distinguish between 

phosphotransfer to His or to water. The slowest rate constant measured here for 

phosphotransfer from a CheY variant to imidazole was 1,500 times greater than the rate 

constant for transfer to water, but some CheY variants achieved even greater discrimination 

between nucleophiles. When considering ability of non-conserved active site residues to 

influence both water and imidazole-mediated dephosphorylation, the CheYsmall variant 

represents a reduced active site, which we used as a convenient reference point for purposes 

of interpretation. Conceivably, phosphorelay RRs that undergo rapid phosphotransfer to 

Hpts may represent cases in which reaction with imidazole is preferred over 

autodephosphorylation. CheY variants that mimic faster phosphorelay RRs - CheYMPI 

(contains same D+2, T+2 residues as phosphorelay RR Spo0F), CheYSLN1, CheYSKN7 – 

exhibit relative sensitivities to imidazole larger than that of CheYsmall. Consistent with 

predicted behavior, these variants were better at differentiating between water and 

imidazole. For CheY variants that did not mimic known phosphorelay RRs, relative 

sensitivities to imidazole were smaller. CheYSSK1 had a relative sensitivity to imidazole that 

was lower than that of CheYsmall, consistent with the observation that SSK1 does not 

transfer phosphoryl groups to YPD1. Notably, CheYwt had the lowest relative sensitivity to 

imidazole.

Practical applications of imidazole

In addition to the use of imidazole as an experimental tool in the study of TCSs, there are 

several potential practical applications. One use of imidazole could be ‘partial 

phosphorelays’ to generate [32P]MPI or [32P]RR-P. Radiolabeled MPI is not commercially 

available and, currently, making [32P]MPI requires synthesis of [32P]PAM first. Using 

imidazole and RRs could simplify the protocol for the generation of radiolabeled MPI. 

Currently, radiolabeling RRs typically utilizes a partner HK and commercially available 

[γ-32P]ATP as the phosphodonor. However, HKs are often transmembrane proteins, and 

isolation of catalytically active soluble fragments of HKs can be difficult and time 

consuming. Using an artificial phosphorelay to radiolabel RRs could eliminate the need for 

isolation and use of the partner HK. Finally, imidazole could be used to rapidly 

dephosphorylate RRs in vitro. As a closing note, given the data reported here, it is important 

to eliminate imidazole from His-tagged TCS proteins eluted off of a Ni-column for use in 

phosphorylation studies.
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ABBREVIATIONS

HK histidine kinase

RR response regulator and/or receiver domain

Hpt histidine-containing phosphotransfer domain

-P phosphorylated molecule

MPI monophosphoimidazole

PAM phosphoramidate

Ni-NTA nickel-nitrilotriacetic acid

CheYsmall CheY N59A E89A

CheYMPI CheY F14Q N59K E89Y

CheYlarge CheY F14E N59M E89R

CheYSLN1 CheY N59Q E89F

CheYSSK1 CheY N59Q E89S

CheYSKN7 CheY N59V A88G E89N

D+2 two positions C-terminal to the site of phosphorylation Asp

T+1 one position C-terminal to the conserved Thr/Ser

T+2 two positions C-terminal to the conserved Thr/Ser

Dhp dimerization and histidine phosphotransfer domain
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Figure 1. 
CheY-P dephosphorylation kinetics in the absence and presence of imidazole. (A) 

Phosphorimaging scans of SDS-PAGE gels showing the time-dependent loss of 32P from 

[32P]CheY-P in the absence (top panel) or presence (bottom panel) of 100 mM imidazole at 

pH 7.5. (B) Trp fluorescence time traces showing loss of phosphoryl groups with 0 (black), 

50 mM (medium gray), or 500 mM (light gray) imidazole at pH 10.3.
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Figure 2. 
Nucleophilic activity of imidazole in the dephosphorylation of CheY-P. Phosphorimaging 

scans of TLC plate showing products of [32P]CheY-P dephosphorylation reactions (A) in the 

absence or presence of 250 mM imidazole at pH 7.5 and (B) in the presence of 250 mM 

imidazole at pH 4.9 (buffered with 250 mM sodium acetate) or pH 8.2 (buffered with 250 

mM Tris). (C) Phosphorimaging scans of SDS-PAGE gels showing the loss of 32P from 

