
SHAPE Analysis of Long-Range Interactions Reveals Extensive 
and Thermodynamically Preferred Misfolding in a Fragile Group I 
Intron RNA†

Caia D.S. Duncan and Kevin M. Weeks*

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, 
USA

Abstract

Most functional RNAs require proteins to facilitate formation of their active structures. In the case 

of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 

maturase and the nuclear encoded Mrs1. Here, we use selective 2′-hydroxyl acylation analyzed by 

primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range 

interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the 

catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring 

helix creates an autonomous structural domain for the intron and functions to prevent misfolding 

with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is 

not consistent with the catalytically active conformation as phylogenetically conserved elements 

form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by 

protein cofactors functions to promote extensive secondary structure rearrangements that are an 

obligatory prerequisite for forming the catalytically active tertiary structure.

Graphical abstract

Large RNA molecules fold into intricate three-dimensional structures that are essential for 

many fundamental biological processes, including translation, mRNA processing, and viral 

replication (1). In almost all cases, large RNAs achieve their functional structures only 

through interactions with a large variety of protein facilitators. Two prominent and widely 

applicable models emphasize that protein facilitators function either to bind stably an RNA 

and thereby promote formation of the active tertiary structure or to interact relatively 
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transiently and non-specifically to facilitate rearrangement of incorrect secondary structures 

(2-4). These proteins are commonly called cofactors and chaperones, respectively. In some 

cases, RNA folding and function may require facilitation by both classes of proteins.

An assumption implicit in the mechanisms proposed for both cofactors and chaperones is 

that the functionally active secondary structure is also the thermodynamically most stable 

secondary structure. Here, we introduce a system that does not conform to either of these 

models but, instead, is one in which the most stable secondary structure for the free RNA is 

very different from the catalytically active structure. Thus, one role for protein facilitators 

must be to promote large-scale rearrangements in both RNA secondary and tertiary 

structure.

Group I introns are good models for complex RNA folding reactions. These catalytic RNAs 

are composed of two roughly coaxially stacked domains that interact through extensive 

tertiary interactions to form a highly structured catalytic core and dock with a third helical 

domain to form a sophisticated active site (5-8). Binding by a guanosine cofactor initiates a 

two-step splicing reaction to yield ligated exons and the excised intron (6). The self-splicing 

activity of group I introns also provides a robust readout for correct RNA folding.

Although a few group I introns splice autonomously, most introns in this class require the 

participation of protein facilitators to fold into a catalytically active structure that splices 

efficiently. The yeast bI3 group I intron holoenzyme is a large and complex 

ribonucleoprotein (RNP) composed of the bI3 intron RNA and two proteins, the bI3 

maturase and Mrs1 (Figure 1A). The active complex consists of six components, one RNA, 

the intron encoded bI3 maturase, and two dimers of the nuclear encoded Mrs1 protein 

(9-11). The RNA appears to require that both proteins be stably bound in order to be 

catalytically active. The bI3 RNP is thus an excellent model for understanding the 

mechanism by which proteins facilitate RNA folding.

An obligatory first step in understanding any RNP assembly reaction is an accurate 

understanding of the initial state of the free RNA, prior to protein binding. This free RNA 

state generally lacks significant tertiary structure and has been difficult to characterize fully 

for any large RNA. A useful starting point for developing models of RNA folding and RNP 

assembly reactions is to posit that the structure of the free RNA reflects a loose version of 

the same secondary structure present in the final, native complex (3,4,12,13). In some cases, 

the free RNA appears to undergo small, local secondary structure rearrangements to form 

the native state (14-16). However, the widespread assumption that the secondary structure of 

a free RNA closely resembles that of the native state has not been broadly tested. 

Furthermore, even when it is clear that a large fraction of an RNA misfolds relative to the 

catalytically active structure, very little information is available regarding the specific 

alternative secondary structures that populate the misfolded state.

A powerful approach for analyzing RNA secondary structure is single nucleotide resolution 

RNA SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemistry 

(17,18). SHAPE chemistry monitors local flexibility at every nucleotide in an RNA using an 

hydroxyl selective electrophile to probe the reactive state of the ribose 2′-OH group. The 2′-
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OH is accessible to solution in most RNA conformations, especially prior to formation of 

tertiary interactions. SHAPE does not monitor solvent accessibility but, instead, the 

propensity of a nucleotide to adopt relatively rare, but highly reactive, conformations that 

increase the nucleophilic reactivity of the 2′-hydroxyl group (17,19). Thus, SHAPE 

chemistry maps local nucleotide flexibility in RNA. Sites of 2′-O-adduct formation, and thus 

conformationally flexible RNA nucleotides, are then detected as stops in a primer extension 

reaction. cDNA fragments generated during the primer extension step are resolved by 

capillary electrophoresis using fluorescently labeled primers in a high-throughput SHAPE 

experiment (19,20).

High-throughput SHAPE has two attributes that are important when analyzing the structure 

of a large RNA like the bI3 group I intron. First, we routinely obtain reads of over 450 

nucleotides such that the entire bI3 RNA structure can be interrogated in a single 

experiment. Second, we obtain local nucleotide flexibility information at single nucleotide 

resolution throughout the read, which means that the effects of single point mutations can be 

evaluated at all possible structures in the RNA, also in a single experiment.

