F. Anthony LAI,*[†]‡ Myrna DENT,* Colin WICKENDEN,* Le XU, [†] Gouri KUMARI,[†] Manoj MISRA,§ Hee Bong LEE,[†] Madhabananda SAR_{||} and Gerhard MEISSNER[†]

*MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K.,

[†]Department of Biochemistry and Biophysics, and ||Department of Cell Biology and Anatomy,

University of North Carolina School of Medicine, Chapel Hill, NC 27599, U.S.A., and §Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, U.S.A.

Mammalian brain possesses ryanodine-sensitive Ca^{2+} channels, which in muscle cells mediate rapid Ca^{2+} release from intracellular stores during excitation-contraction coupling. Analysis of bovine brain ryanodine receptor (RyR) channels suggests specific expression of the cardiac-muscle RyR isoform in mammalian brain. Localization using cardiac-muscle RyR-specific antibodies and antisense RNA revealed that brain RyRs were present in dendrites, cell bodies and terminals of rat forebrain, and highly enriched in the hippocampus. Activity of skeletal-muscle RyR channels is coupled to sarcolemmal voltage sensors, in contrast with cardiac-muscle RyR channels, which are known to be Ca^{2+} -induced Ca^{2+} release channels. Thus Ca^{2+} -induced Ca^{2+} release from intracellular stores mediated by brain RyR channels may be a major Ca^{2+} -signalling pathway in specific regions of mammalian brain, and hence may play a fundamental role in neuronal Ca^{2+} homoeostasis.

INTRODUCTION

Transient elevations of cytoplasmic free Ca²⁺ induced by release from non-mitochondrial intracellular stores, can be (i) triggered by a change in surface membrane potential, or (ii) mediated by a series of voltage-independent steps via the formation of a chemical second messenger, inositol 1.4.5-trisphosphate (IP₂). The voltage-dependent mechanism of intracellular Ca²⁺ release has been extensively studied in striated muscle, and is commonly referred to as excitation-contraction (E-C) coupling (Catterall, 1991). In E-C coupling, an action potential is propagated along the muscle surface membrane and its infoldings, the transverse tubular (T-) system. On reaching the T-system, the depolarizing signal is communicated to the sarcoplasmic reticulum (SR) and triggers therefrom a large and rapid release of Ca²⁺ ions via a Ca²⁺-release channel (Lai & Meissner, 1989). Ca²⁺ release from cardiac SR is triggered by extracellular Ca²⁺ ions which enter the muscle cell through voltage-dependent Ca²⁺ channels (Cannell et al., 1987; Näbauer et al., 1989). Skeletal-muscle SR Ca²⁺ release, however, does not require extracellular Ca2+, but rather is believed to be coupled via a direct physical interaction with a voltage-sensing molecule in the T-system (Rios & Pizarro, 1988).

Identification of the plant alkaloid ryanodine as a releasechannel-specific probe, has enabled the biochemical isolation (Campbell et al., 1987; Inui et al., 1987a,b; Lai et al., 1988a,b), functional reconstitution (Lai et al., 1988b; Smith et al., 1988; Anderson et al., 1989) and subsequent cDNA cloning (Takeshima et al., 1989; Zorzato et al., 1990; Otsu et al., 1990; Nakai et al., 1990) of skeletal- and cardiac-muscle ryanodine receptor (RyR)-Ca²⁺-release channels. These studies have shown that skeletaland cardiac-muscle RyR channels are similar, but distinct, proteins that comprise homotetrameric 30 S complexes of $M_r \sim 565000$ subunits with pI ~ 4 (Lai et al., 1989). The four subunits form into four-leaf-clover-like (quatrefoil) patterns that display a morphology identical with the 'feet' structures that bridge the T-SR junctional gap (Ferguson *et al.*, 1984). The isolated and reconstituted skeletal- and cardiac-muscle RyR channels can be activated Ca^{2+} ions, ATP and caffeine, and inhibited by Mg²⁺ ions and Ruthenium Red, as has been demonstrated for the native SR Ca^{2+} -release channel (Smith *et al.*, 1985, 1986; Rousseau *et al.*, 1986). Low concentrations of ryanodine modify the RyR channels into a permanently open state of decreased (about half) conductance, whereas higher concentrations of ryanodine cause the closing of the channel (Rousseau *et al.*, 1987; Lai *et al.*, 1989).

The second messenger, IP₃, has also been shown to cause the release of Ca²⁺ ions from intracellular membrane compartments of both excitable and non-excitable tissues (Berridge & Irvine, 1984, 1989). A homotetrameric IP₃ receptor (IP₃R) complex comprising subunits of $M_r \sim 320000$ has been isolated from mammalian cerebellum and smooth muscle (Supattapone et al., 1988; Chadwick et al., 1990; Maeda et al., 1991). Reconstitution studies have shown the purified cerebellar IP_aR channel to behave differently from the muscle RyR channel with regard to unitary conductance and pharmacology (Ferris et al., 1989). Single-channel measurements have indicated that the IP₂-sensitive Ca²⁺ channel has a fourfold lower conductance for Ca²⁺ ions than the RyR channel (~ 25 pS versus ~ 100 pS), and can be activated by IP₃ and inhibited by heparin (Erlich & Watras, 1988; Maeda et al., 1991; Bezprozvanny et al., 1991). Determination of the cerebellar IP₃R primary structure has revealed its homology with the muscle RyR (Furuichi et al., 1989; Mignery et al., 1990), suggesting that both are members of a new class of intracellular Ca²⁺ channels (Gill, 1989).

Although much effort has focused on the role of the RyR–Ca²⁺-release channel in muscle E–C coupling, recent evidence has indicated that in mammalian brain, in addition to the IP_3R

Abbreviations used: E–C, excitation-contraction; SR, sarcoplasmic reticulum; RyR, ryanodine receptor; IP₃, inositol 1,4,5-trisphosphate; IP₃R, IP₃ receptor; PMSF, phenylmethanesulphonyl fluoride; STE, 0.5 M-NaCl/10 mM-Tris/HCl (pH 8)/1 mM-EDTA; SSC, 0.15 M-NaCl/15 mM-sodium citrate/HCl, pH 7; PBS, phosphate-buffered saline; WB–C, whole brain minus cerebellum; mAb, monoclonal antibody.

[‡] To whom correspondence should be addressed, in London.

channel, there also exists a ryanodine-sensitive Ca^{2+} channel. Ryanodine binding, sedimentation and immunoblot analysis, as well as single-channel measurements with brain microsomes, have shown that a high-affinity brain RyR shares many of the characteristics of muscle Ca^{2+} -release channels (Ashley, 1989; Lai *et al.*, 1990; McPherson & Campbell, 1990; McPherson *et al.*, 1991). In this report, we describe studies of the brain RyR-Ca²⁺-release channel complex that provide novel evidence for expression and localization of the cardiac RyR isoform in mammalian brain.

