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Abstract

In two-component signal transduction, response regulator proteins contain the catalytic machinery

for their own covalent phosphorylation and can catalyze phosphotransfer from a partner sensor

kinase or autophosphorylate using various small molecule phosphodonors. Although response

regulator autophosphorylation is physiologically relevant and a powerful experimental tool, the

kinetic determinants of the autophosphorylation reaction and how those determinants might vary

for different response regulators and phosphodonors are largely unknown. We characterized the

autophosphorylation kinetics of 21 variants of the model response regulator Escherichia coli

CheY that contained substitutions primarily at nonconserved active site positions D+2 (CheY

residue 59) and T+2 (CheY residue 89), two residues C-terminal to conserved D57 and T87,

respectively. Overall, the CheY variants exhibited a >105-fold range of rate constants (kphos/KS)

for reaction with phosphoramidate, acetyl phosphate, or monophosphoimidazole, with the great

majority of rates enhanced over wild type CheY. Although phosphodonor preference varied

substantially, nearly all the CheY variants reacted faster with phosphoramidate than acetyl

phosphate. Correlation between increased positive charge of the D+2/T+2 side chains and faster

rates indicated electrostatic interactions are a kinetic determinant. Moreover, sensitivities of rate

constants to ionic strength indicated that both long-range and localized electrostatic interactions

influence autophosphorylation kinetics. Increased nonpolar surface area of the D+2/T+2 side

chains also correlated with enhanced autophosphorylation rate, especially for reaction with

phosphoramidate and monophosphoimidazole. Computer docking suggested that highly

accelerated monophosphoimidazole autophosphorylation rates for CheY variants with a tyrosine at

position T+2 likely reflect structural mimicry of phosphotransfer from the sensor kinase histidyl

phosphate.
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Two-component signal transduction systems are ubiquitous in bacteria and control a variety

of cellular processes1–3. Despite their amazing functional diversity, two-component systems

share a fundamental signaling scheme based on the transfer of phosphoryl groups between

conserved protein domains. Signal transduction involves autophosphorylation of a sensor

kinase on a histidyl residue, typically modulated by environmental conditions. The

phosphoryl group is then transferred to an aspartyl residue on a partner response regulator

protein, which alters the ability of the response regulator to execute an output response. This

central His to Asp phosphotransfer event is catalyzed by a conserved active site on the

receiver domain of the response regulator. It has been recognized for more than twenty years

that receiver domains can also catalyze their own phosphorylation using a variety of small

molecule phosphodonors4. Response regulator autophosphorylation with the metabolic

intermediate acetyl phosphate contributes to the regulation of multiple two-component

systems in vivo5, 6 and the use of small molecule phosphodonors in vitro has been

instrumental in facilitating functional analysis of numerous response regulators7–9. Because

autophosphorylation of the response regulator and phosphotransfer from the sensor kinase to

the response regulator both proceed through the same basic phosphorus substitution

chemistry, mechanistic insights into the catalysis of response regulator autophosphorylation

will enhance understanding of the more complex phosphotransfer reaction between proteins.

Response regulator receiver domains have a conserved (β/α)5 fold with the conserved active

site located on the β/α loops that cluster on one face of the domain10 (Figure 1A). The

phosphorylatable aspartate (D) is positioned centrally in the active site and is surrounded by

a threonine/serine (T), a lysine (K), and two additional acid residues (DD), which coordinate

a magnesium ion. The Mg2+, threonine/serine, and lysine interact with the three phosphoryl

oxygens in the phosphorylated forms of receivers10, 11. Based on transition state analogue

structures of related phosphatases within the haloacid dehalogenase superfamily12, the same

interactions are also likely to occur in the response regulator transition state.

Autophosphorylation proceeds by nucleophilic attack of the aspartyl carboxylate on the

phosphodonor phosphorus atom in a substitution reaction. The receiver domain active site

also catalyzes the subsequent hydrolysis of the aspartyl phosphate in a self-catalyzed

dephosphorylation reaction.

Known small molecule phosphodonors for receiver domains fall into two chemical classes

(Figure 1B). Phosphoramidates (R2NH+-PO3
2−) contain a phosphorus-nitrogen bond and

include monophosphoimidazole (MPI), a near-identical model of the phosphohistidine side

chain in sensor kinases. The class also includes the compound phosphoramidate (PAM;

NH3
+-PO3

2−), often used to phosphorylate response regulators in vitro, and the smallest

compound in the class. The other phosphodonor class is acyl phosphates (RCO2-PO3
2−),

mixed anhydrides that include the physiologically relevant acetyl phosphate6. Both the

compounds PAM and acetyl phosphate (AcP; CH3CO2-PO3
2−), well-characterized
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representatives of the two chemical classes, are relatively reactive to nucleophilic

substitution. Both have high free energies of hydrolysis and undergo limited hydrolysis at

neutral pH13, 14. However, PAM and AcP differ in net charge, charge distribution, and size

(Figure 1B).

Much of the kinetic and mechanistic characterization of receiver domain

autophosphorylation has come from studies of the Escherichia coli/Salmonella chemotaxis

response regulator CheY15–18. CheY consists only of a receiver domain and has a unique

active site tryptophan residue that serves as a fluorescence probe for phosphorylation4. The

rates of CheY autophosphorylation with PAM and AcP are similar16, 18 but much slower

than phosphotransfer from the CheA kinase19. The disparity in rates of CheY

phosphorylation appears to be partially due to weak binding between CheY and small

molecule phosphodonors15. Plots of the pseudo-first order autophosphorylation rate constant

versus PAM or AcP concentration are linear up to at least 100 mM phosphodonor with no

sign of saturation, indicating binding constants between CheY and phosphodonor of ≫ 100

mM15, 17. CheY does not use general acid catalysis in autophosphorylation with either PAM

or AcP18. Although autophosphorylation kinetic data for other response regulators is

limited, the available data suggest that different response regulators react with different

kinetics20 as well as preferences for different phosphodonors. For example, the response

regulators CheB4 from E. coli and Spo0F21 from Bacillus subtilis do not autophosphorylate

with AcP but react readily with PAM. However, the structural features that determine the

autophosphorylation kinetics of different receiver domains and how these features exert their

modulatory effects are not currently known. E. coli CheY serves as a highly experimentally

accessible model system to explore features of receiver domains that modulate functional

differences between response regulators, a family of signaling proteins with tens of

thousands of known members3, 22.