Using single nucleotide resolution SHAPE analysis, we find that the structure of the bI3 

RNA prior to binding by the maturase and Mrs1 protein facilitators is dramatically different 

from its phylogenetically determined secondary structure. This alternatively folded and 

catalytically inactive structure is nonetheless the thermodynamically most stable structure. 

SHAPE experiments show that the bI3 maturase and Mrs1 cofactors function to promote 

large-scale rearrangements in the secondary structure as well as to stabilize the catalytically 

active tertiary structure of the RNA.

Results

Free bI3 RNA structure at single nucleotide resolution

An absolute prerequisite for understanding the role of protein facilitators in any RNP 

complex is an accurate model for the structure of the RNA prior to protein binding. We 

analyzed the structure of the free bI3 RNA using high-throughput RNA SHAPE technology. 

In this two step process, we first treated the RNA with 1-methyl 7-nitroisatoic anhydride 

(1M7) (20) (Figure 1B). Subsequently, sites of 2′-O-adduct formation were detected by 

primer extension using fluorescently labeled primers, resolved by capillary electrophoresis. 

Sites of specific 2′-O-adducts were located by comparison with a reaction performed in 

parallel in which the reagent was omitted (Figure 2A, compare red and black traces). Sites of 

modification were identified by comparison with a dideoxy nucleotide sequencing reaction.

We obtain the absolute SHAPE reactivities for every nucleotide in the RNA by integrating 

the peaks in the (+) and (−) reagent traces, calculating the net reactivity after subtracting 

background, and placing all intensities on a normalized scale. On this scale, nucleotides with 

normalized intensities less than 0.3 are defined as unreactive; whereas, nucleotides with 

reactivities greater than 0.7 are deemed highly reactive (Figure 2B, black columns and red 

columns, respectively). Nucleotides with reactivities between 0.3 and 0.7 are judged to be 

moderately reactive (Figure 2B, yellow columns). In a typical single SHAPE experiment, we 

Duncan and Weeks Page 3

Biochemistry. Author manuscript; available in PMC 2016 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyze the entire 372 nucleotides of the bI3 intron, 73 nucleotides of the 5′ exon, and 30 

nucleotides of the 3′ exon for a total read length of 475 nucleotides (Figure 2).

Free bI3 RNA does not fold into the phylogenetically conserved or catalytically active 
structure

The SHAPE reactivity data indicate that many regions of the free bI3 RNA fold in a way that 

is consistent with the group I intron structure determined by comparative sequence analysis 

(5) (emphasized with black bars, bottom of Figure 2B). For example, in the P5-P4-P6 

domain, all base paired regions are unreactive, whereas nucleotides which connect these 

regions are reactive (compare the reactive red and yellow nucleotides with the unreactive 

black nucleotides, Figure 3A). Other structures that appear to form the phylogenetically 

conserved and catalytically active secondary structure include P2, P8 and P9 (all such 

elements are identified with black labels, Figure 3A).

In contrast, we also identify extensive regions in which the SHAPE data do not recapitulate 

the phylogenetically determined structure. One clear example is the P1 helix, which contains 

the 5′ splice site. SHAPE reactivities are inconsistent with formation of P1 in two ways. 

First, many nucleotides in the P1 stem are reactive and therefore conformationally flexible 

(Figure 2B). Second, superimposition of these reactivities on the phylogenetic secondary 

structure juxtaposes reactive bases with unreactive base pairing partners (see P1 helix, 

Figure 3A).

A second example of disagreement between SHAPE data and the catalytically active 

structure occurs in the conserved helical structures of the P3 and P7 helices. Many 

nucleotides in these helices are reactive (Figure 2B). When these SHAPE reactivities are 

superimposed on the secondary structure, again, reactive nucleotides are formally paired 

with unreactive nucleotides (Figure 3A).

We also identify well defined regions in the 5′ and 3′ exons in which nucleotides are 

unreactive towards SHAPE chemistry. These unreactive nucleotides have the potential to 

form a structure which we call the bI3 anchoring helix (Figure 3B, green box). We will 

explicitly test this model and the broad ability of SHAPE to predict new structures below.

In sum, single nucleotide SHAPE analysis shows that about one-half the bI3 RNA folds into 

the conserved group I intron secondary structure as established by comparative sequence 

analysis and confirmed by crystallographic analysis (5,8). These regions include the P5-P4-

P6 domain and the P2, P8, P9, and P7.2 helices (identified with black labels, Figures 2B and 

3A). In contrast, the SHAPE clearly shows the remaining half of the RNA folds into a 

structure that is incompatible with the phylogenetic structure (emphasized with bold blue 

labels, Figures 2B and 3A).

Structural model for the free bI3 RNA

Given that the SHAPE reactivities are inconsistent with the phylogenetically established 

secondary structure, we sought to create a new and accurate secondary structure model for 

the free bI3 RNA. We used a new experimentally-constrained secondary structure prediction 

algorithm to develop plausible, and testable, models for the bI3 RNA structure. In this 

Duncan and Weeks Page 4

Biochemistry. Author manuscript; available in PMC 2016 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach, SHAPE reactivities are used as pseudo-free energy change constraints to augment 

lowest free energy predictions based on thermodynamic parameters alone. Reactive 

nucleotides are penalized if they are base paired, whereas unreactive nucleotides receive a 

modest energetic bonus for being paired.