EXPERIMENTAL

Preparation of bovine brain and cerebellum microsomes

Bovine cerebellum and whole brain minus cerebellum (WB-C) were homogenized (Waring blender, 2×30 s, high) in 10 vol. of buffer A [0.32 M-sucrose, 10 mM-Pipes (sodium salt), pH 7.4, 0.5 mm-EDTA, 0.2 mm-phenylmethanesulphonyl fluoride (PMSF), 1 mm-benzamidine, 10 µm-leupeptin, 1 µm-pepstatin A and 100 nm-aprotinin]. Homogenates were centrifuged for 20 min at 4000 g (Sorvall GSA), and the supernatant passed through three layers of cheesecloth and re-centrifuged for 60 min at 100000 g (Beckman, Ti45 rotor). The 100000 g pellets were resuspended in 4 vol. of buffer A without EDTA, and loaded on to a 20-40 % linear sucrose gradient in 0.6 м-KCl/10 mм-Pipes (potassium salt), (pH 7)/0.2 mm-PMSF/1 µm-leupeptin, and centrifuged for 16 h at 130000 g (Beckman, SW28). Cerebellum and WB-C microsomes sedimenting to the 25-35 % sucrose region were diluted with 2 vol. of 0.4 M-KCl, pelleted at 100000 g and resuspended in 0.3 M-sucrose/5 mM-Pipes (potassium salt), (pH 7), and stored in approx. 5 ml portions at -75 °C. All procedures were performed at 4 °C.

[³H]Ryanodine binding

Bovine cerebellum and WB-C microsomes (2–5 mg/ml) were incubated with various concentrations of [³H]ryanodine as specified in the Figure legends, in buffer B [1.0 M-NaCl, 5 mM-AMP, 1 mM-di-isopropyl fluorophosphate, 10 μ M-leupeptin, 20 mM-Pipes (sodium salt), pH 7.0] for 3 h at 37 °C. Samples of the vesicle suspensions were then (i) counted to determine total radioactivity, (ii) centrifuged for 30 min at 90000 g (Beckman Airfuge) to determine free [³H]ryanodine and (iii) filtered, after dilution with 25 vol. of ice-cold water, on a Whatman GF/B filter disc soaked in 1% polyethyleneimine. After three 5 ml rinses with ice-cold water, filters were counted to obtain a value for bound [³H]ryanodine. Non-specific binding of [³H]ryanodine was assessed in the presence of a 1000-fold excess of unlabelled ryanodine and was equivalent to 0.3 pmol/mg of protein at 40 nm-[³H]ryanodine.

Purification of bovine brain RyR

Bovine WB-C microsomes (3 mg of protein/ml) were solubilized in buffer C (buffer B plus 100 μ M-EGTA, 200 μ M-Ca²⁺ and 0.3 mM-dithiothreitol) containing 120 nM-[³H]ryanodine, 1.55% Chaps and 5 mg of phosphatidylcholine/ml, for 2 h at 23 °C. Solubilized proteins (3 ml, 2.5 mg of protein/ml) were loaded on to a 9 ml cushion of 7% sucrose in buffer C plus 1% Chaps and 5 mg of phosphatidylcholine/ml, above a 24 ml 10–20% linear sucrose gradient in buffer C plus 0.5% Chaps and 5 mg of phosphatidylcholine/ml, above a 24 ml 10–20% linear sucrose gradient in buffer C plus 0.5% Chaps and 5 mg of phosphatidylcholine/ml. Gradients were centrifuged for 16 h at 130000 g, 2 °C (Beckman SW28). Fractions of approx. 2 ml were collected, analysed for [³H]ryanodine content, and the ~ 30 S [³H]RyR peak fractions were pooled and concentrated (Centriprep 30, Amicon). Concentrates were diluted to approx. 5% sucrose in buffer C plus 0.1% Chaps, then loaded (2 ml) on to a second 10–20% linear sucrose gradient (34 ml in buffer

C plus 1% Chaps). After centrifugation, fractionation and analysis of [³H]ryanodine content, the fractions were concentrated separately. Skeletal- and cardiac-muscle RyRs were isolated as previously described (Lai *et al.*, 1988*a*,*b*; Anderson *et al.*, 1989).

Antibody production

Polyclonal antiserum (G715) against purified rat skeletalmuscle RyR was raised in rabbits, as previously described (Meissner *et al.*, 1989). Cardiac monoclonal antibodies (mAbs) were produced in Balb/c mice immunized with purified canine cardiac RyR (Anderson *et al.*, 1989). Immunized mouse spleen cells were fused with P3X 63AG 8.653 myeloma cells at a 1:1 ratio. Hybridoma supernatants were screened by e.l.i.s.a. using purified dog cardiac RyR, and by immunoblotting with dog cardiac microsomal SR as described below. Immunoblot analyses and immunolocalization studies with cardiac RyR-specific antibodies described in this report were performed with mAbs C2-997 and C3-33 of the IgM and IgG1 subtype respectively. Rabbit antiserum to mouse brain IP₃R *C*-terminus peptide was a gift from Dr. T. C. Südhof (Mignery *et al.*, 1989).

SDS/PAGE and immunoblot analysis

SDS/PAGE was performed (Laemmli, 1970) using 3-12% (w/v) linear polyacrylamide gradient and 3% (w/v) stacking gels. Samples were denatured for $3 \min$ at 95 °C in 0.1 M-Tris/HCl (pH 6.8)/2 % SDS/3% 2-mercaptoethanol/10% glycerol. The acrylamide/bisacrylamide ratio was 39:1. Gels were either stained with Coomassie Brilliant Blue R-250 or silver (Oakley *et al.*, 1980).

Proteins for immunoblot analysis were transferred to Immobilon poly(vinylidene difluoride) membranes (Millipore) at 15 °C, for 1 h at 400 mA, then at 1500 mA for 12–15 h. Transfer membranes were blocked with 5 % non-fat dried-milk proteins, then probed with either skeletal RyR antiserum G715 (1:100 and 1:1000), cardiac RyR mAb (hybridoma supernatants, 1:10) or IP₃R antiserum (1:500), as previously described (Meissner *et al.*, 1989). Blots were developed with peroxidase-coupled secondary antibodies and 3,3'-diaminobenzidine/H₂O₂.

Electron microscopy

Bovine WB–C RyR purified as described above except in the absence of exogenous phospholipid was analysed by negativestain electron microscopy. A sample (5 μ l) of purified RyR was applied to a carbon-coated grid, previously glow-discharged, washed with three drops of 2% uranyl acetate and air-dried. Quatrefoil images were recorded at 80 kV using a Zeiss 902 electron microscope at a magnification of ×85000.

