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Abstract

Fluorescence recovery after photobleaching was used to measure the diffusion coefficient of green 

fluorescent protein (GFP, 27 kDa) in Escherichia coli in the presence or absence of four 

coexpressed proteins: cytoplasmic maltose binding protein (42 kDa), tau-40 (45 kDa), α-synuclein 

(14 kDa), or calmodulin (17 kDa). The GFP diffusion coefficient remains constant regardless of 

the type of coexpresseed protein and whether or not the coexpressed protein was induced. We 

conclude that expression of these soluble proteins has little to no effect on the diffusion of GFP. 

These results have implications for the utility of in-cell nuclear magnetic resonance spectroscopy.

The interior of cells consists of a heterogeneous mixture of macromolecules that are tens to 

hundreds of times more concentrated than the dilute conditions used for most biophysical 

studies (1). Such crowding affects the thermodynamic activities of molecules and alters 

protein chemistry (2). Both theoretical and experimental evidence indicates that the crowded 

intracellular environment influences a range of biological processes and protein properties 

including enzyme kinetics, protein folding and aggregation, diffusion, and cell signaling; yet 

the precise manner by which crowding affects these properties is controversial and not well 

understood (3–9). Consequently, there is a need to develop analytical techniques, like in-cell 

nuclear magnetic resonance (NMR)1 spectroscopy, to probe the interior of living cells.
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NMR spectroscopy shows promise as a noninvasive method for monitoring proteins in cells 

(10). However, obstacles arise because NMR is insensitive. To obtain high-quality spectra, 

the protein of interest must be expressed at higher concentrations than other cellular 

components, which raises concerns about the relevancy of the observations from in-cell 

NMR. One might expect protein production to cause further crowding, yet Dedmon et al. 

showed that induced and uninduced Escherichia coli cells have the same amount of total 

protein (11). This observation suggests that cells compensate for overexpression by 

decreasing the level of other components. Methods for increasing protein expression are 

known, but it is not known how overexpression affects cellular dynamics (12).

Intracellular protein diffusion should provide some insight about the effects of protein 

overexpression on the cellular environment. In the simplest case, diffusion is expected to be 

inversely related to the effective viscosity, which in turn depends on the concentration of 

macromolecules in cells (13). Furthermore, insight about intracellular diffusion is important 

in its own right because diffusion is crucial for metabolism, gene transcription, protein 

assembly, macromolecular interactions, signaling, and other regulatory functions (13). For 

bacteria, Brownian motion often serves as the primary source of intracellular movement, 

because these cells lack the motor proteins of higher organisms (14).

Fluorescence recovery after photobleaching (FRAP) is a wellestablished technique used for 

obtaining translational diffusion coefficients (15, 16). In FRAP, a small region of a 

fluorescent sample is typically bleached with a laser, and fluorescence recovery is monitored 

as the unbleached fluorescent markers from the surrounding regions diffuse into the 

bleached area. Although the technique has traditionally been applied to eukaryotic cells, 

Elowitz and co-workers pioneered FRAP experiments in E. coli (14). This work paved the 

way for diffusion studies involving the effects of osmotic shock and crowding (17, 18). Of 

specific interest, van den Bogaart et al. reported no correlation between the GFP diffusion 

coefficient and the fluorescence intensity of E. coli cells (which was assumed to reflect GFP 

expression levels) (19). This result is seemingly inconsistent with the observation by Elowitz 

et al. that increasing the inducer concentration significantly reduces the diffusion coefficient 

of GFP (14). Since neither study directly quantified protein concentration, the discrepancy 

may involve a difference in expression levels.

Here, we use green fluorescent protein (GFP, 27 kDa) as a tracer molecule and measure its 

intracellular diffusion in the presence and absence of four different proteins expressed at 

varying levels in E. coli. GFP is globular, and the version we use is nondimerizable (20). 