This study represents the first step towards a long-term goal of elucidating how various

amino acids at nonconserved active site positions modulate the rates of response regulator

autophosphorylation and phosphotransfer from the kinase. Examination of the active

conformation of CheY (PDBid 1FQW), believed to be the ground state for the

autophosphorylation reaction17, 20, 23, reveals that nonconserved residues D+2, T+1, and T

+2 [CheY residues 59, 88, and 89, respectively; one or two residues C-terminal to the

conserved D or T), form the surface of the active site where the phosphodonor molecule

would be expected to approach and dock. In contrast, the conserved Asp, Thr/Ser, Lys, and

divalent cation are located deeper within the CheY active site (Figure 1A). Thus, the

conserved portions of the CheY active site are positioned to interact with the phosphoryl

group of the phosphodonor, whereas the nonconserved portions are positioned to interact

with the leaving group. In this work, we focus primarily on the effect of residues at positions

D+2 and T+2 on autophosphorylation because response regulators exhibit far more amino

acid sequence diversity at D+2 and T+2 than at T+1, which is Ala or Gly in more than 70%

of response regulators22, 24. Furthermore, previous work from this laboratory examining the

related self-catalyzed dephosphorylation reaction, demonstrated that substitutions at D+2

and T+2 impact the rates of E. coli CheY and B. subtilis Spo0F autodephosphorylation and
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that a given residue often has similar effects on the reaction rates in the two response

regulators25, 26.

We show here that a set of 21 CheY mutants exhibited greater than a 105-fold span of

autophosphorylation rates with AcP, PAM, or MPI with up to 103-fold rate enhancements

over wild type CheY. The great majority of the CheY variants reacted faster with PAM and

MPI than with AcP. Statistical correlations between autophosphorylation rates and side

chain properties, aided by direct biochemical analysis and molecular modeling, allowed

identification and characterization of several mechanisms for rate modulation and

phosphodonor preference including attractive electrostatic interactions and steric

complementarity between CheY and the phosphodonor.

EXPERIMENTAL PROCEDURES

Site directed mutagenesis and protein purification

Site directed mutagenesis of the pRS3 plasmid27, which carries the Escherichia coli cheY

and cheZ genes under regulation of the Serratia marcescens trp promoter, was carried out

using Quikchange methodology (Agilent Technologies). Resultant plasmids were

transformed into the E. coli ΔcheY strain KO641recA for CheY expression and purification

as described26.

Chemicals

Acetyl phosphate (AcP) (potassium lithium salt) was from Sigma-Aldrich. The potassium

salt of phosphoramidate (PAM) was synthesized as described28. The PAM was > 95% pure

as assessed by 31P NMR with the remaining phosphorus present as inorganic phosphate. The

calcium salt of monophosphoimidazole (MPI) was synthesized according to published

protocols29. To prepare the sodium salt of MPI (Na2MPI), an aqueous solution of CaMPI

was flowed through a column containing Chelex resin in the sodium form (Biorad) that had

been washed in water, followed by flash freezing and lyophilization.

Fluorescence spectroscopy

Time courses for reaction of CheY (wild type and mutant) with small molecule

phosphodonors were measured by stopped-flow tryptophan fluorescence, essentially as

described17. A rapid mixing device (Applied Photophysics RX2000) with a dead time of 8

ms was used to react equal volumes of solutions containing CheY and phosphodonor (AcP,

PAM, or MPI) while maintaining constant temperature at 25 ± 0.5 °C with a circulating

water bath. Tryptophan fluorescence (excitation 295 nm, emission 346 nm) was recorded at

20 ms intervals using a Perkin-Elmer LS-50B Luminescence Spectrometer with FL Winlab

1.1 software. The final reaction concentrations were 2.5 μM CheY and 0.5–30 mM

phosphodonor. The CheY solutions were in 100 mM Hepes pH 7.0, 10 mM MgCl2 (total

ionic strength 130 mM). The phosphodonor solutions were also in 100 mM Hepes pH 7.0,

10 mM MgCl2 with appropriate amounts of KCl to maintain a constant ionic strength of 330

mM in spite of differing phosphodonor concentrations. Thus mixing of equal volumes of the

CheY and phosphodonor solutions yielded a final reaction ionic strength of 230 mM. A

minimum of four phosphodonor concentrations were tested for each CheY variant and a

Thomas et al. Page 4

Biochemistry. Author manuscript; available in PMC 2014 April 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



series of three to five time courses were recorded for each phosphodonor concentration. The

range of phosphodonor concentrations was adjusted for each CheY variant to give kobs

values between ~0.05 and 2.0 s−1. The entire process was carried out in duplicate for each

CheY variant.

Reactions resulted in an exponential loss of tryptophan fluorescence due to the

phosphorylation of CheY Asp57. The time courses were fit to an equation for a single

exponential decay using either Excel or Prism software to obtain a pseudo-first order rate

constant (kobs) that reflects the rate of accumulation of phosphorylated CheY. Plots of kobs

(averaged from three to five replicates) versus phosphodonor concentration were linear for

all the CheY variants and phosphodonor concentrations used in this study, consistent with

the previously derived relationship15–17:

(eqn. 1)

where KS is the dissociation equilibrium constant for noncovalent complex formation

between CheY and phosphodonor, kphos is the rate constant for phosphotransfer within the

noncovalent complex, and kdephos is the rate constant for CheY autodephosphorylation.

Values for kphos/KS, the apparent bimolecular rate constant for autophosphorylation, were

determined from the slopes of the linear plots.

Ionic strength experiments

For several of the CheY variants, kphos/KS values were determined at four different ionic

strengths ranging from 0.23 M to 1.63 M. Time courses were measured by stopped-flow

fluorescence as described above. Both the CheY and phosphodonor reaction solutions

contained 100 mM Hepes pH 7.0, 10 mM MgCl2, and KCl was added to both the protein

and phosphodonor solutions to achieve the desired ionic strength. For each CheY variant

and ionic strength condition, time courses were recorded at four different phosphodonor

concentrations. Plots of kobs versus phosphonor concentration were linear and the slope gave

kphos/KS values, exactly as described above for rate constants measured at ambient ionic

strength. Each experimental condition (CheY variant/ionic strength) was carried out in

duplicate.