Single-channel recordings

Single-channel measurement of bovine brain RyR channels was performed using the planar lipid-bilayer technique as described for purified muscle RyRs (Lai et al., 1988a,b; Anderson et al., 1989). Chaps-solubilized brain 30 S fractions from a single gradient, isolated in the absence of [3H]ryanodine, were incorporated into Mueller-Rudin-type bilayers containing phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine in the proportions 5:3:2 (by wt.; in n-decane). Samples of protein (0.2-2 μ l) were added to one side (defined as cis) of the bilayer apparatus. Unless otherwise indicated, symmetrical solutions of buffered KCl [250 mm-KCl, 20 mm-Pipes (potassium salt), pH 7.0, 150 µм-CaCl₂ and 100 µм-EGTA] were used to record channel currents. Channels incorporating spontaneously into the bilayer were detected as stepwise increases in current. Electrical signals were filtered at 300 Hz and digitized at 2 kHz for storage on a hard disc.

Immunolocalization

Intact male rats (approx. 250 g) were perfused with 2% (v/v) paraformaldehyde in 10 mm-sodium phosphate buffer, pH 7.4, followed by 10% sucrose in phosphate-buffered saline (PBS; 0.15 M-NaCl and 10 mM-sodium phosphate), pH 7.4, under chloral hydrate anaesthesia. Brains were dissected, incubated in PBS containing 15% (w/v) sucrose, then frozen in liquid N_acooled isopentane. Serial frozen sections (8–10 μ m) were thawmounted on to gelatin-coated slides and stored at -20 °C before avidin-biotin peroxidase immunostaining (Sar, 1985; Sar et al., 1987). Sections were air-dried and incubated with $1-5 \mu g/ml$ of affinity-purified mouse IgG1 mAb C3-33 to the dog cardiac RyR, for 16-20 h at 4 °C. Slides were then washed in PBS and incubated with biotinylated anti-mouse IgG (1:200) and then with avidinperoxidase (1:200) (Vector Labs) for 30 min at 23 °C. After being washed with PBS, sections were developed in 3,3'-diaminobenzidine/ H_2O_2 for 10 min, dried and mounted with permount.

Hybridization in situ

A human cardiac RyR cDNA (nucleotides 3644–5500) cloned into Bluescript II (Stratagene, La Jolla, CA, U.S.A.) was linearized with *Bam*HI or *Eco*RV. Antisense and sense RNA probes were labelled with digoxigenin–UTP by transcription *in vitro* according to the Boehringer digoxigenin–RNA-labelled kit. Digoxigenin–RNA probes were cut to an average length of 180 bp by alkaline hydrolysis before use (Cox *et al.*, 1984).

Adult rat brains were bisected sagittally and immediately frozen in powdered dry ice. Sagittal sections (10 μ m) collected on gelatin-chrome alum-coated slides, were dried and fixed in 4 % paraformaldehyde/PBS, pH 7.4, for 1-2 h at 23 °C. Sections were dehydrated in an ascending series of alcohol and stored dry at -70 °C until use. Slides were rehydrated through a descending series of alcohol to PBS, treated with proteinase K (10 μ g/ml) for 5 min, then refixed in 4% paraformaldehyde/PBS, pH 7.4, for 20 min, and acetic anhydride for 10 min at 23 °C (Wilkinson et al., 1987). After dehydration as above, slides were hybridized overnight at 45 °C with digoxigenin-labelled cardiac-muscle RyR RNA probe (5 μ g/ml) in 25 μ l of hybridization mixture (Xue et al., 1990). Sections were washed in $4 \times$ SCC for 5, 15 and 30 min at 23 °C and treated with 20 µg of RNAase A/ml in 0.5 м-NaCl/10 mm-Tris/HCl (pH 8)/1 mm-EDTA (STE), for 30 min at 37 °C. After further washes in STE for 30 min at 37 °C, 2 × SSC for 30 min at 45 °C and twice in 0.1 × SSC for 15 min at 55 °C, each section was finally dehydrated as above and airdried. Digoxigenin-labelled RNA was immunologically detected according to the Boehringer digoxigenin-RNA-labelling kit, but with 10% skimmed milk in 0.1 M-Tris/HCl (pH 7.5)/0.15 M-NaCl as the blocking agent.

Northern-blot analysis

Bovine brain (10 μ g), cardiac (1 μ g) and skeletal (1 μ g) muscle poly(A)⁺ RNA was fractionated on a 0.8 % denaturing agarose/formaldehyde gel and transferred to Genescreen membrane (NEN-Dupont) under alkaline conditions (Sambrook *et al.*, 1989). Blots were hybridized with [α -³²P]dCTP-labelled cDNA probes (1 × 10⁹ d.p.m./ μ g; Feinberg & Vogelstein, 1984) from the human cardiac RyR (nucleotides 3644–5500) or rabbit skeletal-muscle RyR (nucleotides 2547–4717), in 1 % SDS/1 M-NaCl/10 % dextran sulphate/10 μ g of denatured salmon sperm/ ml at 65 °C for 18 h. Washes for 30 min with 2 × SSC and then 0.1 × SSC at room temperature were performed before autoradiography on Fuji RX film.

Materials

[³H]Ryanodine (54.7 Ci/mmol) was obtained from DuPont-

New England Nuclear and ryanodine from Agrisystems International (Wind Gap, PA, U.S.A.). Peroxidase-conjugated secondary antibodies were from Calbiochem, Chaps and RNAlabelling kit from Boehringer-Mannheim, proteinase inhibitors and SDS/polyacrylamide gel standards from Sigma, and phospholipids from Avanti Polar Lipids (Birmingham, AL, U.S.A.).

RESULTS

[³H]Ryanodine binding to bovine brain microsomes

Previous studies with skeletal- and cardiac-muscle SR indicated that high-affinity ryanodine binding is dependent on $[Ca^{2+}]$ and ionic strength (Lai & Meissner, 1989). Scatchard analysis of ryanodine binding to WB-C microsomes, under optimal conditions for binding to muscle RyRs (100 μ M free Ca²⁺ and 1 M-NaCl), indicated the presence of a single high-affinity site with a K_d of 3 nM and B_{max} of 0.25 pmol/mg (Fig. 1*a*). Fewer specific binding sites were observed with bovine cerebellum microsomes, where [³H]ryanodine-binding studies resulted in a B_{max} value of