The four proteins include two globular proteins, maltose binding protein (MBP, 42 kDa) and 

bovine calmodulin (17 kDa), and two disordered proteins, human tau-40 (45 kDa) and 

human α-synuclein (14 kDa). MBP is normally found in the periplasm, but we use a version 

that is expressed in the cytoplasm (21). Calmodulin is a calcium binding protein found in 

eukaryotes that regulates numerous enzymes (22). α-Synuclein is associated with 

Parkinson's disease (23). When expressed in E. coli, this protein has been reported to be 

1Abbreviations: DGFP, diffusion coefficient of GFP; FRAP, fluorescence recovery after photobleaching; GFP, green fluorescent 
protein; IPTG, isopropyl β-D-thiogalactopyranoside; LBAMP, Luria broth containing 100 μg/mL ampicillin; MBP, maltose binding 
protein; NMR, nuclear magnetic resonance; OD600, optical density at 600 nm; SDS–PAG, sodium dodecyl sulfate–polyacrylamide 
gel.
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found exclusively in the periplasm (24). We, however, find it in both the cytosol and the 

periplasm (vide infra). Tau-40 is a microtubule-associated protein commonly found in 

neurons. It is highly soluble, but when misfolded, it can form aggregates that contribute to 

neurodegenerative disorders such as Alzheimer's disease (25). Together, these four model 

proteins provide a range of size and structure for probing the effect of protein expression on 

intracellular dynamics.

Experimental Procedures

Protein Expression

Four vectors derived from AcGFP1 (Clontech) and pBAD/HIS C (Invitrogen) were created 

to contain the gene for a nondimerizable GFP (20) under the lac promoter and the gene for 

either α-synuclein, tau-40, MBP, or calmodulin under the control of the araBAD promoter 

(see Supporting Information). These vectors were individually transformed into competent 

E. coli BL21-AI cells (Invitrogen) and plated on Luria broth plates containing 100 μg/mL 

ampicillin (LBAMP). A 5 mL starter culture of liquid LBAMP was inoculated with a single 

colony and grown overnight at 37 °C with constant shaking at 225 rpm. This starter culture 

was used to inoculate 25 mL of fresh LBAMP in a 250 mL flask at a 1:25 dilution. Once the 

optical density at 600 nm (OD600) reached 0.5–0.7, the culture was divided into three 5 mL 

aliquots, which were induced with arabinose according to Figure 1 and grown at 37 °C with 

constant shaking at 225 rpm. After 3 h, the OD600 of each sample was measured, and 

chloramphenicol, to halt expression, was added to a final concentration of 50 μg/mL.

Sample Preparation

Cover glasses (22 × 22 × 0.17 mm, no. 1.5; Zefon) and glass microscope slides (3 in. × 1 in. 

× 1 mm; Fisher Scientific) were boiled in ICN detergent (MP Biomedicals) for 10 min, bath-

sonicated for 30 min, rinsed thoroughly with deionized water, and dried overnight at 160 °C. 

The dried slides were cleaned in an Ar-ion plasma cleaner (PDC-3XG; Harrick Scientific) 

for 15 min at 25 °C immediately prior to use. The cover glass slides were pretreated with a 

0.01% (w/v) poly(L-lysine) solution (Sigma-Aldrich) for 15 min, rinsed with minimal media 

[7.6 mM (NH4)2SO4, 60 mM K2HPO4, 2 mM MgSO4, 20 μM FeSO4,1 mM EDTA (pH 

6.8)], and attached to a microscope slide with double-sided tape (part no. 021200-64988; 3 

M Corp.) to form a sandwich. For osmotic stress and urea measurements, the minimal media 

rinse contained either 250 mM sorbitol (390 mOsm, measured with a Vapro osmometer) or 

500 mM urea. The cultures, prepared as described above, were injected into the sandwiches. 

After incubating for 30 min at 25 °C, the sample chamber was rinsed with minimal media 

and sealed with vacuum grease.

Determining Protein Concentration

For each of the four cultures, 1 mL aliquots were collected 0 and 2 h after adding 

chloramphenicol. These aliquots were centrifuged for 10 min at 8000 g (Eppendorf model 

5418). The pellets were resuspended in 20 mM potassium phosphate buffer (pH 7.5). Protein 

standards were obtained by using the purification methods described in the Supporting 

Information. The concentration of each standard was determined by absorbance (GFP, 