Quantitative analysis of the effects of ionic strength on CheY autophosphorylation kinetics

was based on a published method30. For enzymatic reactions where the formation of

Coulombic interactions (long-range electrostatic interactions) are a kinetic determinant [e.g.

formation of ion pairs between enzyme (E) and substrate (S)], increasing solution ionic

strength slows the reaction due to charge screening effects of solution counterions. Based on

polyelectrolyte theory and supported empirically by the behavior of multiple enzymes30–32,

plots of the log10 of kcat/Km (or individual kinetic parameters) versus the log10 of the

concentration of monovalent salt are linear over a large range of ionic strength. The slope of

the resultant line is −n′, where n′ approximates the number of counterions released from

charged residues or substrate ions upon complex formation, which is usually reflective of

the number of charges involved in salt bridges between enzyme and substrate in the E·S

complex (see Supplemental text for additional details). For our studies, kphos/KS values for

CheY autophosphorylation measured at different ionic strengths were first corrected for
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small differences in Mg2+ binding affinities at different ionic strengths (see Supplemental

text). Then, for each CheY and phosphodonor pair, the log10 of the corrected kphos/KS

values were plotted versus the log10 of the total ionic strength of the reaction solution. The

data were fit using linear regression (Prism) and slopes (−n′ values) determined.

Docking MPI into CheY variant active site

Atomic coordinates for MPI were generated using the prodrg server (http:/

davapc1.bioch.dundee.ac.uk/prodrg/). Water and glycerol molecules and sulfate ions were

removed from PDBid 3FFW25, the Protein Data Bank (PDB) file for the X-ray crystal

structure of the CheY triple mutant F14Q/N59Q/E89Y complexed with BeF3
− and Mn2+.

Using the Docking Wizard utility within the PyMOL Molecular Graphics System, Version

1.1. (Schrödinger, LLC), the three phosphoryl oxygen atoms in MPI were superimposed on

the three fluorine atoms in the BeF3
− anion bound to chain B of the edited pdb 3FFW, with

the imidazole oriented toward solvent. Keeping the phosphoryl oxygens stationary, the

torsional angle within MPI was rotated manually to minimize apparent steric overlap

between the MPI and CheY active site atoms and to allow solvent accessibility of the carbon

atom corresponding to Cγ in phosphohistidine, as would be expected for the sensor kinase

phosphohistidine phosphodonor. Hydrogen atoms were added to the resultant complex using

Reduce33 and a dot image representing positive and negative interatomic interactions in the

docked structure was generated using Probe34.

Structure-based estimation of non-polar surface areas

The non-polar surface areas of residues at positions D+2 (CheY residue 59) and T+2 (CheY

residue 89) were estimated based on X-ray crystal structures. Of the eight amino acids found

at positions D+2 or T+2 in the 19 tested CheY mutants that did not contain a substitution at

DD+1 (CheY residue 14), five amino acids at D+2 and seven amino acids at T+2 are present

in structures of CheY variants in the Protein Data Bank (PDBids 1FQW, 1MIH, 3F7N,

3FFT, 3FFW, 3FFX, 3FGZ, 3RVJ, 3RVL, 3RVN, 3RVP)11, 25, 35 (C.A. Starbird, R.M.

Immormino, R.E. Silversmith, R.B. Bourret, unpublished). The conformation of the

remaining four amino acids (Ala, Leu, and Glu at D+2 plus Ala at T+2) were conservatively

modeled using the BeF3
− bound structure of wild type CheY (PDBid 1FQW)11 as a scaffold.

For example, the Ala side chains were modeled by terminating the wild type side chains at

the beta carbon. The resulting structures or models were then stripped of solvent molecules,

except the divalent metal, protonated using Reduce and the van der Waals (VDW) surface

for the residues surrounding the site of phosphorylation was calculated with Probe33, 34. The

dot density for the VDW surface calculated by Probe was left at the default value of 16 dots

per square angstrom. To determine if dots on the VDW surface belonged to the active site

pocket or were external, a computer program was written that casts rays from a point in the

center of the pocket (the nitrogen linked to the phosphorus of MPI docked to the CheY

active site) outward to the dots on the VDW surface. Dots for which the rays could be drawn

without passing through the VDW surface were assumed to be part of the active site. The

active site surface dots belonging to non-polar side chain atoms (carbon or hydrogen) were

counted and divided by 16 to give the non-polar surface areas for residues D+2 or T+2 in

square angstroms. In cases where there was more than one crystal structure with the same

residue at position D+2 or T+2, we used the average of the calculated surface areas for the
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residue from each structure. The total non-polar surface areas for residues D+2 and T+2

were then determined by adding the non-polar surface area values for particular amino acids

at D+2 and T+2.

RESULTS

Nonconserved active site residues strongly influence CheY autophosphorylation kinetics

To assess the influence of variable active site residues in modulating catalysis of response

regulator autophosphorylation, we measured pre-steady state kinetics for the reaction of a

large set of CheY variants with AcP or PAM, representatives of the two chemical classes of

small molecule phosphodonors (Figure 1B). In all, 21 single, double, and triple mutants of

CheY were analyzed. The great majority (19 out of 21) were single or double mutants with

substitutions at position D+2 (CheY N59, two residues from the phosphorylated D57) and/or

T+2 (CheY E89, two residues from the conserved active site T87) (Figure 1A). The

remaining two CheY variants were triple mutants with an additional substitution at position

DD+1 (CheY F14, the residue after the conserved D12/D13 pair). Specific substitutions

were chosen to give a variety of chemical properties and many also mimicked residues

found at the corresponding positions in other well-studied receiver domains. For all of the

reactions, stopped-flow fluorescence time courses that monitor the accumulation of

phosphorylated CheY gave excellent fits to a single exponential decay (R2 > 0.99 with the

great majority > 0.999), from which apparent first order rate constants (kobs) were obtained.

Plots of kobs versus phosphodonor concentration were linear for all combinations of CheY

and phosphodonor, as has been previously observed for reactions of wild type CheY with

AcP and PAM15, 17. Thus, there was no detectable binding between phosphodonor and

CheY (KS ≫ [phosphodonor]) under the conditions used here. The slopes of the resultant

lines gave the effective bimolecular rate constants (kphos/KS) and are listed in Table 1.

This set of CheY mutants and phosphodonors gave kphos/KS values that spanned greater

than an 1,800-fold range in magnitude (Table 1), demonstrating that the residues at positions

D+2 and T+2 in receiver domain active sites can have a profound impact on

autophosphorylation kinetics. Under these reaction conditions (pH 7.0, 230 mM ionic

strength), wild type CheY gave similar rates for reaction with AcP (11 M−1s−1) and PAM

(10 M−1s−1). In contrast, all other CheY variants exhibited different rates for reaction with

PAM and AcP, indicating that the substitutions affected aspects of the autophosphorylation

reaction that are different for the two classes of phosphodonors.