Our working model for the free bI3 RNA (Figure 3B) has three important features. First, 

regions of the RNA whose SHAPE reactivities were consistent with the phylogenetic 

structure, like the P5-P4-P6 domain, were directly predicted by the SHAPE pseudo-energy 

approach. Second, SHAPE reactivities strongly support the formation of an anchoring helix 

that links the intron to the flanking mRNA sequences (highlighted by the green box, Figure 

3B). Third, SHAPE data are consistent with a model in which the remaining sequences form 

two distinct elements that are misfolded relative to the catalytically active structure. The 

P7.1 and P9.1 helices form an extended pairing interaction, which we call the P7.1/9.1 

alternate helix, and sequences in P1 base pair with sequences in the 3′ exon to form a helical 

structure that contains the predicted three base pair P10 helix (formed after splicing of the 5′ 

splice site) (5,6) and also additional base pairing interactions (Figure 3B). SHAPE data are 

now almost exactly consistent with this alternate secondary structure model. For example, 

nucleotides proposed to pair in the P7.1/9.1 alternate helix are unreactive; whereas, 

nucleotides in the central internal loop and at the bulged U227 position are reactive. 

Similarly, unreactive nucleotides in the 3′ exon are now predicted to base pair, while reactive 

nucleotides, like U+10, remain in unpaired bulge structures (compare boxed regions of 

Figure 3A with 3B).

Mapping long-range RNA interactions by SHAPE analysis of point mutations

SHAPE reactivity information is clearly sufficient to falsify incorrect RNA secondary 

structure models, including in many regions of the bI3 group I intron. Using this same 

SHAPE information, we have been able to propose an alternate secondary structure that is 

consistent with SHAPE reactivities (Figure 3B). A striking feature of SHAPE chemistry is 

its ability to unambiguously detect single nucleotide features in RNA at high signal to noise. 

For example, each of the single nucleotide bulges at positions -11, 116 and 227 in the bI3 

intron are readily detected as nucleotides with reactivities above that of their surrounding 

base paired nucleotides (see labeled peaks, Figure 2B). We therefore developed a new 

method, involving SHAPE analysis of point mutations, to directly assess the validity of our 

alternate model for the bI3 RNA.

The bI3 anchoring helix

We initially applied SHAPE analysis of point mutations to characterize the proposed bI3 

anchoring helix (Figure 4A). We focused on the bulge at position -11 where the overall 

pattern of SHAPE reactivity is exactly consistent with the proposed secondary structure. 

U-11 comprises a reactive single-nucleotide bulge in the middle of a largely structured region 

(black trace, Figure 4C). Based on this model, we designed two single nucleotide exon 

mutants (termed E1 and E2) to test the long-range base pairing interactions that form in the 

proposed anchoring helix. An inserted A (E1) between nucleotides +17 and +18 should base 

pair with U-11 and eliminate the bulge; whereas, a double mutation (E2) creates a new bulge 

on the opposite strand of this same helix (Figure 4A, red and blue arrows respectively). Both 
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RNA mutants, in the presence of protein cofactors and guanosine, spliced with kinetics that 

were indistinguishable from the native RNA (Figure 4B and Table 1).

Over the entire 547 nucleotide RNA, SHAPE reactivity patterns for both mutants were 

essentially identical to the native RNA (see comparison of entire mutant traces with the 

native sequence RNA, Figure 4D). For the E1 mutant, the only significant SHAPE reactivity 

difference greater than 2-fold was a strong decrease in reactivity precisely at nucleotide U-11 

(compare red and black traces, Figure 4C). Analogously, overall reactivity patterns for the 

E2 double mutant are identical to the E1 mutant with the exception that there is an additional 

increase in nucleotide reactivity centered at position +18 (compare red and blue traces, 

Figure 4C).

These experiments show that SHAPE analysis of single point mutations robustly identifies 

long-range base pairing interactions involving sequences that lie ∼400 nucleotides apart 

(Figure 4D). Moreover, SHAPE analysis of point mutants strongly supports the model that 

the bI3 intron is linked to the flanking mRNA sequences via a stable anchoring helix.

Disruption of pairing in the anchoring helix interferes with intron folding

We next explored the functional role of the bI3 anchoring helix by mutating the base paired 

exon regions neighboring the intron sequences. The first two mutants (E3 and E4) disrupt 

the first four base pairs of the anchoring helix (in magenta and blue, Figure 5A). The third 

mutant (E5) contains both E3 and E4 mutations and yields exon sequences that could, in 

principle, reform the anchoring helix. Together these mutants test, first, whether a stable 

mRNA exon structure facilitates intron folding and catalysis, and second, if the sequence 

itself is important.

We tested the ability of the three mutants to form the catalytically active structure using 

splicing assays performed in the presence of both bI3 maturase and Mrs1 proteins. 