ε475nm = 32500 cm−1 M−1 as reported by the manufacturer, Clontech; MBP (26), ε280nm = 
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69000 cm−1 M−1; calmodulin (27), ε276nm = 3030 cm−1 M−1) and/or with the Lowry (28) 

method (modified Lowry protein assay kit; Pierce) using cytochrome c (for α-synuclein and 

calmodulin) or ovalbumin (for tau-40 and MBP) as a reference. The proteins in cell lysates 

and standards were resolved by electrophoresis on 10-20% gradient sodium dodecyl sulfate–

polyacrylamide gels (SDS–PAGs; Criterion, Bio–Rad) for 60 min at 200 V. Gels were 

analyzed by both fluorescence and Coomassie staining with a VersaDoc MP imager (Bio-

Rad). The exposure time was optimized to prevent pixel saturation, and Quantity-One 

software (Bio-Rad) was used to quantify the band intensities. Calibration curves of the 

standards were used to determine the amount of the proteins of interest in the cell lysates. 

The cell densities of the cultures were determined from the OD600 (29). These values were 

confirmed by dilution plating. The intracellular protein concentrations, C (in millimolar), 

shown in Table 1 were calculated by using the equation:

where n (in millimoles) is the amount of protein contained in the band on the SDS–PAG 

(based on the standard curve made from pure proteins), Vp (in microliters) is the volume of 

resuspended pellet (in phosphate buffer with SDS–PAG loading dye), Vload (in microliters) 

is the volume of resuspended pellet loaded into the SDS–PAG, N is the number of cells in 

the 1 mL aliquot (determined by the OD600) (29), and Vcell is the volume of an E. coli cell (1 

× 10−15 L) (30). Measurements were performed in triplicate.

Microscopy

The intracellular GFP diffusion coefficient was measured by using FRAP (14). Single cell 

images were recorded with a Zeiss 510 Meta scanning confocal inverted microscope 

equipped with a 30 mW argon laser. The sample was imaged with a 63×, 1.4 NA plan-

apochromat oil-immersion objective and a pinhole of 2.0 Airy-disk units. An excitation 

wavelength of 488 nm was selected. A 505 nm long-pass filter was used for detection. Cells 

were oriented in the x direction, and the laser bleach spot was moved to one pole of the cell. 

For photobleaching, the laser intensity was ∼240 μW, with a ∼0.2 μW observation beam. 

After 99 prebleach images were collected, the region selected for bleaching was scanned for 

52 ms, and 500 postbleach images of 128 by 16 pixels (7.3 by 0.9 μm) were recorded at a 

rate of 13.1 ms/frame.

Data Analysis

Time series of fluorescence images were analyzed as described (18). In short, images were 

converted to one-dimensional intensity profiles, I(x,t), by averaging columns of pixel 

intensities (perpendicular to the long cell axis) as a function of distance from the cell edge 

(x). The one-dimensional profiles were used to calculate Fourier amplitudes An(t):
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where qn = nπ/L, t is time, L is the cell length in micrometers, and n = 1, because the larger 

numbered n-terms decay too quickly to be measured. The Fourier amplitudes were plotted as 

a function of time and fit to a single exponential decay, a[exp(−bt)] + c, with a, b, and c as 

free parameters. Diffusion coefficients (D) were obtained from the equation b = Dq1
2. 

Analysis was performed using Mathematica (Wolfram).

Results

Intracellular Protein Concentrations

Four vectors were created. The GFP gene was placed under the lac promoter. The araBAD 

promoter was used to control the expression of α-synuclein, MBP, tau-40, or calmodulin. 

Figure 1A shows typical Coomassie-stained gels of the E. coli cell lysate. For a given 

system, GFP is expressed at a constant level as shown by the Coomassie-stained gels (Figure 

1A) and as suggested by the fluorescent gels (Figure 1B). The amount of coexpressed 

protein is controlled by the amount of arabinose used for induction. In the absence of 

arabinose, GFP is expressed and detected, but the coexpressed protein (MBP, calmodulin, 

tau, or α-synuclein) is undetectable. The same result is obtained from cell lysates 

electrophoresed before or 2 h after adding chloramphenicol to stop protein synthesis. This 

observation shows that the intracellular protein concentration does not change during the 

FRAP experiments.

SDS–PAG electrophoresis was used to quantify the concentration of a given protein in cells. 