Fig. 1. Ryanodine binding to bovine whole-brain microsomes

(a) Scatchard analysis of [³H]ryanodine binding. Bovine WB-C microsomes (2 mg of protein/ml) were incubated for 3 h at 37 °C in buffer B containing 100 μ M-EGTA, 200 μ M-Ca²⁺ and 1-40 nM-[³H]ryanodine. Specific [³H]ryanodine binding was determined as described in the Experimental section. (b) Rate of [³H]ryanodine dissociation with or without 200 μ M-ryanodine. Bovine WB-C microsomes (5 mg of protein/ml) were incubated for 3 h at 37 °C in buffer B containing 100 μ M-free Ca²⁺ and 18 nM-[³H]ryanodine. Dissociation of [³H]ryanodine from the high-affinity site was initiated by diluting microsomes 10-fold into medium B at 37 °C containing the indicated concentrations of free Ca²⁺ and unlabelled ryanodine. Bound ryanodine was determined at various times as described in the Experimental section. \oplus , 0.01 μ M-Ca²⁺; \bigcirc , 0.01 μ M-Ca²⁺ + 200 μ M-ryanodine; \blacksquare , 100 μ M-Ca²⁺; \bigcirc , 100 μ M-Ca²⁺ + 200

Fig. 2. Immunoblot analysis of bovine whole brain and cerebellum microsomes

Bovine WB-C (lane 1) and cerebellum (lane 2) microsomes were electrophoresed through SDS/polyacrylamide gels (3-12%) gels) (100 μ g of protein/lane in *a* and *b*, 20 μ g/lane in *c*), transferred to Immobilon membrane, and probed with skeletal-muscle RyR antiserum G715 (*a*), cardiac-muscle RyR mAb C2-997 (*b*) or IP₃R antiserum (*c*). Solid arrowheads indicate the positions of M_r standards ($\times 10^{-3}$) myosin, β -galactosidase, phosphorylase *b*, BSA, ovalbumin and carbonic anhydrase in order of decreasing M_r .

< 0.02 pmol/mg (results not shown). In studies with muscle SR, rvanodine sites of low affinity have been identified in addition to the high-affinity site (Lai et al., 1989; McGrew et al., 1989; Pessah & Zimanyi, 1991). Occupation of low-affinity sites decreased the dissociation rate of bound ryanodine from highaffinity site, suggesting that co-operative interactions occurred between high- and low-affinity sites. To determine whether a similar phenomenon existed with the brain RyR, we tested for low-affinity sites by initially labelling WB-C microsomes with [³H]ryanodine in 100 μ M free Ca²⁺ to optimize high-affinity binding. Labelled membranes were diluted into 0.01 µM free Ca2+ with or without 200 µM unlabelled ryanodine or 100 µM free Ca²⁺ with or without 200 μ M unlabelled ryanodine (Fig. 1b). Dilution into 0.01 μ M free Ca²⁺, a concentration that minimizes rebinding of dissociated [3H]ryanodine, resulted in loss of bound [³H]ryanodine within 1 h. Dilution into 100 μ M free Ca²⁺, a condition that favours high-affinity binding, resulted in incomplete dissociation of bound [3H]ryanodine, due to partial rebinding of dissociated [3H]ryanodine. In contrast, a dramatic decrease in [³H]ryanodine dissociation from the high-affinity site was observed under both conditions when 200 µM unlabelled ryanodine was present in the dilution medium. These studies suggest that brain RvRs, like muscle RvRs, possess both highand low-affinity ryanodine-binding sites. Further, the [3H]ryanodine-displacement data suggest positive co-operativity between these classes of binding site (Lai et al., 1989), in which occupation of low-affinity sites results in conformational change(s) that occludes dissociation from the high-affinity site.

Immunoblot analysis of brain and cerebellum microsomes

Fig. 2 shows the distribution of RyRs and IP₃Rs in bovine cerebellum and WB-C microsomes, as detected by immunoblot analysis with antiserum to skeletal-muscle RyR (Fig. 2*a*), mAb to cardiac-muscle RyR (Fig. 2*b*) and antiserum to cerebellum IP₃R (Fig. 2*c*). No immunoreactivity to WB-C or cerebellum proteins was observed with a mammalian skeletal-muscle RyR

(a, b) Gradient sedimentation profiles of bovine brain RyR. Chapssolubilized WB-C microsomes were centrifuged on linear 10-20 % sucrose gradients and the approx. 30 S [³H]RyR peak fractions 13-16 pooled and concentrated. Concentrated fractions from (a) were re-centrifuged on a second 10-20 % linear sucrose gradient, and the ~ 30 S fractions (10-16) concentrated separately. (c) SDS/ polyacrylamide gel of [³H]ryanodine peak fractions from gradient (b). Samples of concentrated fractions (100 μ l) were electrophoresed through SDS/3-12 % polyacrylamide gradient gels and stained with Coomassie Brilliant Blue. Solid arrowheads indicate positions of M_r standards as in Fig. 2.

antiserum (Fig. 2a). Blots probed with a mAb to mammalian cardiac-muscle RyR, however, revealed a single immunoreactive high- M_r band in WB-C, but not cerebellum, microsomes (Fig. 2b). Conversely, an immunoreactive band corresponding to the cerebellum IP₃R (Supattapone *et al.*, 1988) was observed when cerebellum microsomes were probed with IP₃R antiserum (Fig. 2c). The immunoblot data suggest a relative enrichment of cardiac mAb-immunoreactive RyR in WB-C microsomes, in

Cardiac Ca²⁺-release channel in mammalian brain

Fig. 4. Immunoblot analysis of sucrose-gradient fractions

Samples (120 μ l) of sucrose-gradient fractions, obtained with bovine WB-C (a) and cerebellum (b) microsomes as described in Fig. 3, were electrophoresed through 3–12 % gradient gels, and transferred to Immobilon membranes. The WB-C blot was probed with cardiac-muscle RyR mAb C2-997 (a), and the cerebellum blot with IP₃R antiserum (b). Solid arrowheads indicate positions of M_r standards as in Fig. 2.

agreement with ryanodine-binding data described above. In contrast, the IP_3R is enriched in cerebellar microsomes, in agreement with previous reports of IP_3 -binding studies (Worley *et al.*, 1987; Supattapone *et al.*, 1988).

Purification of bovine brain RyR and immunoblot analysis

The [³H]ryanodine-labelled brain RyR was isolated from bovine WB-C microsomes by centrifugation through sucrosedensity gradients as described for skeletal- and cardiac-muscle RyRs (Lai et al., 1988a,b; Anderson et al., 1989). The [³H]ryanodine peak of Chaps-solubilized WB-C microsomes, migrating with apparent sedimentation coefficient ~ 30 S, was isolated by a double-sucrose-gradient procedure (Figs. 3a and 3b). SDS/PAGE analysis of the second gradient revealed specific co-migration of a single high- M_r band with the [³H]ryanodine peak (Fig. 3c). Immunoblot analysis showed that the single high- M_r band immunoreactive with cardiac-muscle mAb was present only in the ~ 30 S [³H]ryanodine peak (Fig. 4a). The sedimentation profile of this high- M_r band migrating at ~ 30 S was clearly different from that of the cerebellar IP₃R, which migrated in identical gradients at ~ 24 S (Fig. 4b). The mobility of the large polypeptide co-migrating with the [³H]ryanodine peak ($R_{\rm F}$ = 0.12, Fig. 3c) was identical with the immunoreactive band observed in WB-C microsomes (Fig. 2b) and ~ 30 S peak fractions (Fig. 4a). Protein determination yielded $16 \mu g$ of purified brain RyR from 45 mg of WB-C protein. Assuming a single high-affinity site per ~ 30 S complex and M_r equivalent to the muscle RyR (2.3×10^6) , the ryanodine-binding density of WB-C microsomes (Fig. 1a) indicates a quantitative receptor yield of 25 μ g (0.05% of WB-C protein). The observed yield of 16 μ g represents an overall protein recovery of 64 %. [³H]-Ryanodine binding to the purified unlabelled receptor was not quantified because of the low amounts of protein recovered.