Autophosphorylation of CheY D+2 single mutants

Replacement of the wild type Asn at CheY position D+2 with amino acids that varied in size

and polarity gave autophosphorylation rates that spanned a >270-fold range. For reaction

with PAM, the substitutions resulted in both rate increases (up to five-fold) and decreases

(up to four-fold) relative to wild type CheY. In contrast, the same substitutions all gave

reduced rates for AcP. Strikingly, with the exception of wild type CheY, CheY variants with

Glu at position T+2 and different amino acids at D+2 displayed the same rank order (D+2

residues: R/K>M/L/A>D/E) for reaction with both phosphodonors. This ranking suggests a

correlation between increased positive charge at D+2 and faster autophosphorylation rates.
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Although an acidic side chain at D+2 was detrimental to reaction with both phosphodonors,

the effect was especially severe for AcP, where CheY DE and CheY EE gave no detectable

accumulation of CheY-P (Table 1). Taking into account the previously measured

autodephosphorylation rates of CheY DE and CheY EE26, both variants were determined to

possess kphos/KS values for reaction with AcP below the lower limit measureable (Table 1).

Thus, negative charge at both CheY D+2 and T+2 is extremely detrimental, if not

prohibitive, for CheY autophosphorylation with AcP.

Autophosphorylation of CheY T+2 single mutants

The single amino acid replacements of glutamate at CheY T+2 overwhelmingly gave

enhanced rates of autophosphorylation with both phosphodonors, but especially for PAM.

Notably, CheY NY exhibited a 24-fold rate enhancement with PAM whereas the same

substitution gave a rate indistinguishable from wild type CheY for reaction with AcP. The

rank order for CheY proteins varying at T+2 for reaction with AcP (T+2 residues:

R/K>Q/L/A>H/Y/E) was similar to that observed for D+2 variants, suggesting that positive

charge at T+2 also enhances autophosphorylation rate. However, the rank order for the

reaction of this set of CheY proteins with PAM was different (T+2 residues:

Y/L>R/K>H/Q>A/E), suggesting that large hydrophobic residues at T+2 may be

advantageous for reaction with PAM, thus implicating other kinetic determinants besides

side chain charge.

Autophosphorylation of CheY DD+1/D+2/T+2 triple mutants

The two CheY triple mutants included in this study, CheY *KY and CheY *MR (Table 1),

contained a substitution at DD+1 (CheY Phe14) in addition to D+2 and T+2 and were

designed to mimic the active sites of B. subtilis Spo0F and E. coli PhoB, respectively. Both

CheY triple mutants gave rates that were similar to the corresponding D+2/T+2 double

mutants. Although a very small data set, these results suggest that, as is the case with

autodephosphorylation25, 26, residue DD+1 does not appear to modulate

autophosphorylation rates.

Variation in phosphodonor preference

Wild type CheY displays nearly identical kphos/KS values for reactions with AcP and PAM

at a standard ionic strength of 230 mM (Table 1) and thus has essentially no preference for

one phosphodonor compared to the other (PAM preference = ~1). In contrast, there was a

greater than 500-fold variation in preference for PAM over AcP for the mutant set studied

here with preferences ranging from 0.5 to 260 (Table 1). A plot of log (kphos/KS PAM)

versus log (kphos/KS AcP) (Figure 2) graphically illustrates the preference of all but two of

the CheY mutants for PAM, as well as the diversity of magnitudes of the preference for

PAM. For the two CheY variants (CheY NA and CheY NQ) that preferred AcP, the

preference was weak (only two-fold).

MPI further enhances kinetics for some CheY variants

PAM and AcP differ in both chemical linkage (and implicit charge), and size (Figure 1B).

To probe the mechanistic basis for the general preference for PAM over AcP observed here,
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we measured the kinetics of autophosphorylation with MPI (monophosphoimidazole) for

several CheY mutants that strongly preferred PAM over AcP. MPI has the same N-P

chemical linkage (and thus similar charge distribution) as PAM but is larger than AcP. If

size were the dominant deterring factor for AcP, then the reaction rates would be expected to

be PAM > AcP > MPI. However, rates for reaction with MPI were all at least as fast as with

PAM (Table 2), with several mutants exhibiting extremely large rate enhancements. Thus,

preference for PAM over AcP is not due to phosphodonor size but must be due to chemical

linkage or charge.

Several of the CheY variants demonstrated large preferences for MPI over PAM. In

particular, CheY *KY and CheY NY, both of which exhibited rates with PAM > 20-fold

faster than wild type CheY, reacted with MPI another 16-130-fold faster than their rates with

PAM. The kphos/KS value for reaction of CheY *KY with MPI (43,000 M−1s−1) represents

the fastest autophosphorylation rate of this mutant set and is 4,300-fold faster than the

reaction of wild type CheY with AcP or PAM. In addition to CheY *KY and CheY NY,

CheY EH also exhibited a further rate enhancement of >10-fold with MPI relative to its rate

with PAM. Thus, instead of being a deterrent, the added bulk of MPI appeared to

substantially increase autophosphorylation rates for three CheY variants relative to their

rates with PAM. In contrast, CheY DE and CheY ME exhibited rates for MPI that were

similar to their rates with PAM, indicating that MPI did not offer anything deleterious or

advantageous over PAM for two CheY mutants. Thus the large rate enhancements for MPI

over PAM appeared to correlate with the presence of an aromatic group at the T+2 position.