Approximately one half of the native bI3 RNA splices in a fast phase characterized by kobs 

at 0.26 min-1 with the remaining RNA splicing in a slow phase of 0.006 min-1, consistent 

with previous work (9). In contrast, the three anchoring helix mutants each exhibited 

compromised splicing profiles (Figure 5B and Table 1). The poor splicing activity observed 

for the E3 and E4 mutants emphasizes that base pairing in the anchoring helix plays a 

functional role in bI3 RNA folding and splicing. Moreover, the E5 double mutant did not 

restore native anchoring helix function, indicating that both the structure and sequence of the 

anchoring helix are important for achieving a catalytically active RNA structure.

As judged by SHAPE reactivities, the E3 mutation produced extensive changes as compared 

to the native RNA sequence. The mutated nucleotides show increased reactivity, as expected. 

However, their former base pairing partners remain unreactive, suggesting that these 

nucleotides form new non-native interactions in the RNA (compare magenta regions of the 

E3 trace with the native trace, Figure 5C). The complete SHAPE reactivity profiles for all 

mutants and the native sequence RNA are provided in the Supporting Information (Figure 

S1). Together, these changes are consistent with a structural rearrangement in the 5′ exon 

such that the 3′ exon pairs with the P1 helix and is accompanied by extensive RNA 
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misfolding in the 5′ exon and in the P1, P2, P7.1 and P9.1 helices (dashed magenta line, 

Figure 5A; and see Figure S1).

Differences in SHAPE reactivities between the E4 mutant and the native RNA are largely 

confined to the exons but also include the J3/4, P4 and J6/7 elements (Figure S1). The exon 

regions in the E4 mutant have substantially altered SHAPE reactivity profiles as compared 

to the native RNA (note the dramatic differences in SHAPE profiles highlighted in blue, 

Figure 5C). The overall pattern of SHAPE reactivity is consistent with significant structural 

rearrangements in both the 5′ and 3′ exons.

In principle, the E5 mutant had the potential to restore a native-like base pairing pattern to 

the anchoring helix. In contrast to this expectation, the SHAPE reactivity profile shows that 

exon structure in this mutant is significantly different from the native sequence RNA (Figure 

5C, compare purple regions of the E5 trace with the black native trace): the E5 sequence 

thus induces significant misfolding in the exons.

We conclude from these experiments that the bI3 anchoring helix is important both in 

structure and in sequence to allow the intron to fold to its native and catalytically active 

structure. Moreover, comparison of results obtained with point mutations (Figure 4) versus 

with the 4-8 nucleotide mutations in the E3-E5 RNAs (Figure 5) emphasizes that even four 

nucleotide mutations can induce unexpectedly large changes to an RNA structure 

(summarized in Figure S1). SHAPE analysis of single point mutations thus represents a 

novel and robust approach for analyzing long-range structure in large RNAs.

The P7.1/9.1 alternate helix

We next used SHAPE analysis of point mutations to probe the proposed P7.1/9.1 alternate 

helix (Figure 3B). Our strategy was to analyze mutants that afford distinct changes in 

SHAPE reactivity depending on whether the phylogenetic or alternate structure was formed.

Our first target was the reactive nucleotide U227. This U forms a single nucleotide bulge in 

the P7.1/9.1 alternate helix model, but is predicted to pair with the unreactive A136 in the 

phylogenetic model (compare U227 in upper and lower panels of Figure 6A). The insertion 

of a single A between nucleotides 350 and 351 (mutant A1) provides a pairing partner for, 

and should decrease the reactivity of, U227 in the alternate helix model.

The SHAPE reactivity profile of the A1 mutant was virtually identical to native RNA over 

400 nucleotides of intron and exon sequences except for a clear decrease in reactivity at 

U227 (see Figure S1; compare blue and black traces, Figure 6C). The mutation itself (the 

inserted A) also exhibits low SHAPE reactivity (Figure 6C). Low reactivities at these two 

nucleotides strongly support formation of the P7.1/9.1 alternate helix.

An alternate strategy for testing misfolding in the free bI3 RNA is to introduce mutations to 

the RNA that would leave the phylogenetic structure intact or severely disrupt the formation 

of the alternate helix. The first mutant (A2) targets loop nucleotides in the phylogenetic P9.1 

helix and will prevent pairing interactions that form in the alternate helix model (green 

boxes, Figure 6A). The second mutation (A3) replaces an A-U with a G-C base pair in the 
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native P9.1 (in purple, Figure 6A). This mutation creates two mismatch pairs in the alternate 

helix model.

SHAPE analysis of the A2 and A3 mutants shows both to be nearly identical to the native 

RNA except in the P7.1 and the P9.1 helices and the P2 loop nucleotides, where both 

mutants exhibited similar changes (compare green and purple traces, Figure 6D and also the 

A2 and A3 traces, Figure S1). In the P7.1 helix, nucleotides near U223 show increased 

SHAPE reactivities while nucleotide U227 and those around A237 decrease in reactivity as 

compared to the native sequence. These differences indicate that the A2 and A3 mutants 

stabilize formation of P7.1. In the P9.1 helix, nucleotides from 346 to 352 show a large 

increase in reactivity (compare green and purple traces to the black trace at labeled 

nucleotides, Figure 6D). These data show that the A2 and A3 mutants strongly stabilize the 

phylogenetically accepted structure for P9.1. In addition, loop nucleotides at the end of P2 

show low SHAPE reactivities in the A2 and A3 mutants (Figure S1), consistent with 

formation of GNRA tetraloop–receptor interactions, typical of many group I introns (7,9).