The results are summarized in Table 1. Comparing the induced and uninduced GFP 

concentrations shows that the value is the same whether or not another protein is 

coexpressed. The level of GFP expression varies, however, from system to system. The most 

extreme variation is a 5-fold increase in GFP expression in the MBP system compared to the 

α-synuclein system. With the exception of tau-40, the GFP concentration appears to be 

inversely related to the concentration of the coexpressed protein.

Protein Location

Four fractionation methods were used to determine the locations of the coexpressed 

proteins: osmotic shock (24, 31), exposure to detergent (32), osmotic shock plus lysozyme 

(33), or chloroform treatment (34). Coomassie-stained gels (see Supporting Information) of 

the supernatants (periplasmic proteins) and pellets (cytoplasmic proteins) confirm that MBP 

and tau-40 are present exclusively in the cytoplasm. The supernatant from the chloroform 

fractionation contained calmodulin, yet results from the other three methods suggest that 

calmodulin is exclusively localized to the cytoplasm. All fractionation methods show the 

presence of α-synuclein in both the cytoplasm and periplasm. The percent of cytosolic α-

synuclein ranged from 40% (chloroform) to 70% (lysozyme), depending on the method.

Protein Expression

SDS–PAG electrophoresis of cell lysates provides bulk information about expression. To 

examine cell-to-cell variation, it is necessary to observe individual cells. The fluorescence 

intensity is constant from cell to cell in E. coli coexpressing GFP and α-synuclein (Figure 

2A). Similar images were obtained for the calmodulin and MBP systems (not shown). In 
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contrast, the images of E. coli coexpressing tau-40 (Figure 2B) show bright and dim cells, 

suggesting that the GFP concentration varies from cell to cell. Inexplicably, this intensity 

variation for the tau-40 system is observed whether or not the tau-40 expressing cells are 

induced. For all images, the distribution of GFP within a single cell is uniform within optical 

resolution, suggesting that GFP is neither aggregated nor localized to specific regions, under 

the conditions examined here.

The expression of the four proteins listedinTable1isdriven by the araBAD promoter. Since 

the levels of these coexpressed proteins cannot be visualized in cells, GFP was expressed 

under the araBAD promoter to assess the cell-to-cell expression level variation for this 

promoter. The cells in Figure 2C are dimmer than the cells in Figure 2A because the 

araBAD promoter is weaker than the lac promoter for GFP. The fluorescence intensity is 

constant for E. coli expressing GFP under araBAD at 0.02% arabinose (Figure 2C). 

Histograms of the intensity versus the number of cells made from the data in Figure 2 

indicate a slightly wider spread of fluorescence intensities for GFP under the araBAD 

promoter (Figure 2C) compared to GFP under the lac promoter (Figure 2A), but both appear 

to be normally distributed (data not shown). This result indicates that, above the arabinose 

saturation concentration, araBAD-driven expression of GFP is similar from cell to cell. By 

inference, this result suggests that the other proteins driven by this promoter should also 

show constant expression from cell to cell.

Controls for FRAP Experiments

The photochemical properties of fluorophores can sometimes hinder experiments. For 

instance, GFP variants have been reported to photobleach reversibly and undergo 

photoinduced cross-linking (35, 36). To assess reversible photobleaching, confocal 

microscopy was used to bleach the GFP throughout an entire cell and to monitor the 

intracellular fluorescence over time. Postbleach fluorescence recovery is not observed, 

indicating that GFP is irreversibly photobleached on the time scale of our experiments. 

Likewise, when experiments were conducted without a bleach pulse, no fluorescence decay 

is observed. To ensure that GFP does not undergo bleach-induced photochemistry, FRAP 

runs were repeated on the same cell several times. The same diffusion coefficient is obtained 

each time, suggesting that the system is not significantly altered by photochemistry.

Intracellular Diffusion of GFP

FRAP was used to measure the apparent diffusion coefficient of GFP in cells coexpressing 

an additional recombinant protein. Figure 3A shows one-dimensional pixel intensity profiles 

of a typical cell as a function of distance from the cell edge at different postbleach times. 