[32P]CheY-P in the presence of 250 mM imidazole at pH 4.9 (top panel) or pH 8.2 (bottom 

panel).
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Figure 3. 
CheY-P dephosphorylation in the presence of imidazole or hydroxylamine. (A) Plots of 

kdephos versus small molecule concentration showing the enhancement of CheY-P 

dephosphorylation with hydroxylamine (open squares and diamonds) compared to imidazole 

(closed squares and diamonds). CheY dephosphorylation was measured by stopped-flow 

fluorescence as previously described. The y-intercepts of each fit are approximately the rate 

constant for water-mediated dephosphorylation. Plots show two individual repeats each for 

CheY-P measurement with hydroxylamine or imidazole. (B) Phosphorimaging scan 

showing the loss of 32P from denatured [32P]CheY-P. CheY was phosphorylated using 

[32P]CheA-P. After a 10 second incubation, SDS was added to denature the proteins. The 

reaction was separated into three aliquots to which buffer with no nucleophile (lane 1), 250 

mM imidazole (lane 2), or 250 mM hydroxylamine (lane 3) were added. After incubating for 

one hour at room temperature, reaction components were separated by SDS-PAGE, and loss 

of radiolabel from CheY was detected using a phosphorimager.
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Figure 4. 
Sensitivity of PhoB-P and CheA-P to imidazole. (A) Phosphorimaging scans showing the 

loss of 32P from [32P]PhoBN-P in the absence (top panel) or presence (bottom panel) of 500 

mM imidazole at pH 7.5. (B) Phosphorimaging scan showing [32P]CheA-P after a 1-hour 

incubation with different concentrations of imidazole at pH 7.5.
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Figure 5. 
[32P]CheYMPI-P reaction with imidazole. Phosphorimaging scans showing changes in 

[32P]CheYMPI-P (SDS-PAGE), [32P]MPI (TLC), and [32P]Pi (TLC) over time upon reaction 

of CheYMPI-P with 50 mM imidazole at pH 7.5. The “0” time point was quenched less than 

15 seconds after addition of imidazole to [32P]CheYMPI-P.
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Figure 6. 
The role of imidazole in an artificial phosphorelay. (A) Phosphorimaging scan of SDS-

PAGE gel showing the presence of 32P on protein components in an artificial phosphorelay 

at pH 7.5. The PhoBN F20D variant was used for this analysis. (B) Phosphorimaging scan 

showing transfer of [32P] from PhoR to CheYMPI at pH 7.5. Reaction components in (A) and 

(B) were incubated for 30 minutes at room temperature.
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Figure 7. 
Structure showing imidazole poised for nucleophilic attack in CheYMPI•BeF3

-. (A) Two 

imidazoles (purple) were complexed with CheY (PDB 5D2C). One imidazole is oriented 

over the BeF3
- (phosphomimic) in a fashion consistent with nucleophilic attack. Another 

imidazole was associated with the metal (light teal). (B) Electron density map (2Fo-Fc) 

shows the presence of the imidazole over the Be. In both panels, the divalent metal is light 

teal, BeF3
- is green and light cyan, and the imidazoles are purple.
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Figure 8. 
Structures showing imidazole oriented in the active site similarly to Hpt His. (A) The co-

crystal structures of CheYMPI•BeF3
-•imidazole (PDB 5D2C), Spo0F•BeF3

-•Spo0B (PDB 

2FTK)52, SLN1•BeF3
-•YPD1 (PDB 2R25)51 showing interactions between D+2, T+1, 

and/or T+2 side chains from each RR and the imidazole rings. CheYMPI/imidazole residues 

are represented by purple, Spo0F/Spo0B by cyan, SLN1/YPD1 by slate, and the 

phosphomimic BeF3
- is green and light cyan in all three. Purple (CheY) and slate (SLN1) 

dots and cyan (Spo0F) spheres represent space-filling models of non-conserved active site 

residues. (B) Using the same coloring as panel (A) the imidazole rings from all three 

structures are oriented over the Be within appropriate distance for nucleophilic attack.
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Table 1

Data collection and refinement statistics

Crystal 1 (5D2C) Crystal 2 (5DGC) Crystal 3 (5DKF)