Docking MPI into CheY *KY structure implicates role of steric complementarity

To explore the structural basis of the large rate enhancements for several CheY variants -

especially CheY *KY and CheY NY - with MPI, we docked the MPI molecule into the

active site of CheY *KY as described in Experimental Procedures. The X-ray crystal

structure of CheY *KY (PDBid 3FFW)25 complexed with Mn2+ and the phosphoryl group

analogue BeF3
− was used as a model of the active conformation, the probable reactive

species in autophosphorylation17, 20, 23. The docked orientation (Figure 3) positioned the

imidazole ring of the MPI and the aromatic ring of the tyrosine at T+2 virtually

perpendicular to one another in an optimal position for edge-to-face π-π interactions36. In

addition, there were a large number of van der Waals interactions between the imidazole

group of MPI and both the tyrosine side chain at T+2 and the lysine at D+2. It is likely that

similar interactions also occur in the other two CheY variants (CheY NY and CheY EH,

both of which have an aromatic group at position T+2) that show very fast reaction with

MPI. Thus, the modeling suggested that enhanced binding between phosphodonor and CheY

due to an enlarged sterically complementary hydrophobic binding surface and π-π
interactions is a likely explanation for the greatly enhanced rates. The 10-fold increase in

rate of CheY *KY over CheY NY may be due to a larger binding interface (K verus N) as

well an additional positive charge (see below).
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Statistical correlations between D+2/T+2 side chain properties and CheY
autophosphorylation rates

The trends discussed above suggested that increased positive charge of D+2/T+2 side chains

or the presence of an aromatic side chain could be kinetic determinants that enhanced CheY

autophosphorylation. To test these trends more rigorously, and to gain insight into which

factors may dominate for each of the two classes of phosphodonors, we carried out statistical

analysis of rates for wild type CheY plus all 19 CheY single or double mutants for reaction

with AcP or PAM. Plots were generated relating net electrostatic charge or nonpolar surface

area of residues D+2 and T+2 versus log (kphos/KS) for reaction with AcP or PAM (Figure

4AB). There was a significant Pearson correlation between net charge and log (kphos/KS) for

both PAM and AcP (p = 0.0001 and p < 0.0001, respectively, supporting the notion that

increased positive charge enhances rate for both AcP and PAM. Furthermore, the

magnitudes of the slopes of the linear regression lines (0.44 for PAM and 0.72 for AcP;

Figure 4AB) suggest that the charge effect was greater for AcP (−2 charge) than PAM (−1

charge), consistent with the observation that CheY EE and CheY DE gave no detectable

reaction with AcP but reacted with PAM just modestly slower than with wild type CheY.

The two classes of phosphodonors also exhibited differences in correlations between log

(kphos/KS) and the nonpolar surface area of the active site “pocket” formed by the T+2 and

D+2 side chains. For PAM, there was a strong Pearson correlation (p < 0.0001) and the

linear regression analysis showed a tight 95% confidence band whereas for acetyl

phosphate, the Pearson correlation was weak (but still significant; p = 0.0251) and the linear

regression exhibited a wide 95% confidence band (Figure 4CD). Thus, CheY has different

kinetic determinants for reaction with PAM or AcP. Overall, CheY autophosphorylation

with PAM is more positively impacted by increasing nonpolar surface area and less

positively impacted by increased charge than reaction with AcP.

Ionic strength effects on CheY autophosphorylation kinetics

The correlation between increased net charge of active site residues and faster

autophosphorylation observed here (Figure 4AB) implicates a role for electrostatic forces in

driving CheY autophosphorylation kinetics. Previous studies demonstrated that CheY

autophosphorylation rates decrease with increasing ionic strength16. Rates that are sensitive

to ionic strength in this manner generally reflect bimolecular reaction steps where two

separated oppositely charged species come together to form an ionic interaction (long-range

electrostatic interactions)30, such as the association of a charged enzyme active site with an

oppositely charged substrate30, 37. Solution counterions act to shield the charged groups and

prevent the interaction. To assess whether the rate differences observed for CheY D+2/T+2

substitutions (Table 1) were due to the same electrostatic interactions that lead to the ionic

strength dependence, we measured the ionic strength dependences of autophosphorylation

rates for a subset of CheY variants and quantitatively analyzed the results.

Plots of log (ionic strength) versus log (kphos/KS) for autophosphorylation of CheY NE,

CheY RE, CheY NR, and CheY NY with either PAM or AcP approximated linearity (Figure

5), as predicted by polyelectrolyte theory30. In this analysis, for enzymes where the rate of

dissociation of the E·S complex is much faster than the chemical reaction step as occurs with

CheY (see Supplemental Information), the absolute value of the slope of the linear
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relationship (n′; Table 3) reflects the number of counterions displaced in the reaction step

that is ionic strength sensitive. A priori, we might expect that, if the amino acid substitutions

and ionic strength affected the same long-range electrostatic interaction(s), then the kinetic

differences between the mutants would diminish as ionic strength increased and the rates

would eventually converge when all long-range electrostatic interactions are shielded by

counterions. This would be reflected in different values of n′ such that the variants with the

fastest rates (at low ionic strength) would have the largest ionic strength dependences

(highest n′). However, the slopes for the various CheY variants were only modestly

sensitive to the amino acid substitution, but instead, largely dependent on the phosphodonor

(Table 3). n′ values for all four CheY variants for reaction with PAM were close to unity

(ranging from 0.97– 1.3), which matches the −1 net charge of the PAM zwitterion (Figure

1B). In contrast, the n′ values for reaction with AcP (net charge is −2, Figure 1B) ranged

from 1.4–1.8 and, for each CheY variant, n′ for AcP was between 1.4 and 1.7-fold greater

than for PAM. The value of n′ reflects the extent of the Coulombic interactions in the E·S

complex and approximates the number of counterions released from charged residues and

substrate ions upon complex formation, which is reflective of the number of charges

involved in salt bridges between enzyme and substrate in the E·S complex. The same

qualitative result- that the CheY amino acid substitutions had small effects on the ionic

strength sensitivity and that reactions with AcP had a 1.4–1.7 -fold higher ionic strength

sensitivity than PAM- was achieved with an alternative method of plotting the data whereby

log (kphos/KS) was plotted versus a term that included the square root of the ionic strength38.

The relative insensitivity of the n′ values to amino acid substitution indicates that ionic

strength and substitutions at D+2 and T+2 affect two different electrostatic phenomena. The

correlation of the n′ values with the −1 and −2 charges of the phosphodonors supports the

notion that the ionic strength dependence reflects the binding of counterions to the

phosphodonor anion to disrupt ion pair formation between the phosphodonor and a species

that is common to all the mutant reactions, such as the CheY active site (see Discussion).

Furthermore, because the amino acid substitutions had only small effects on the ionic

strength sensitivities, the electrostatic component of the kinetic effects exerted by the

substituted side chains likely do not involve long-range electrostatic interactions (i.e. the

coming together of separate charges to form an ion pair). Instead, the side chains likely exert

their effects via more localized electrostatic interactions that would not be susceptible to the

effects of bulk solvent.

DISCUSSION

Although response regulator autophosphorylation was discovered more than twenty years

ago4 and has since been established to have physiological relevance for multiple response

regulators5, 6, the reaction kinetics have been rigorously characterized only for CheY15– 18.