Comparison of purified brain, cardiac- and skeletal-muscle RyRs

SDS/PAGE analysis of purified brain RyR on 3–12% gels (Fig. 5) revealed a single high- M_r band (lane 3) that displayed an identical mobility with the purified cardiac-muscle RyR (lane 4). Both brain and cardiac-muscle RyR bands ($R_F = 0.12$) migrated

Fig. 5. SDS/PAGE analysis of brain and muscle RyRs

Microsomes from bovine WB-C (lane 1; 15 μ g of protein) and cerebellum (lane 2; 15 μ g), and the purified 30 S RyR from bovine WB-C microsomes (lane 3; 0.5 μ g), dog-cardiac-muscle SR (lane 4; 0.5 μ g), and rabbit skeletal-muscle SR (lane 5; 2 μ g) were electrophoresed through 3-12% gradient gels and stained with silver. Solid arrowheads indicate positions of M_r standards as in Fig. 2.

with a relative mobility greater than that of the purified skeletalmuscle RyR ($R_F = 0.10$, lane 5). Earlier studies have shown the

Fig. 6. Morphology of the purified bovine brain RyR

Bovine WB - C RyR isolated in the absence of exogenous phospholipid was analysed by negative-stain electron microscopy. A montage of selected quatrefoil images of the brain RyR is shown. Scale bar represents 40 nm.

Fig. 7. Single-channel currents of bovine brain RyR complex reconstituted into a planar lipid bilayer

Bovine WB-C RyR isolated as described in Fig. 3(a) was incorporated into planar lipid bilayers for single-channel analysis. Upward deflections represent channel openings. The baseline current is denoted by the bar to the left of the trace, labelled c (for channel closed state). (a) Traces 1 and 2, single-channel K⁺ currents recorded in symmetrical 0.25 M-KCl buffer containing 50 μ M free Ca²⁺. Holding potentials are +20 mV and -20 mV respectively. Traces 3 and 4, single-channel Ca²⁺ and K⁺ currents recorded after perfusion of the *trans* chamber with 50 mM-CaCl₂. Holding potentials are +52 mV and -48 mV respectively. (b) Current-voltage relationship. \bigcirc , K⁺ current: unitary conductance is 800±32 pS (±s.D., n = 15). (\triangle), currents obtained after perfusing *trans* chamber with 50 mM-CaCl₂, unitary Ca²⁺ conductance is 140 pS.

cardiac-muscle RyR R_r is slightly higher than that of skeletalmuscle RyR (Inui *et al.*, 1987*b*; Lai *et al.*, 1988*a*), although subsequent cDNA sequence analysis predicts similar M_r values of approx. 565000 for the two rabbit muscle RyR isoforms (Takeshima *et al.*, 1989; Zorzato *et al.*, 1990; Otsu *et al.*, 1990; Nakai *et al.*, 1990).

Analysis of WB-C (lane 1) and cerebellar (lane 2) microsomes revealed a minor band of high M_r in WB-C membranes (arrow; $R_F = 0.12$), which corresponded in mobility to the purified brain RyR (lane 3). The low abundance of this protein correlates with the 0.05% relative RyR content derived from ryanodine-binding studies described above. Further, this minor band was not apparent in the cerebellum lane loaded at an identical protein concentration (lane 2), in concert with our ryanodine-binding data indicating a more than 10-fold lower RyR concentration in cerebellum than in WB-C microsomes.

Electron microscopy of brain RyR

Brain RyR isolated in the absence of exogenous phospholipid was examined by negative-stain electron microscopy. Fig. 6 illustrates selected enlarged images of bovine brain RyR displaying the presence of four-leaf clover-like (quatrefoil) structures characteristic of skeletal- and cardiac-muscle RyRs (Lai et al., 1988b; Anderson et al., 1989; Wagenknecht et al., 1989), and morphologically identical with the 'feet' structures spanning the T-SR junctional gap (Ferguson et al., 1984). The brain RyR quatrefoil from the tip of one leaf to the tip of the opposite one is ~ 34 nm, with each leaf ~ 13 nm in diameter. Stain accumulations of ~ 3 nm diameter were apparent at the centre of each leaf. In addition, a central depression or hole of 1-2 nm was apparent at the centre of the complex surrounded by a ring, \sim 12 nm diameter, of higher protein density. This central \sim 12 nm region of the quatrefoil has been suggested to form the transmembrane channel-forming domain of the muscle RyR (Lai et al., 1988b; Wagenknecht et al., 1989).

Single-channel recordings of brain RyR

Brain RyRs were reconstituted into planar lipid bilayers in symmetric 0.25 M-KCl buffer containing 50 μ M free Ca²⁺. Use of symmetric univalent cation buffers has been shown to facilitate reconstitution of skeletal- and cardiac-muscle RyR channels (Lai et al., 1988b; Liu et al., 1989a; Anderson et al., 1989). Also, univalent cations give currents of larger amplitude than those observed when using Ca^{2+} ions as the current carrier. Fig. 7a (upper two recordings) shows current traces from an incorporated single channel after addition of the channel protein to the cis chamber. The channel was partially activated at positive and negative holding potentials, and displayed a unitary K⁺ conductance of 800 pS (Fig. 7b). The two lower recordings of Fig. 7(a) show the current traces obtained after perfusion of the trans chamber with 50 mm-Ca²⁺. The current-voltage plot under these conditions (Fig. 7b) indicates a unitary Ca²⁺ conductance of 140 pS. By using identical recording conditions, unitary conductances for skeletal- and cardiac-muscle Ca2+-release channels of 770 and 745 pS for K⁺ ions, and 145 and 148 pS for Ca²⁺ ions respectively were obtained. From the reversal potential of +10 mV observed after trans chamber perfusion with Ca²⁺, a permeability ratio for Ca²⁺ versus K⁺ ions (P_{Ca}/P_{K}) of 6.5 was calculated for the reconstituted brain RyR channel.