Splicing assays performed with the A2 and A3 mutants showed that both RNAs spliced at 

the same rate as the native RNA, although the A2 mutation exhibited a reduced fraction of 

RNA molecules that spliced in the fast phase (Figure 6B and Table 1). In contrast, 

introducing the single nucleotide A1 mutant renders the RNA incapable of splicing. Taken 

together, these SHAPE and splicing experiments strongly support a model in which P7.1 and 

P9.1 form a stable, non-native structure in the free RNA.

The P1 helix

SHAPE data for the free RNA also show poor agreement with the structure of the 

phylogenetically proven P1 helix. Our alternative model for this region shows better, but still 

imperfect, agreement with SHAPE information (Figures 7A,B). A likely explanation is that 

this region of the RNA samples at least two conformations prior to protein binding. We 

performed two classes of SHAPE experiments to characterize the predominant structure in 

this region. First, we stabilized the native P1 structure by binding both the Mrs1 and bI3 

maturase proteins to the RNA and then subjected the entire complex to SHAPE analysis. 

Second, we mutated the reactive A7 nucleotide to U (mutant S1) so that this position would 

form a stable base pair with A+4 of the 3′ exon (Figure 7B, mutation is highlighted with 

magenta box).

The protein-bound RNA has a SHAPE reactivity profile consistent with formation of the 

phylogenetically expected structure for the P1 stem-loop: loop nucleotides in P1 are reactive 

while the base paired stem is unreactive (gray dashed box, Figure 7A). This profile is 

roughly the opposite of that seen in the free RNA where loop nucleotides, such as position 4, 

are unreactive and nucleotides in the stem, such as -1 and 7, are reactive (compare gray and 

black traces, Figure 7D). In addition, reactivities near nucleotide +5 in the 3′ exon become 

much more reactive in the protein-bound structure relative to the free RNA, again consistent 

with formation of the flexible, phylogenetically accepted, linker in this region. These data 

indicate that the P1 helix is not stably formed prior to protein binding.
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In contrast, SHAPE reactivities in the S1 mutant are similar to that of the free RNA. For 

example, nucleotides 4 and +5 are unreactive in both traces (compare black and magenta 

traces, Figure 7D). The largest direct reactivity differences between the S1 mutant relative to 

the free RNA are lower reactivities at the mutated nucleotide (U7) and its predicted pairing 

partner (A+4) (Figure 7D). The S1 mutant, however, exhibits additional direct changes 

visualized as increased reactivity around nucleotides 14 and -1 (compare black and magenta 

traces, Figure 7D). Comparatively, the S1 mutant is in better agreement with the structure 

shown in Figure 7B than the native sequence RNA. These data are consistent with a model 

in which the free RNA exists as a mixture of structures in this region that includes the 

structure shown in Figure 7B, plus additional components.

The free misfolded RNA structure is thermodynamically preferred

SHAPE analysis of the free bI3 RNA indicates that this RNA does not form the expected 

catalytically active secondary structure, as judged by its similarity to the phylogenetically 

conserved structure. However, the RNA does achieve an active or near-active secondary 

structure when bound by the bI3 maturase and Mrs1 protein cofactors. Protein binding 

promotes large-scale changes in the bI3 RNA secondary structure, especially in the P1 and 

P7.1-P9.1 regions (Figures 7 and 8). We sought to test whether the catalytically active 

secondary structure is stable once formed upon protein binding.

We therefore formed the native complex in the presence of the bI3 maturase and Mrs1, 

removed the proteins by proteolysis, and then assessed both RNA structures by SHAPE. 

Consistent with a role in promoting the native structure, addition of the maturase and Mrs1 

proteins stabilizes structures in P1 and P7.1-P9.1 that are consistent with the catalytically 

active structure of the bI3 RNA (compare gray regions of the protein-bound RNA trace to 

the free RNA trace, Figure 8). Dissociating the proteins from the RNA by proteolysis yields 

a SHAPE reactivity profile that is nearly superimposable with that of the free RNA (compare 

relaxed RNA to free RNA traces, Figure 8). Misfolding in P1 and formation of the P7.1/9.1 

alternate helix are thus clearly not artifacts of our folding procedure nor do they reflect 

formation of a kinetically trapped state. Instead, the P1, P7.1 and P9.1 helices are simply not 

stable in the absence of binding by the bI3 maturase and Mrs1.

Discussion

Long-range and non-phylogenetic RNA structure mapped by SHAPE analysis of point 
mutations

Understanding the initial state of an RNA is an absolute prerequisite for determining the role 

of protein cofactors, chaperones, and other effectors in facilitating RNA folding and 

ribonucleoprotein assembly reactions. For most large RNAs, this basic step has remained 

elusive. In general, large assumptions have had to be made about the structure of the free 

RNA in most experimental systems. A priori, the sequence of the bI3 RNA appears to be 

fully capable of folding to the well-established and catalytically active structure for group I 

introns RNAs. In strong contrast to this expectation, analysis by SHAPE chemistry shows 

extensive regions within the free bI3 RNA are incompatible with the conserved group I 

intron secondary structure (Figure 3). The structure of the free bI3 RNA was therefore 
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unknown and phylogenetic information alone was inadequate for developing a useful model 

for the secondary structure of the free RNA.