Prior to this study, the ranges of reaction rates and phosphodonor discrimination possible

with the response regulator scaffold were unknown. As summarized in this Discussion, there

are now specific proposed mechanisms for modulation of the catalysis of CheY

phosphorylation that can be tested for generality in other response regulators, as well as in

sensor kinase/response regulator pairs.
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Specifically, this study provided substantial insight into the precise mechanisms by which

electrostatic and steric interactions influence the kinetics of CheY autophosphorylation. We

demonstrated that two types of electrostatic interactions affect reaction kinetics: long range

(getting the phosphodonor into the active site) and short range (interactions between the

active site and the phosphodonor once the enzyme/substrate complex has formed).

Furthermore, the “direction” of long- and short-range electrostatic interactions is the same -

both are enhanced by positive charge in the CheY active site. With regard to steric effects,

the generally faster reaction rates observed with PAM compared to AcP were not

attributable to the smaller size of PAM. Instead, the data provided strong evidence that

aromatic/bulky hydrophobic groups in the CheY active site can interact directly with the

imidazole portion of MPI (or the nitrogen atom of PAM) to increase binding energy and thus

enhance phosphorylation rate.

Phosphoramidates and acyl phosphates have different kinetic determinants

Amino acid substitutions at positions D+2 and T+2 modulated CheY autophosphorylation

rates by two to three orders of magnitude for each of the three phosphodonors tested (Tables

1,2). Multiple lines of evidence support the notion that CheY and other receiver domains

exist as an equilibrium between multiple conformational states39, 40 and that the activated

conformation(s) autophosphorylate at an enhanced rate17, 23. Thus, a rate change as a result

of substitution might reflect the effect of the substitution on the equilibrium between active

and inactive conformational states17, 20. However, simply changing the fraction of CheY in

the activated conformation would manifest in rates changing in concert for all

phosphodonors. In contrast, a central observation here was that the effect of substitutions at

D+2 and T+2 on CheY autophosphorylation kinetics was phosphodonor dependent (Tables

1, 2; Figure 2). With the inclusion of MPI, kinetic preferences for different phosphodonors

for a single CheY variant were as high as 1,700-fold. Thus, conformational state does not

appear to be a dominant source of rate modulation for this mutant set. Furthermore, we

probed the effect of conformational change on two of the CheY variants with enhanced rates

of autophosphorylation. Both variants (CheY NR and NL) exhibited additional rate

enhancements, similar in magnitude to that shown by wild type CheY, when pushed into an

activated conformation by binding to the FliM1–16 peptide (Table S2).

If conformation is not playing a dominant role in autophosphorylation rate modulation, then

what is? Correlations between measured rate constants and chemical properties of the D+2/T

+2 substitutions allowed us to propose several kinetic determinants to account for the

observed rate differences. Specifically, increased positive charge and increased nonpolar

surface area of the D+2/T+2 side chains both correlated with enhanced autophosphorylation

rates (Figure 4). The analysis further revealed that the different phosphodonor classes were

affected differentially by the kinetic determinants. Increased positive charge enhanced

autophosphorylation rate for both AcP and PAM but did so to a greater degree for AcP.

Moreover, because reaction with AcP displayed a stronger dependence on ionic strength

than with PAM (Figure 5), the preference for PAM over AcP for any mutant would be

dependent on ionic strength. Increased nonpolar surface area strongly correlated with faster

rate for reaction with PAM but the correlation for reaction with AcP was weak. Reaction

with MPI showed yet a larger impact of nonpolar surface area than PAM. Plot of log
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kphos/KS versus nonpolar surface area for the small set of mutants for which we measured

reaction rates with MPI gave a linear regression line with a slope more than two-fold higher

than with PAM (data not shown). The differential impacts of kinetic determinants on

reaction with different phosphodonors underlies the variation in phosphodonor preference.

Electrostatic interactions modulate CheY autophosphorylation at multiple levels

The correlation between charge of the D+2/T+2 side chains and reaction rate implicated a

role for electrostatic interactions in the differing autophosphorylation kinetics of the CheY

variants. However, the similar ionic strength sensitivities of the CheY variants suggested at

least two electrostatic phenomena: one that was ionic strength-sensitive and one that was

ionic strength-insensitive but sensitive to the charge at D+2/ T+2. Furthermore, quantitative

analysis (Figure 5, Table 3) revealed that the magnitude of the ionic strength sensitivity (n′)

was greater for AcP (net charge of −2) than for PAM (net charge of −1). n′ values reflect

the number of counterions released from charged species in order to form a noncovalent

complex.

Ionic strength inhibits long-range electrostatic interactions between a positively charged
active site and negatively charged substrate

Taken together, the observations summarized in the paragraph above provide compelling

evidence that the ionic strength sensitive step involves direct interaction of the

phosphodonor anion with a positively charged species that is common to the reactions for all

the CheY variants. Calculation of the electrostatic surface potential of the CheY·Mg2+ active

site reveals a positively charged surface centered on the Mg2+ and conserved lysine residue,

which more than neutralizes the three conserved aspartyl residues (Adaptive Poisson-

Boltzmann Solver software41; PDBid 2CHE42 or 1FQW11). Structures of phosphatases

within the haloacid dehalogenase superfamily (which have virtually identical active sites and

catalyze the same chemistry as receiver domains) complexed with substrate analogues show

two salt bridges between phosphoryl group oxygen atoms and Mg2+ and the conserved

Lys12, 43. Therefore, a likely candidate for the ionic strength sensitive step in CheY

autophosphorylation is the initial binding of phosphodonor to CheY, which would involve

formation of salt bridges between phosphoryl group oxygen anions and the Mg2+ and lysyl

cations. This suggests that the inhibitory effect of increasing ionic strength on kphos/KS

would reflect a higher KS (weaker binding) rather than a decrease in kphos and is consistent

with the notion that ionic strength generally affects long-range electrostatic interactions. We

also considered and rejected an alternate possibility that noncovalent complexes formed

between Mg2+ and phosphodonor function as the reactive species in autophosphorylation

and that ionic strength disrupts complex formation (see Supplemental Information).