Pharmacology of brain RyR channel

The pharmacological responses of the brain RyR channel after the successive addition of various agents are illustrated in recordings from a single reconstituted channel (Fig. 8). Trace 1 shows a K⁺-conducting channel in 50 μ M free Ca²⁺. As observed for skeletal- and cardiac-muscle RyR channels, the open prob-

Fig. 8. Pharmacological responses of bovine brain RyR channel

Single-channel currents, shown as upward deflections, were recorded in symmetrical 0.25 M-KCl buffer. The baseline current is denoted by the bar to the left of the trace, denoted c (for closed channel state). Holding potential = -20 mV. Trace 1, 50 μ M free Ca²⁺ cis, $P_o = 0.308$. Trace 2, 91 nM free Ca²⁺ cis, $P_o = 0.005$. Trace 3, 1.7 μ M free Ca²⁺ cis, $P_o = 0.145$. Trace 4, after addition of 0.3 μ M-IP₃ cis, $P_o = 0.297$. Trace 5, after addition of IP₃ to 10 μ M cis, $P_o = 0.217$. Trace 6, after addition of 2 mg of heparin/ml cis, $P_o = 0.015$. Trace 7, after addition of 2.4 mM-ATP cis, $P_o = 0.084$. Trace 8, after addition of 10 μ M-ryanodine cis, channel entered modified conductance state. Trace 9, after addition of ryanodine to 3 mM cis, channel entered closed state. Similar effects to these were observed in three different experiments.

ability (P_{o}) of the brain channel decreased on lowering *cis* free Ca^{2+} from 50 μ M to 90 nM (trace 2), and could subsequently be elevated to half the control value by raising cis free Ca²⁺ to 1.7 μ M (trace 3). In traces 4–6, the sensitivity of the Ca²⁺activated channel to IP₃ and heparin was tested. On addition of $0.3 \,\mu\text{M-IP}_3$ cis, a 2-fold increase in P_0 was observed (trace 4). Further increase in IP₃ cis to $10 \,\mu\text{M}$ resulted in a decrease in channel activity (trace 5). Heparin addition to 1 mg/ml cis was without a significant effect (result not shown). However, further addition of heparin to 2 mg/ml cis greatly decreased channel activity (trace 6). Partial activation of the channel by millimolar concentrations of ATP was evident in trace 7. The extent of channel activation by ATP illustrated in trace 7, however, was less than that obtained in other recordings, where P_0 values usually increased from ~ 0.3 (in 50 μ M free Ca²⁺) to ~ 0.9 on addition of millimolar ATP cis (not shown). Traces 8 and 9 confirm the identity of the reconstituted brain protein as a ryanodine-sensitive channel. On addition of 10 µM-ryanodine cis,

Fig. 10. Localization in situ of RyR mRNA in rat hippocampus

Sagittal sections of rat brain were hybridized with digoxigenin-labelled cardiac-muscle RyR RNA. Hybridization pattern of the hippocampus with antisense RNA probe (a) and sense RNA probe (b) are shown. Enlarged views of dentate gyrus (DG) granule cells (c), and pyramidal cells of hippocampal fields CA3 (d), and CA1 (e) are taken from (a). The arrowhead in (a) shows the junction between CA1 and CA3. Scale bars in (a) and (b) = 500 μ m, and those in (c), (d) and (e) = 100 μ m.

the characteristic formation of a fully open channel state of decreased conductance was observed (trace 8). The order of IP_3 and ryanodine addition was not changed, because ryanodine modification renders the channel insensitive to regulation by most effector molecules (Rousseau *et al.*, 1987). In the presence of 3 mm-ryanodine *cis*, the channel abruptly closed and remained inactive for the remainder of the recording (trace 9). Identical effects of low and high concentrations of ryanodine have been shown for the bilayer reconstituted muscle RyR channel (Lai *et al.*, 1989).

Localization of brain RyR

Immunocytochemical localization of the mammalian brain RyR using a cardiac-muscle RyR mAb revealed its wide distribution throughout adult rat forebrain (Fig. 9). Immunoreactive regions of the brain were hippocampus (Fig. 9a), cortex (Fig. 9b), caudate-putamen (Figs. 9c and 9d), septum, amygdala, olfactory bulb, thalamus and hypothalamus. High levels of RyR immunoreactivity were found throughout the cortex and dentate gyrus of the hippocampus. Immunostain was observed in the layers of dendrites and cell bodies (Fig. 2b and inset), and in the

Vol. 288

region corresponding to mossy fibres (Fig. 9a). By comparison, and in accord with our [³H]ryanodine-binding studies, there appeared to be less immunoreactivity in the mammalian cerebellum, including the Purkinje cells (not shown). No staining of brain sections was observed in controls using either mouse IgG or after preabsorption of mAb with purified cardiac-muscle RyR (not shown).

Hybridization *in situ* of cardiac-muscle RyR antisense RNA to sagittal sections of adult rat brain indicated that RyR RNA expression was widely distributed throughout the brain, and was particularly enriched in the hippocampal formation. Fig. 10 illustrates the abundant expression of RyR RNA in the hippocampus. Localization of RyR RNA to the pyramidal layers of hippocampal fields CA1 and CA3 (Figs. 10*a*, 10*d* and 10*e*), with even higher levels present in the granule cell layer of the dentate gyrus (Figs. 10*a* and 10*c*), was apparent. Hybridization with the control RNA sense strand revealed little signal, even in layers of hippocampus that are densely packed with neuronal cell bodies (Fig. 10*b*). In agreement with our [3 H]ryanodine-binding and immunolocalization studies, there appeared to be lower levels of RyR RNA in the mammalian cerebellum (result not shown).

Fig. 11. Northern-blot analysis

Poly(A)⁺ RNA from bovine brain (lane 1), cardiac muscle (lane 2) and skeletal muscle (lane 3) was electrophoresed through a 0.8% agarose gel and transferred to Genescreen membrane. Blots were hybridized with mammalian cDNA probes derived from the cardiac-muscle RyR (*a*) or skeletal-muscle RyR (*b*), as described in the Experimental section. Solid arrowheads indicate positions of yeast 18 S and 28 S RNA standards.

Northern-blot analysis

mRNA isolated from bovine whole brain, skeletal- and cardiac-muscle tissue was hybridized to cDNA probes specific for the mammalian cardiac- or skeletal-muscle RyR (Fig. 11). Both bovine cardiac-muscle and brain mRNA contained a transcript of approx. 16 kb which hybridized specifically with a cardiacmuscle cDNA probe (Fig. 11*a*). A cardiac RyR mRNA of approx. 16 kb has previously been identified in rabbit heart (Otsu *et al.*, 1990; Nakai *et al.*, 1990). In contrast, hybridization of the skeletal-muscle RyR cDNA probe to an approx. 16 kb band was observed only with skeletal-muscle mRNA (Fig. 11*b*). An approx. 16 kb skeletal-muscle RyR mRNA has been shown in rabbit and human skeletal muscle (Takeshima *et al.*, 1989; Zorzato *et al.*, 1990). These hybridization data (Fig. 11) suggest that a cardiac RyR-specific mRNA is expressed in brain.