The observation that the fluorescence is constant with respect to the position at long times 

implies that either all or most of the GFP has long-range lateral mobility. Figure 3B shows 

the amplitude of the first Fourier mode (n = 1) for the same cell (blue), which is consistent 

with previous experiments (18). The apparent diffusion coefficient was determined from the 

decay rate of this amplitude (Experimental Procedures). The average diffusion coefficients 

measured are summarized in Figure 4. Regardless of the specific protein or the arabinose 

concentration used to induce expression, the intracellular diffusion coefficient of GFP, 
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DGFP, is the same within the uncertainty of the measurement. Likewise, the addition of 500 

mM urea to the culture did not affect DGFP, suggesting that GFP diffuses as a monomer.

Osmotic Shock

To confirm that our implementation of the FRAP experiment is sensitive enough to detect 

differences in DGFP, cells were osmotically shocked with sorbitol. A 226 mOsm increase in 

the osmolarity decreased the decay rate of the first Fourier amplitude 3-fold (Figure 3B). 

This decrease is consistent with previous studies (18).

Discussion

We expanded upon the simplistic suggestion of Dedmon et al. by examining the effects of 

protein expression on intracellular diffusion. Dedmon et al. proposed that if intracellular 

protein concentration is constant, then overexpression of a single protein should not affect 

protein diffusion (11). Overexpression, however, could alter other factors, such as 

cytoplasmic composition and protein interactions, both of which could affect protein 

diffusion. Thus, a more direct measurement of the effects of overexpression on diffusion 

was necessary.

For a given system, GFP was expressed at a constant level and its diffusion coefficient, 

DGFP, was measured in the presence and absence of a second recombinant protein. Four 

proteins were chosen to cover a range of characteristics. Both large (MBP, 42 kDa; tau-40, 

45 kDa) and small (α-synuclein, 14 kDa; calmodulin, 17 kDa) proteins were selected 

because evidence suggests that the size of the crowding agent affects diffusion (37). 

Globular (MBP and calmodulin) and disordered (α-synuclein and tau-40) proteins were 

chosen to determine if shape is a factor. When induced with arabinose, the coexpressed 

protein represented as much as 15% of the mass of the total intracellular protein (9). Despite 

these variations in protein size, shape, and concentration, DGFP remained within error of the 

commonly referenced GFP diffusion coefficient in E. coli, 7.7 ± 2.5 μm2 s−1 (14). DGFP was 

also consistent with the value recently measured by total internal reflection continuous 

photobleaching (38). Our observations show that GFP diffusion is independent of the type or 

amount of protein coexpressed, but several points need to be addressed.

GFP aggregates could complicate the interpretation. Almost all intracellular protein 

diffusion studies in E. coli have involved GFP or GFP-fusion proteins. GFP may interact 

with other proteins inside the cell, which would decrease DGFP. To test these potential 

protein-protein interactions, 500 mM urea was added to the cells. E. coli take up urea and 

remain viable at these concentrations (39, 40). The addition of urea did not alter the 

observed diffusion coefficient, implying that GFP is not interacting with itself or 

intracellular components.

FRAP could be too insensitive to changes in diffusion. Osmotic shock by sorbitol increases 

the intracellular concentration of macromolecules, which significantly decreases protein 

mobility (41). To show that our instrumentation is sufficiently sensitive to detect differences 

in DGFP, the GFP diffusion coefficient was measured in cells treated with 250 mM sorbitol. 

Dilution plating confirmed that sorbitol does not affect cell viability. We obtained a DGFP of 
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2.4 ± 1.6 μm2 s−1 in 397 mOsm buffer, which is consistent with other studies that report 

diffusion coefficients of 1.8 μm2 s−1 in 370 mOsm buffer (19) and 0.94 ± 0.55 μm2 s−1 in 

392 mOsm buffer (18).

The issue of whether protein expression is uniform across the population of cells must be 

addressed. Expression from the araBAD promoter is regulated by arabinose, such that 

intermediate levels of expression can be achieved by using subsaturating arabinose 

concentrations. The intracellular concentrations of the coexpressed proteins (Table 1) were 

determined from gels like the one shown in Figure 1 and represent average intracellular 

concentrations. It is known, however, that there is cell-to-cell variability of expression levels 

at subsaturating inducer concentrations. Siegele and Hu (42) showed that intermediate levels 

of bulk expression result from a mixture of fully induced and uninduced cells. Thus, 

increasing the arabinose concentration increases the fraction of induced cells, rather than the 

amount of protein produced in an individual cell. Their results show that 0.02% arabinose is 

above the saturation level such that most of the cells are fully induced. One explanation for 

the few cells that were not induced is that they lost the vector, containing the araBAD 

promoter. Our images of E. coli expressing GFP under the araBAD promoter induced with 

0.02% arabinose verify this observation (Figure 2C). Similar images of cells expressing GFP 

under the lac promoter show that GFP expression is uniform from cell to cell, with the 

exception of tau-40 (Figure 2A,B).