The magnitudes of the n′ values measured here deserve further comment. The agreement

between n′ values for reactions with PAM (~1) and the net charge of PAM (−1) was

striking as n′ should approximate the number of counterions released from charged residues

or substrate ions that interact. However, PAM is a zwitterion (Figure 1B) and the

observation that PAM behaves more like a −1 charge than a −2 suggests that the positively

charged nitrogen atom inhibits the ability of the K+ counterions to bind to phosphoryl

oxygens on PAM. Although n′ values for reaction with AcP were 1.4 – 1.8-fold higher than
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for PAM, they did not reach the theoretical value of ~2 expected for release of two

counterions from AcP. This is similar to studies with RNase A in which n′ increased

linearly with substrate charge but with a slope of only ~0.2 (n′/charge). The ratio of n′/

charge of <1 was attributed to uneven counterion density on the substrate30, which would be

expected for AcP.

D+2/T+2 residues affect localized electrostatic interactions

The electrostatic interactions implicated by the correlation between positive charge of D+2/

T+2 and enhanced rate were virtually insensitive to ionic strength. Thus, these interactions

are likely to be more localized and not involve two separated and solvated charged species

coming together to form an ion pair. The locations of the D+2 and T+2 side chains in the

active site further implicate that these interactions likely involve energetics at the leaving

group region of the autophosphorylation reaction. The D+2 and T+2 side chains are

positioned near the leaving group atom bonded to the phosphorus, which is different for the

phosphodonor classes. The leaving group for PAM is NH3 (neutral) and the nitrogen atom

carries a partial positive charge in the transition state. In contrast, the leaving group for AcP

is acetate (−1 charge) and the oxygen atom has a partial negative charge in the transition

state. Thus, it is reasonable that positive charge at D+2/T+2 may help stabilize the transition

state of AcP more so than PAM via electrostatic attractive forces between positively charged

side chain(s) and the leaving group atom. This is consistent with the observation that the

slopes of the linear correlation between net positive charge and rate was higher and the

correlations were statistically stronger for AcP than for PAM (Figure 4AB). Similar roles of

stabilizing negative charges in the transition state have been proposed for arginine residues

that are prevalent in active sites of phosphotransfer enzymes44. Thus, electrostatic

interactions due to D+2/T+2 substitutions likely affect the kphos component of kphos/KS.

Non-polar surface area and steric complementarity

The overall preference of PAM over AcP for this CheY mutant set is consistent with

accounts in the literature of receiver domains that react readily with PAM but do not react

with AcP4, 21. PAM and AcP have similar kinetics of hydrolysis in the absence of

catalyst13, 14 so the preference for PAM is not due to an innately higher reactivity of PAM.

In the mutant set studied here, reaction with PAM improved as the nonpolar surface

enlarged but AcP did not appear to benefit similarly. This was particularly evident in three

CheY variants with tyrosine residues at T+2 (CheY NY, CheY KY, and CheY *KY), which

displayed greatly enhanced rates with PAM that were not achievable with AcP. CheY NY

and CheY *KY underwent dramatic further rate enhancements with MPI (Table 2) and

docking showed a strong likelihood of steric complementarity between MPI and both the D

+2 and T+2 side chains (Figure 3). Why didn’t AcP similarly benefit from the added

nonpolar surface area? Interestingly, docking of AcP into the active site of CheY *KY (as

shown in Figure 3 for MPI) showed that the planar -COCH3 group linked to the phosphoryl

group in AcP clashed with multiple atoms of the D+2 and T+2 side chain in all possible

rotamers. In MPI, the planar imidazole is one atom closer to the phosphoryl group and so

fits more snuggly in the active site. These trends likely reflect a tradeoff between enhanced

surface for potential interaction with the limitation that the increased bulk does not introduce

steric clash.
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Finally, in addition to steric complementarity, the observed correlation between nonpolar

surface area and autophosphorylation rate also likely reflects energetic contributions of

providing a more hydrophobic environment for catalysis of the phosphotransfer reaction. A

more hydrophobic active site pocket would result in strengthening the multiple types of

electrostatic interactions that drive the reaction (described above) due to a decrease in the

local dielectric constant45.

Highly accelerated reactions between CheY variants and MPI may reflect structural
mimicry of phosphotransfer from sensor kinases

In two-component systems, the phosphohistidyl containing domain that transfers directly to

the receiver can be either a ‘dimerization and histidine phosphotransfer’ (DHp) domain

(present in canonical sensor kinases) or a ‘histidine-containing phosphotransfer’ (Hpt)

domain (commonly found in phosphorelays and chemotaxis systems), both of which are

four-helix bundles. Phosphotransfer from both DHp46, 47 and Hpt19, 48 domains to response

regulators occurs rapidly with rate constants of ~106 M−1s−1 or greater. Whereas previously

determined autophosphorylation rates for wild type CheY were ~105-times slower than

transfer from cognate proteins, the rate constant for CheY *KY autophosphorylation with

MPI (4.3 × 104 M−1s−1) measured here approaches rates seen with the protein domains.

Could interactions between the imidazole side chain and D+2/T+2 side chain atoms

predicted by docking also occur in complexes between phosphorylated histidine kinases and

response regulators? In the docked structure (Figure 3), the monophosphoimidazole carbon

atom corresponding to histidyl Cγ is facing solvent, allowing plenty of room for the rest of

the histidyl side chain. Assessment of about 14,000 response regulator sequences showed

that about 35% have an aromatic residue (F/Y/W/H) at position T+222 so these interactions

could be common. Indeed, in the co-crystal structure of the Hpt/response regulator pair

YPD1/SLN1-R1 (PDBid 2R25)49, there is a phenylalanine at the SLN1-R1 T+2 position

that interacts with the conserved histidyl imidazole in YPD1, providing evidence that very

similar interactions may help mediate binding between the Hpt domain and the response

regulator. In the HK853/RR468 complex between a kinase DHp domain and a cognate

receiver, the imidazole group of the conserved His forms one end of a sandwich of van der

Waals interactions with receiver domain residues D+2 (Met) and T+2 (Lys)50. In the low

resolution complex between the DHp domain of the TrrA kinase and the TrrA response

regulator (PDBid 3AOR)51, TrrA T+2 Y82 interacts with ThkA H547 via parallel π-π
stacking interactions, but there is uncertainty in this exact alignment due to weak electron

density in this region. Thus there may be multiple modes of interaction between D+2/T+2

side chains with the histidyl group, including direct interaction between an aromatic

response regulator T+2 side chain and the conserved histidyl side chain from the partner

protein. It is likely that these interactions not only help stabilize the kinase/receiver complex

but could also strengthen the electrostatic interactions within the transition state by

providing a more hydrophobic environment.