To develop testable candidate models for the structure of the free bI3 RNA, we first used 

single nucleotide resolution SHAPE data as a pseudo-free energy change term to constrain 

the output of a thermodynamic-based folding algorithm (19,21). Our approach for evaluating 

plausible structural models takes advantage of the quantitative, comprehensive, and high 

resolution information obtained from a SHAPE experiment. For example, we obtained 

strong evidence in support of the bI3 anchoring helix via analysis of a single point mutation 

(mutant E1, Figure 4). Strikingly, we detected the strong effect of this mutation due to 

formation of a single new base pair involving residues 400 nucleotides distant in sequence. 

At the same time, SHAPE reactivities were essentially unchanged for the remaining 450 

nucleotides in the bI3 RNA (Figure 4D).

In contrast, other mutations caused unanticipated global changes in the secondary structure, 

which were readily detected as large-scale changes in SHAPE reactivities (Figure S1). 

Information from these mutants nonetheless provided strong structural evidence for an 

alternative model for the free bI3 RNA structure. For example, the two-nucleotide A3 

mutation in P9.1 caused large-scale structural rearrangements in both the P9.1 and P7.1 

helices (Figure 6) which strongly supported a pairing interaction between the P9.1 and P7.1 

sequences in the free RNA.

Comparative sequence analysis is the most successful approach for determining the 

conserved structure required for function in an evolutionarily related group of RNAs. 

However, covariation analysis gives no information on whether any one representative RNA 

forms the functional structure characteristics of the family as a whole. In a single 

experiment, SHAPE appears to be sufficient to identify whether a large RNA folds to a 

phylogenetically conserved structure. If an RNA does not, as in the case of the bI3 RNA, 

SHAPE analysis of point mutations represents a powerful and general technology for 

developing models for long-range interactions in any RNA.

Model for the free bI3 RNA

Our model of the protein-free bI3 RNA contains three classes of secondary structures as 

judged by compatibility of the SHAPE data with the phylogenetically proven and 

catalytically active secondary structure. These classes are phylogenetically correct, alternate 

(phylogenetically incorrect), and novel. Correct structures include the entire P5-P4-P6 

domain and the P2, P7.2, P8 and P9 stem-loop helices (Figure 3A).

The largest alternate structural feature we identify is an extensive base pairing interaction 

between the peripheral P7.1 and P9.1 helices that we term the P7.1/9.1 alternate helix. In 

addition, sequences in the catalytic core that should form the P1 helix instead interact with 

the 3′ exon to form an extended helical region. Also in the catalytic core, SHAPE data 

indicate that most of the nucleotides in the P3, P7 and P9.0 helical elements are flexible and 

do not form stable pairings (Figure 3B).
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Our model of the bI3 RNA also contains a novel interaction between the 5′ and 3′ exons that 

we term the bI3 anchoring helix. Disruption of this interaction by any of three mutations 

yields an RNA with severely compromised splicing activity. SHAPE analysis indicates that 

these mutations in the exon sequences cause the RNA to misfold in ways that cannot be 

rescued by protein binding. SHAPE analysis and splicing assays thus indicate that the bI3 

anchoring helix plays a crucial role in sequestering the bI3 RNA so that it can fold 

independent of interference with exon sequences.

A structurally fragile RNA and a new role for protein effectors

Many large RNAs require protein cofactors to bind and stabilize the active three-

dimensional structure of the RNA. Some of the best studied systems include folding of 

group I intron RNAs facilitated by the CBP2 and CYT-18 proteins (3,22-25) and 

stabilization of 16S ribosomal RNA structure by small subunit proteins to form the active 

30S ribosomal particle (26-28). In these systems, the free RNA appears to fold to a largely 

correct secondary structure, even in the absence of protein binding. Binding by protein 

cofactors then functions largely to stabilize formation of the catalytically active tertiary 

structure.

In contrast, the conformation of the bI3 RNA is extremely fragile and requires binding by 

protein cofactors to effect large-scale rearrangements in its secondary structure prior to 

stabilization of tertiary folding by these same proteins. Use of single nucleotide resolution 

SHAPE chemistry has made it possible to identify a new role for protein facilitators in RNA 

folding reactions. The bI3 maturase and Mrs1 function to induce large-scale rearrangements 

in RNA secondary structure prior to also stabilizing the catalytically active tertiary structure. 

These studies also highlight the critical importance of understanding the structure of the free 

RNA state prior to assembly with protein effectors.