Due to the behavior of the araBAD promoter at subsaturation, the diffusion coefficients in 

Figure 4 and the intracellular concentrations in Table 1 are provided for only fully induced 

(≥0.02% arabinose) and uninduced cultures. Nevertheless, intermediate levels of all 

coexpressed proteins yield GFP diffusion coefficients within error of those given in Figure 4 

(not shown).

Interpreting the effect of the protein coexpression on DGFP depends on the assumption that 

the protein of interest is in the same compartment as GFP. It is possible that no effect on 

GFP diffusion by the expression of a second protein arises because the protein was not 

expressed in the same compartment as the GFP. An E. coli cell comprises two main 

compartments: the periplasm and the cytoplasm. The periplasm is the outer compartment 

bounded by the plasma membrane and cell wall. It encloses 20–40% of the cell's total 

volume (43). The cytoplasm comprises the volume surrounded by the plasma membrane. 

The cytosol is the cytoplasm without other subcellular structures, such as ribosomes, and the 

fibrous proteins that determine cell shape, motility, and material transport. GFP is found 

exclusively in the cytosol of E. coli (44).

To determine if the coexpressed proteins are present in the cytoplasm or periplasm, the cells 

were subjected to osmotic shock (24, 31), detergent (32), osmotic shock plus lysozyme (33), 

or chloroform (34). SDS–PAG electrophoresis of the supernatants (periplasmic proteins) and 

pellets (cytoplasmic proteins) confirmed that the coexpressed proteins are soluble and 

present in the cytoplasm. The chloroform fraction of calmodulin was inconsistent with the 

results from the other methods. However, even for MBP, α-synuclein, and tau-40, the 

chloroform supernatant contains numerous proteins that are absent from the supernatants 

from the other fractionation methods. This observation suggests that chloroform can lyse 
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entire cells and not just the periplasm. On the basis of the osmotic shock, lysozyme, and 

detergent experiments, we conclude that calmodulinis a cytosolic protein. Our observation 

that 40–70% of the α-synuclein is cytosolic is inconsistent with a study that reports α-

synuclein as exclusively periplasmic in E. coli (24). Another study, which shows 60–85% of 

α-synuclein in the periplasm, suggests that the amount depends on the strain used for 

expression (34). The BL21-AI strain used here was not part of either previous study. This 

difference in E. coli strain may explain the inconsistency in the amount of periplasmic α-

synuclein. In summary, all of the proteins except α-synuclein are found exclusively in the 

cytosol.

The tau-40 expression system was unlike the others. As shown in Table 1, tau-40 expression 

is 3-fold lower than the other proteins when the same amount of inducer is added. 

Furthermore, GFP expression with this system exhibits extensive cell-to-cell variation 

(Figure 2B). This observation suggests that arabinose saturation has not been reached at 

0.02%. The results with 0.2% arabinose are the same as those from a 0.02% sample, and 2% 

arabinose resulted in even lower expression. Nevertheless, the GFP diffusion coefficients for 

both induced and uninduced cultures were consistent with the other systems.

These control experiments strengthen our general conclusion that expression of these 

proteins has little or no effect on the diffusion of GFP. This diffusional homeostasis softens 

one criticism of in-cell NMR, namely, that the protein overexpression required for observing 

in-cell spectra leads to an unacceptably nonphysiological environment. Therefore, the need 

to over-express a protein for in-cell NMR does not necessarily invalidate the physiological 

relevancy of the results. The conclusion also raises new questions. It will be important to 

know what maintains diffusional homeostasis in the face of a single protein representing 

>10% of a cell's protein. In addition, the effects of inclusion bodies (which occur when 

overexpression leads to insolubility) need to be understood.