DISCUSSION

Evidence for a brain RyR

Early morphological observations on rat brain by Henkart *et al.* (1976) identified the presence of bridging structures between surface and intracellular membranes, with an arrangement and dimensions similar to the 'feet' structures found between the T-and SR membranes in muscle. Evidence for a ryanodine- and caffeine-sensitive intracellular Ca^{2+} store was subsequently demonstrated in rat sympathetic neurons using fluorimetric and electrophysiological measurements of intracellular Ca^{2+} (Thayer *et al.*, 1988*a,b*; Lipscombe *et al.*, 1988), suggesting the existence of an intracellular Ca^{2+} channel in brain with properties similar to the muscle SR Ca^{2+} channel. Ashley (1989) described binding of [³H]ryanodine to a high-affinity site of K_d approx. 3 nM in rat brain microsomes. Incorporation of the rat brain microsomes into planar lipid bilayers resulted in the appearance of a Ca^{2+} conducting channel that could be activated by ATP, caffeine and

 IP_3 . Ryanodine transformed the rat brain channel into a state of lower conductance (Ashley, 1989), as previously observed for Ca²⁺-release channels of muscle SR (Rousseau *et al.*, 1987; Lai *et al.*, 1989). RNA-blot analysis using a cardiac-muscle RyR cDNA probe detected a low-abundance mRNA of approx. 16 kb in rabbit brain (Otsu *et al.*, 1990). These previous studies are all in accord, suggesting that an RyR is present in mammalian brain with properties similar to the mammalian muscle RyRs.

Brain RyR-Ca²⁺-release channel is a cardiac isoform

Earlier biochemical studies indicated the presence of a mammalian brain RyR with an apparent sedimentation coefficient of approx. 30 S comprising high- M_r subunits (Lai et al., 1990; McPherson & Campbell, 1990; McPherson et al. 1990), identical with that observed for skeletal- and cardiac-muscle RyRs (Lai et al., 1988b; Anderson et al., 1989). Immunoblot analysis showed cross-reactivity of selected skeletal-muscle RyR antisera and a peptide antiserum to a high- M_r band from rabbit brain that migrated close to the skeletal-muscle RyR (McPherson & Campbell, 1990; McPherson et al., 1991). However, the lack of immunoreactivity to the brain RyR of other skeletal-muscle RyR antisera (Fig. 2a; McPherson & Campbell, 1990), and of skeletalmuscle RyR-specific mAbs (McPherson and Campbell, 1990; F. A. Lai, unpublished work), indicates that the brain RyR, although similar to, is not identical with the skeletal-muscle RyR. In the present study, we have identified the 30 S bovine brain RyR channel complex to display an immunological crossreactivity specifically to cardiac-muscle RyR mAbs (Figs. 2b and 4a), and an electrophoretic mobility identical with that of the purified cardiac RyR (Figs. 3c and 5). Northern-blot hybridization analysis with a cardiac RyR-specific cDNA probe reveals specific labelling of a 16 kb transcript in bovine brain mRNA (Fig. 11). Brain mRNA did not hybridize to skeletal-muscle RyR-specific cDNA probes under identical conditions. These studies strongly suggest that mammalian brain specifically expresses a cardiac RyR-Ca2+-release channel isoform, although we cannot at present exclude the possibility of a distinct neuronal RyR isoform. Table 1 summarizes the properties of the 30 S RyR isolated from bovine brain, dog cardiac muscle and rabbit skeletal muscle. All three RyRs exist as tetrameric complexes of high- M_r , subunits arranged into a four-leaf-clover pattern. The RyR channels readily conduct univalent cations with a large unitary conductance of 700-800 pS for K⁺ ions, and possess lowand high-affinity ryanodine-binding sites, occupation of which results in disparate effects on single-channel conductance. RyR channel activity can be increased by micromolar concentrations of Ca²⁺ and millimolar concentrations of ATP, and decreased by millimolar concentrations of Mg²⁺ and micromolar concentrations of Ruthenium Red.

IP₃ effect on brain RyR channel

Single-channel recordings of the microsomal (Ashley, 1989), and solubilized (Fig. 8), brain RyR incorporated into a planar lipid bilayer indicate that cis addition of low concentrations of IP₃ can weakly activate channel opening. Only at high concentrations of heparin, in excess of 1 mg/ml, could the IP₃ activation be reversed (Fig. 8). In contrast, IP₃ binding and activation of the cerebellar IP₃R could be fully inhibited by heparin concentrations of 100 μ g/ml (Ferris *et al.*, 1989). The basis for this common observation of activation of RyR and IP₃R channels by IP₃ is unclear at present. Although significant sequence similarity is present within the putative transmembrane channel-forming domain at the *C*-terminus of the RyR and IP₃R (Furuichi *et al.*, 1989), the structure(s) within the IP₃R involved in IP₃ binding is now believed to include the *N*-terminus (Mignery & Südhof, 1990; Miyawaki *et al.*, 1991), where sequence similarity

Table 1. Comparison of properties of ryanodine receptors purified from bovine brain, dog cardiac muscle and rabbit skeletal muscle

N.D., not determined.

Property	Brain	Cardiac muscle	Skeletal muscle
1. Apparent sedimentation coefficient	30 S	30 S†	30 S‡
2. R_F in SDS/3-12% polyacrylamide gels	0.12	0.12	0.10
 Morphology Calculated subunit M_r (×10⁻³) 	Quatrefoil N.D.	Quatrefoil† 565§	Quatrefoil‡ 564∥
(from cDNA sequence) 5. Ryanodine binding High-affinity (K _d) Low-affinity	3 nм Yes	3 nм† Yes**	6 nм¶ Yes¶
 6. Ryanodine modification Sublevel conductance state (μM) 	Yes	Yes†	Yes¶
Closing of channel (mм) 7. Single-channel conductance*	¥ Yes	N.D.	Yes¶
In 0.25 м-К ⁺ In 0.05 м-Са ²⁺	800 pS 140 pS	745 pS 148 pS	770 pS 145 pS
 Regulation Activation by Ca²⁺ and ATP 	Yes	Yes†	Yes‡
Activation by IP ₃ Inhibition by Mg ²⁺ and Ruthenium Red	Occasional Yes	N.D. Yes†	Occasional†† Yes‡

* Measured using conditions described in Fig. 7(b).

† Data from Anderson et al. (1989).

‡ Data from Lai et al. (1988b).