Experimental Procedures

bI3 RNA constructs and protein expression—PCR templates for the bI3-ΔL8 native 

sequence RNA (9) and for the mutant constructs contained 7 nts of 5′-vector sequence, the 

entire 77 nt 5′-exon, the 372 nt intron, 30 nts of the 3′-exon, and 60 nts of 3′-vector 

sequence, including the primer binding site. The bI3-ΔL8 construct contains a large deletion 

of an open reading frame in L8 that improves folding behavior of this RNA but does not 

change the structure of the catalytic core or protein binding. RNAs were generated by run-

off transcription using T7 RNA polymerase [1 mL, 37 °C, 6 hr; containing 40 mM Hepes 

(pH 7.5), 20 mM DTT, 0.5 mM spermidine, 10 mM MgCl2, 0.005% (v/v) Triton X-100, 0.5 

μg pyrophosphatase (Roche), 2 mM each nucleotide triphosphate, ∼10 μg DNA template, 

200 units SUPERNase-In (Ambion), 70 μg T7 RNA polymerase] and purified by gel 

electrophoresis. Mrs1 and ΔCys-bI3 maturase proteins were expressed and purified as 

described (9) with the exception that Mops was used as the buffer, [DTT] was 5 mM, and 

glycerol was reduced to 10% (v/v).

SHAPE analysis of native and mutant RNAs—For each RNA construct, 5 pmol of 

RNA (0.1 μM final) was heated for 1 min at 95 °C, snap-cooled 1 min on ice, and folded at 

37 °C for 10 min in reaction buffer [40 mM Mops (pH 8.0), 80 mM potassium acetate 
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(KOAc) (pH 8.0), 20 mM MgCl2]. The reaction mixture was treated with a one-tenth 

volume of 5 mM 1M7 (dissolved in anhydrous DMSO) at 37 °C for 70 sec (equal to 5 

hydrolysis half lives) (20). Concurrently, a no-reagent reaction was performed omitting 

1M7. The RNA was subsequently precipitated with ethanol and resuspended in a mixture of 

water and a fluorescently labeled primer [4.5 pmol of a Cy5 labeled primer for the (+) 1M7 

reactions or 6 pmol of a Cy5.5 labeled primer for (−) 1M7 reactions] to a total volume of 13 

μL. Primers were annealed by heating at 65 °C for 6 min and 37 °C for 1 min. Extension 

buffer [5 mM DTT, 0.5 mM each dNTP, 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM 

MgCl2, and 100 units SuperScript III Reverse Transcriptase (Invitrogen)] was added on ice 

and the reactions were incubated for 5 min at 37 °C, 20 min at 52 °C, and 5 min at 60 °C. 

Reactions were quenched by addition of a stop solution (4 μL) consisting of 50 mM EDTA, 

1.5 M sodium acetate (pH 5.3), and 0.8 μg glycogen and placed on ice. Dideoxy sequencing 

ladders were generated by primer extension using unmodified RNA and primers labeled 

with IR800 or WellRED D2 in the presence of 0.25 mM dTTP or ddATP. (+) and (−) reagent 

and sequencing reactions were combined and recovered by precipitation with ethanol; 

pellets were dried and resuspended in 40 μL deionized formamide; fluorescently labeled 

DNAs were resolved by capillary electrophoresis using a Beckman Coulter CEQ 2000XL 

DNA (capillary electrophoresis) analysis system. SHAPE performed in the presence of 

proteins contained 0.5 μM of both the Mrs1 dimer and bI3 maturase proteins bound to the 

RNA 20 min prior to modification. RNA was treated with 1M7 either before or immediately 

after digestion with proteinase K [60 μg (Invitrogen); 10 min, 37 °C] followed by extraction 

with phenol:chloroform:isoamyl alcohol (25:24:1) prior to primer extension. This 

proteolysis procedure completely eliminated detectable protein binding as judged by 

nitrocellulose filter binding.

Data Analysis—Raw traces from the CEQ 2000XL capillary electrophoresis instrument 

were analyzed using ShapeFinder (19). In brief, ShapeFinder was used to adjust the 

fluorescent baseline (window of 40 pixels), separate dye intensities into discrete channels, 

perform a mobility shift to account for different dye mobilities, correct for signal decay, and 

scale the (+) and (−) reagent traces to make them equal to each other in non-reactive regions. 

Peaks in the (+) and (−) reagent traces were quantified by whole trace Gaussian integration 

and reactivities were scaled by discarding the top 2% of the most reactive peaks and dividing 

by the average intensity of the next 8% of peaks. This calculation places the data on a scale 

of 0 to ∼2 where 1.0 is the average intensity of highly reactive peaks. RNAstructure (21) 

was used to generate structure models for the RNA using SHAPE data as pseudo-free energy 

change terms (slope and intercept were 25 and -6, respectively) (19).

Splicing assays and protein binding—RNA splicing reactions were performed using 

∼3 nM 5′-32P-end-labeled RNA, 0.1 μM unlabeled RNA, 0.5 μM Mrs1 dimer, 0.5 μM 

ΔCys-bI3 maturase (9). The precursor RNA was incubated at 95 °C for 1 min, snap-cooled 

on ice for 1 min, and refolded at 37 °C for 10 min in reaction buffer [40 mM Mops (pH 8.0), 

80 mM potassium acetate (pH 8.0), 20 mM MgCl2]. Proteins were incubated with the RNA 

for 30 min prior to addition of guanosine 5′-monophosphate (pG) to a final concentration of 