Our conclusion also highlights an enigma. NMR spectra from several soluble globular 

proteins cannot be observed in intact E. coli cells (10). Yet, inclusion bodies are not 

observed, the soluble protein is easily purified, and simply lysing the cells causes the 

appearance of high-quality spectra. One explanation is that the high viscosity in cells slows 

the protein's rotation, making its resonances too broad to observe (45).

The data presented here show that translational diffusion in cells is slowed about 10-fold 

compared to dilute solution. The enigma arises in trying to reconcile this 10-fold decrease 

with in vitro data. Adding enough of the macromolecular crowder, 40 kDa 

polyvinylpyrrolidone, to slow translation of a small globular protein 10-fold slows rotational 

diffusion by only 2-fold (10). A 2-fold decrease in rotational diffusion is not enough to 

obliterate the spectrum of a small globular protein. It remains unclear how the cellular 

interior retards rotational diffusion to such a degree that protein NMR spectra cannot be 

observed, while having such a small effect on translational diffusion.

In summary, the data presented here indicate that protein coexpression has little to no effect 

on the intracellular diffusion of GFP. These observations suggest that in-cell NMR can 

provide biologically relevant data, despite the need to overexpress the protein being studied. 
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However, the results also highlight new questions that must be addressed about cellular 

protein dynamics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Intracellular GFP concentration is independent of the amount of an individual coexpressed 

protein. (A) Cell lysates were separated on a 10–20% gradient SDS–PAG and visualized 

with Coomassie staining. The arabinose concentrations were adjusted for each system to 

maximize protein expression with the least amount of inducer. (B) GFP can be visualized by 

using fluorescence, as shown by these lysates from cells coexpressing GFP and MBP. 

Similar results were observed for the other three systems.
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Figure 2. 
Fluorescence images (35 μm × 35 μm) of E. coli expressing GFP. In panels A and B, GFP, 

under the lac promoter, is coexpressed with (A) α-synuclein or (B) tau-40, both under the 

araBAD promoter. In panel C, GFP is expressed under the araBAD promoter, instead of the 

lac promoter, with no coexpressed protein.
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Figure 3. 
Photobleaching data. (A) Fluorescence intensity profiles at 0.03 (dark blue), 0.10 (purple), 

0.17 (red), 0.30 (orange), 0.50 (yellow), 0.83 (green), and 1.51 (cyan) s after photobleaching 

are shown for a BL21-AI cell coexpressing tau-40 and GFP. (B) Temporal decay of the first 

Fourier amplitude for the same cell (blue) and for a cell exposed to a 226 mOsm increase in 

osmolality (black). The solid lines are fits to the exponential function, a[exp(−bt)] + c, with 

a, b, and c as free parameters.
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Figure 4. 
Coexpressing another recombinant protein does not affect intracellular GFP diffusion. GFP 

was coexpressed with either calmodulin (gray), MBP (blue), tau-40 (green), or α-synuclein 

(purple). The arabinose concentrations used for induction were 0.02%, 0.02%, 0.02%, and 

0.2%, respectively. GFP diffusion in the absence of inducer (arabinose) from these same 

coexpression systems is also shown (n > 34). GFP was expressed constitutively from an 

uninduced lac promoter. The induced MBP sample was exposed to 500 mM urea (n = 21). 

Osmotic shock was introduced by adding sorbitol to a final concentration of 250 mM (n = 

19) to the α-synuclein sample. For comparison, the published (46) GFP diffusion coefficient 

in dilute solution (4.5 μM) is also shown.
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Table 1

Intracellular Concentrationsa

coexpressed protein GFP

induced (mM) uninduced (mM) induced (mM)

MBP 0.6 ± 0.1b 0.9 ± 0.5 1.0 ± 0.2

calmodulin 0.8 ± 0.3 0.6 ± 0.3 0.6 ± 0.3

tau-40 0.21 ± 0.06 0.5 ± 0.1 0.5 ± 0.2

α-synucleinc 1.27 ± 0.09 0.16 ± 0.06 0.19 ± 0.07

a
Quantified by integrating pixel intensities of bands from Coomassie-stained SDS–PAGs.

b
Standard deviation, n = 3.

c
Some of this protein is periplasmic (see text).
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