Data collection

Space group P212121 P212121 P212121

Cell dimensions

 α, β, γ (Å) 53.62, 53.72, 162.45 53.49, 53.58, 161.98 53.58, 53.74, 162.61

 α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution (Å) 44.8 – 2.06 (2.11–2.06)* 26.43 – 1.94 (1.99 – 1.94) 81.3 – 1.94 (1.99 – 1.94)

Rmerge 0.083 (0.58) 0.119 (0.65) 0.073 (0.623)

I/σI 15.1 (3.88) 10.4 (2.72) 16.0 (2.84)

Completeness (%) 97.6 (91.7) 99.7 (99.7) 100.0 (99.6)

Redundancy 7.2 (7.4) 7.2 (5.7) 7.2 (5.8)

Refinement (Refmac 5.8.0103)

Resolution (Å) 44.8–2.06 (2.11–2.06) 26.43–1.94 (1.96 – 1.94) 81.3 – 1.94 (1.96 – 1.94)

No. reflections (Rwork/Rfree) 27677/1953 35162/1767 35660/1790

Rwork/Rfree 16.1/18.5 16.9/18.1 15.7/16.2

Molecules/AU 2 2 2

No. atoms

 Protein 2004 2024 2088

 Ligand/ion 70 53 82

 Water 220 245 304

B-factors

 Protein 24.1 19.2 8.9

 Ligand/ion 59.7 45.3 27.3

 Water 44.1 37.8 33.1

RMSZ scores#

 Bond lengths 0.68 0.81 0.81

 Bond angles 0.78 0.83 0.85

EDS Fo, Fc correlation 0.95 0.94 0.94

*
Values in parentheses are for highest-resolution shell.

#
RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles) in the structure. A Z score for a bond length (or angle) is the number 

of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth 
inspection.
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Table 2

Rate constants for dephosphorylation of CheY variants with imidazole and water

Receiver domaina kdephos,imid
a(M−1s−1) kdephos,water

b ×10−5 (M−1s−1) Relative sensitivity to imidazolec

CheYwt 1.1 ± 0.1 75.0 ± 9.0d 1,500

CheYsmall 1.2 ± 0.04 9.0 ± 0.6e 14,000

CheYlarge 0.25 ± 0.005 3.3 ± 0.0d 8,200

CheYMPI 4.3 ± 0.05 2.6 ± 0.3e 170,000

a
Values are averages of second order rate constants from 2–3 measurements (completed at pH 10.3) ± SD and are determined by pH-jump 

fluorescence except CheYMPI was measured using 32P.

b
Calculated by dividing first order water-mediated dephosphorylation rate constants by the concentration of water (55.5 M).

c
Relative sensitivity to imidazole was calculated by dividing kdephos,imid by kdephos,water.

d
First order water-mediated dephosphorylation rate constants from 22.

e
First order water-mediated dephosphorylation rate constant determined using 32P as previously described in 22.
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Table 5

Relative sensitivity of CheY variants for imidazole versus water

Receiver domain kdephos,imid
a (M−1s−1) kdephos,water

b ×10−5 (M−1s−1) Relative sensitivity to imidazolec

CheYMPI 4.3 ± 0.05 2.6 ± 0.3d 170,000

CheYSKN7 1.9 ± 0.4 3.9 ± 0.4d 48,000

CheYSLN1 8.2 ± 0.4 18.0 ± 4.2e 45,000

CheYsmall 1.2 ± 0.04 9.0 ± 0.6d 14,000

CheYSSK1 3.1 ± 0.1 34.0 ± 7.2e 9,000

CheYlarge 0.25± 0.005 3.3 ± 0.0f 8,200

CheYwt 1.1 ± 0.1 75.0 ± 9.0f 1,500

a
Values are averages of second order rate constants from 2–3 measurements (completed at pH 10.3) ± SD and are determined by pH-jump 

fluorescence except CheYMPI and CheYSKN7 were measured using 32P.

b
Calculated by dividing first order water-mediated dephosphorylation rate constants by the concentration of water (55.5 M). Multiply column 

values by 10−5.

c
Relative sensitivity was calculated by dividing kdephos,imid by kdephos,water.

d
First order water-mediated dephosphorylation rate constant determined using 32P as previously described in 22.

e
First order water-mediated dephosphorylation rate constant determined using pH-jump fluorescence described in 25.

f
First order water-mediated dephosphorylation rate constants from 22.
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