3 mM to initiate splicing. Control experiments indicated that no detectable splicing occurred 

without pG or both proteins present. Reactions were quenched on ice with the addition of 
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EDTA to a final concentration of 100 mM, resolved on denaturing 12% polyacrylamide gels, 

and quantified by phosphorimaging (Molecular Dynamics). Reaction rates were determined 

by a double exponential fit: fraction precursor RNA = fAe−kAt + (1-fA)e−kBt where kA and 

kB are the observed rates for the fast and slow phases of splicing, respectively, and fA is the 

fraction reactive in the fast phase. RNA-binding assays were performed by filter partitioning 

(9). Both proteins bind the mutant RNAs with binding constants within 2-fold of that for the 

native sequence RNA, with the exception of the E2, A1, and S1 mutants, which bound 

within 6-fold of native sequence binding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schemes for (A) assembly of the bI3 ribonucleoprotein complex and (B) RNA SHAPE 

chemistry.
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Figure 2. 
SHAPE analysis of the bI3 group I intron over a single 480 nucleotide read. (A) Processed 

fluorescence intensities versus position resolved by capillary electrophoresis. (+) and (−) 

1M7 reagent traces are red and black, respectively; the sequencer marker is green. (B) 

Histogram of scaled SHAPE reactivities. Positions with high, moderate and low reactivities 

are shown in red, yellow and black, respectively. Bars below the histogram identify paired 

elements in the RNA. SHAPE reactivities that are incompatible with phylogenetically 

conserved secondary structure are emphasized in blue; exons are green.
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Figure 3. 
SHAPE reactivities superimposed on (A) phylogenetic and (B) free bI3 secondary structure 

models. Nucleotides are colored (red, yellow and black) according to their SHAPE 

reactivities using the same scale as in Figure 2B. Paired elements (Px) are labeled in black or 

blue depending on whether SHAPE reactivities are compatible with the secondary structure 

determined by comparative sequence analysis. Splice sites are denoted with open arrows.
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Figure 4. 
Long-range interactions in the bI3 anchoring helix, confirmed by SHAPE analysis of point 

mutations. (A) Secondary structure model of the bI3 anchoring helix (nucleotides are 

colored as in Figure 3). Point mutations are highlighted with colored boxes. (B) RNA 

mutations and their effect on splicing. (C) Expanded SHAPE reactivity histograms for native 

and mutant RNAs as a function of nucleotide position. Sites of strong reactivity increases or 

decreases in the mutants, as compared with the native sequence RNA, are emphasized with 

colored arrows. (D) Histograms of the complete SHAPE reactivity profiles showing that 

changes in reactivity for the E1 and E2 mutants (black traces) are precisely localized to the 

anchoring helix region. Complete profiles for all RNAs are provided in Figure S1.
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Figure 5. 
SHAPE analysis of base pairing mutations in the bI3 anchoring helix. (A, B) Mutations and 

their splicing activities. The dashed line in (A) indicates an alternate pairing proposed for the 

E3 mutation. (C) SHAPE reactivities versus position for the native and mutant RNAs. 

Regions in the RNA mutants that show the largest differences in SHAPE reactivities as 

compared to the native RNA are emphasized in color. Regions corresponding to mutated 

nucleotides are boxed.
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Figure 6. 
SHAPE analysis of point mutations in the P7.1/9.1 alternate helix. (A) Secondary structure 

models for the alternate (upper panel) and phylogenetically conserved helices (lower panel). 

Experimental SHAPE reactivities corresponding to the free RNA are superimposed on both 

structures. Mutations are highlighted in blue, green and purple. (B) Summary of mutant 

structures and splicing activity. (C, D) SHAPE reactivities for the P7.1 and P9.1 regions of 

the native and mutant sequence RNAs.
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Figure 7. 
SHAPE analysis of the 5′ and 3′ splice sites. (A, B) Secondary structure models for the 

phylogenetic and free bI3 RNA in the P1 helix and in interacting regions of the 3′ exon. (C) 

Splicing activity for the S1 mutation. (D) SHAPE reactivity histograms. Gray and magenta 

dashed boxes highlight nucleotides involved in the catalytically active P1 helix and the 

alternate free RNA structures, respectively.
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Figure 8. 
SHAPE analysis of bI3 RNA secondary structure rearrangements upon protein binding. 

Reactivity versus nucleotide position histograms are shown for free, bound and relaxed bI3 

RNAs. Solid and dashed line arrows emphasize secondary and tertiary structure differences, 

respectively. Nucleotides that exhibit significant reactivity differences as compared with the 

free RNA are gray. Important structural landmarks in this region are shown with brackets.
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Table 1
Splicing of native and mutant bI3 RNAs

RNA kobs min-1 (fast phase) Fraction in fast phase*

Native 0.26 0.44

E1 0.22 0.45

E2 0.22 0.40

E3 < 0.01‡

E4 0.19 0.10

E5 0.21 0.16

A1 nd

A2 0.39 0.17

A3 0.32 0.44

S1 0.065 0.30

For the RNA mutants, values considered to be significantly different from the native sequence are highlighted in bold. Splicing experiments were 
performed in the presence of both bI3 maturase and Mrs1 proteins.

*
For all constructs, the remaining fraction of all RNAs spliced in a slow phase characterized by kobs ∼0.006 min-1.

‡
Splicing occurred primarily by cleavage at the 5′ splice site.

nd, not detectable.
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