The roles of response regulator nonconserved active site residues D+2 and T+2

The influence of residues D+2 and T+2 on CheY autophosphorylation kinetics established

here represents yet another example of the impact of these two positions on receiver domain

phosphorylation reactions. Located at the ‘gateway’ of the active site, residues D+2 and T+2
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also play roles in sensor kinase recognition and binding50, 52, 53, receiver domain

autodephosphorylation kinetics25, 26, and phosphatase binding and catalysis35, 54, 55.

Bioinformatics analysis of 1,555 receiver domain sequences52 reveals strong evolutionary

covariation between residues at D+2 and T+2 (Michael Laub, Pers. Comm.), consistent with

a functional role for these positions in differentiating response regulator receiver domain

functions.

Although amino acid substitutions at D+2 and T+2 had large effects on the kinetics and

specificity of CheY autophosphorylation, other nonconserved active site positions likely also

modulate response regulator autophosphorylation. For example, residue T+1 is hypothesized

to control access to the phosphorylation site24. Identification of all major determinants of

response regulator phosphorylation chemistry and characterization of the interactions

between such factors will require additional investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AcP acetyl phosphate

PAM phosphoramidate

MPI monophosphoimidazole

DD the two conserved acid residues on the receiver domain β1α1 loop that

chelate the Mg2+ (D12 and D13 for E. coli CheY)

D the conserved phosphorylated aspartate on β3α3 (D57 for CheY)

T the conserved threonine/serine on β4α4 (T87 for CheY)

K the conserved lysine on β5α5 (K109 for CheY)

DD+1, D+2,
and T+2

the nonconserved residues positioned one or two residues carboxyl

terminal to DD, D, or T respectively (F14, N59, and E89 for CheY)

CheY XY CheY double mutant where X and Y are the identities of the residues at

positions D+2 (residue 59 in CheY) and T+2 (residue 89 in CheY),

respectively
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CheY *XY CheY triple mutant where X and Y are the identities of the residues at

positions D+2 (59) and T+2 (89), respectively, with an additional

substitution at DD+1
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Figure 1.
Features of the receiver domain active site (A) and chemical structures of phosphodonor

molecules (B). (A) The active site of E. coli CheY (PDBid 1FQW) with residues conserved

amongst all receiver domains colored green and the three nonconserved residues studied

here colored cyan. Conserved residues are labeled as outlined in the text: DD is the metal

binding pair (CheY D12 and D13), D is the phosphorylated aspartate (CheY D57), and T

and K are the conserved threonine/serine and lysine (CheY T87 and K109) residues.

Nonconserved residues are labeled according to their sequence relationship to the closest

conserved residue with their identities in E. coli CheY in parentheses. (B) Prototypes of the

two chemical classes of phosphodonors. Phosphoramidate and acetyl phosphate represent
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the phosphoramidate and acyl phosphate chemical classes, respectively. Charges shown are

predominant at pH 7.0. CheY reacts poorly with the unprotonated form of PAM

(pKa~8.0)18.
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Figure 2.
Phosphodonor preference (PAM versus AcP) for the set of CheY variants studied. For each

CheY variant, the position of the point reflects the logarithms of the kphos/KS values (Table

1) for reaction with AcP (abscissa) or PAM (ordinate). CheY variants are designated by the

amino acids at positions D+2 and T+2, respectively with wild type CheY (NE) circled. *KY

and *MR have additional substitutions at DD+1 (F14Q and F14E) to mimic the Spo0F and

PhoB response regulators respectively. Designations are color coded to reflect the net charge

of residues at positions DD+1, D+2, and T+2 with net charge = +1 (blue), 0 (black), −1

(red), and −2 (green). The black dotted line (slope = 1) separates the plot into regions that

prefer PAM (light green) or prefer AcP (light blue).
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Figure 3.
Model of MPI docked into the active site of CheY *KY·Mn2+· BeF3

− (PDBid 3FFW)25.

Green and blue probe dots represent favorable van der Waals interactions whereas orange

and red dots represent steric clashes. The BeF3
− ion present in the original structure is not

shown for clarity.
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Figure 4.
Correlations between net charge (A and B) or non-polar surface area (C and D) at positions

D+2 and T+2 and the measured rate constants (kphos/KS, from Table 1) for

autophosphorylation reactions with PAM (A and C) or AcP (B and D). Each point represents

a single CheY variant. Net charge was calculated assuming histidyl residues are neutral.

Non-polar surface area was calculated as described in Experimental Procedures. For each

plot, the black dashed line is the linear regression best-fit line and the gray dashed lines

represent the 95% confidence bands. R2 values were 0.57, 0.76, 0.61, and 0.25 for panels A,

B, C, and D, respectively.
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Figure 5.
Ionic strength dependence of autophosphorylation rates for a subset of CheY variants.

Closed symbols are for reaction with AcP and open symbols are for reaction with PAM.

CheY variants are CheY NE (circles), CheY NY (diamonds), CheY RE (inverted triangles)

and CheY NR (squares), where the two letters designate the amino acid at position D+2 and

T+2 (CheY positions 59 and 89). Error bars represent standard deviation from duplicate

experiments.
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Table 2

Rate constants for autophosphorylation of selected CheY variants with MPI, PAM, or AcPa

Residue at position kphos/KS (M−1s−1)

D+2 T+2 MPIb PAMc AcPc

K Yd 43,000 ± 120 330 25

N Y 3,900 ± 470 240 13

E H 440 ± 2.8 37 2.3

M E 51 ± 7.0 26 1.3

D E 2.5 ± 1.5 3.7 < 0.2

N Ee 43 ± 2.8 10 11

a
Reaction conditions were 25 °C, pH 7.0, 230 mM ionic strength, 10 mM MgCl2.

b
Values are the average and standard deviation of two independent measurements.

c
Values are from Table 1; see Table 1 for standard deviations.

d
Variant is CheY *KY, the triple mutant with a glutamine at DD+1 (see Table 1)

e
Wild type CheY.
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Table 3

n ′ values derived from plots of log (ionic strength) versus log (kphos/KS)

Residue at position n′ a

D+2 T+2 AcP PAM

N Eb 1.4 ± 0.04 1.0 ± 0.05

R E 1.8 ± 0.02 1.3 ± 0.06

N R 1.8 ± 0.01 1.1 ± 0.06

N Y 1.6 ± 0.03 0.97 ± 0.04

a
n′ is the absolute value of the slope from Figure 5 and represents the number of counterions displaced on the protein or substrate in the reaction

step(s) represented by kphos/KS.

b
Wild type CheY
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