§ Data from Otsu et al. (1990) and Nakai et al. (1990).

|| Data from Takeshima et al. (1989) and Zorzato et al. (1990).

¶ Data from Lai et al. (1989).

** Data from Pessah & Zimanyi (1991).

†† Data from Liu *et al.* (1989*b*).

with the RyR is lower. A similar weak activation of RyR channels purified from mammalian and amphibian muscle, by cis addition of IP₂, has also been observed (Suarez-Isla et al., 1988; Liu et al., 1989b). Conversely, ATP, a potent muscle RyR channel activator (Meissner, 1984; Smith et al., 1985), has been shown to stimulate the purified cerebellum IP₃R channel (Ferris et al., 1989; Maeda et al., 1991), and calmodulin, a muscle RyR channel antagonist (Meissner, 1986), also interacts with the purified IP₂R (Maeda et al., 1991). These similarities in the pharmacological profile of the RyR and IP₃R channels are consistent with those observed for their sedimentation behaviour (Fig. 4), morphology (Fig. 6; Chadwick et al., 1990), subunit structure (Lai et al., 1989; Maeda et al., 1991) and primary structure (Furuichi et al., 1989; Mignery et al., 1989). However, no effect of ryanodine on the IP₂R channel incorporated into planar lipid bilayers has yet been reported. One distinctive difference observed in single-channel recordings of the IP₃R and RyR was the lower permeability to univalent cations of the reconstituted IP_aR channel. The unitary conductance for Na⁺ ions of 21 pS in 100-500 mM-Na⁺ for the IP₃R channel (Maeda et al., 1991) is in contrast with the value of 400 pS observed for the skeletal RyR under similar recording conditions (Smith et al., 1988; Liu et al., 1989a).

Localization of brain RyR

Localization of the mammalian brain RyR by immunocytochemistry and hybridization *in situ* using cardiac-muscle RyR-specific mAb and antisense RNA respectively revealed prominent reactivity in the hippocampal formation, particularly in the molecular layer of the dentate gyrus and in the terminals of cells projecting from this area into the CA3 field of the hippocampus (Figs. 9 and 10). This hippocampal enrichment in RyR is in accord with observations from ryanodine-binding studies to membrane fractions isolated from various rabbit brain regions (McPherson & Campbell, 1990), and with [3H]ryanodine autoradiography (Padua et al., 1991), indicating brain RyR was particularly enriched in the hippocampus. The studies by hybridization in situ (Fig. 11) complement the immunocytochemical analysis (Fig. 10) and indicate markedly high levels of RyR RNA expression in the granule cells of dentate gyrus with a lower level of expression in the pyramidal cells of the CA3 and CA1 field of the hippocampus. The functional significance of these observations is not known, although the importance of intracellular Ca²⁺ stores was demonstrated in a recent study which showed that in cultured Xenopus spinal neurons, Ca2+-induced release of Ca²⁺ promotes cell differentiation (Holliday et al., 1991). This Ca2+-sensitive mechanism of intracellular Ca2+ release is in concurrence with our observation that the brain RyR channel is a cardiac-specific isoform.

A recent immunocytochemical study of the avian cerebellum RyR has shown it to be enriched in the Purkinje neurons (Ellisman et al., 1990), as has been found for the IP₂R (Ross et al., 1989). The avian cerebellum Purkinje neuron RyR was localized by immunogold electron microscopy to the smooth and rough endoplasmic reticulum and subsurface membrane cisternae, and found to co-localize with IP₃Rs throughout the Purkinje neuron, with the exception of dendritic spines where only the IP₃Rs were evident (Walton et al., 1991). In contrast, our ryanodine-binding and localization data indicate that expression of the mammalian RyR and IP₃R in cerebellum and whole brain displays an inverse relationship, with the RyR in mammalian cerebellum present at approx. 10-fold lower concentrations than in the rest of the brain. The relatively disperse distribution of the neuronal RyR within intracellular membrane compartments of the Purkinje neuron (Walton et al., 1991), in comparison with specific localization of muscle RyR to the T-SR junctions (Ferguson et al., 1984), makes the assignment of a plausible role for this intracellular channel more challenging.

Studies of the skeletal- and cardiac-muscle RyR channels have indicated that they are coupled to a sarcolemmal voltage-sensing and a Ca²⁺-induced Ca²⁺-release mechanism respectively (Rios & Pizarro, 1988). Our observations that the brain RyR channel is a cardiac isoform, and likewise sensitive to activation by micromolar concentrations of Ca²⁺, would suggest a role of Ca²⁺ ions in regulating this channel, possibly via the Ca²⁺-induced Ca²⁺release mechanism (Thayer *et al.*, 1988*a,b*; Lipscombe *et al.*, 1988; Holliday *et al.*, 1991) that predominates during E–C coupling in cardiac cells (Cannell *et al.*, 1987; Näbauer *et al.*, 1989). In conclusion, the studies reported here suggest that the RyR present in brain probably plays an important role in neuronal intracellular Ca²⁺ homoeostasis generally, and may be of particular significance in the regulation of Ca²⁺ levels pre- and post-synaptically.

We are grateful for the generous gift of IP_3R peptide antiserum from Dr. Thomas C. Südhof, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A., and to Dr. John Seeley, National Institute for Medical Research, London, U.K. for helpful discussions. This work was supported by U.S.P.H.S. grants AR18687, HL27430 and GM30598 and by the British Heart Foundation.

REFERENCES

Anderson, K., Lai, F. A., Liu, Q. Y., Rousseau, E., Erickson, H. P. & Meissner, G. (1989) J. Biol. Chem. 264, 1329–1335

- Ashley, R. H. (1989) J. Membr. Biol. 111, 179-189
- Berridge, M. J. & Irvine, R. F. (1984) Nature (London) 312, 315-321
- Berridge, M. J. & Irvine, R. F. (1989) Nature (London) 341, 197-205
- Bezprozvanny, I., Watras, J. & Ehrlich, B. E. (1991) Nature (London) 351, 751–754
- Campbell, K. P., Knudson, C. M., Imagawa, T., Leung, A. T., Sutko, J. L., Kahl, S. D., Raab, C. R. & Madson, L. (1987) J. Biol. Chem. 262, 6460–6463
- Cannell, M. B., Berlin, J. & Lederer, W. J. (1987) Science 238, 1419-1423
- Catterall, W. A. (1991) Cell 64, 871-874
- Chadwick, C. C., Saito, A. & Fleischer, S. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2132-2136
- Cox, H. K., DeLeon, D. V., Angerer, L. M. & Angerer, R. C. (1984) Dev. Biol. 101, 485–502
- Ehrlich, B. E. & Watras, J. (1988) Nature (London) 336, 583-586
- Ellisman, M. H., Deerinck, T. J., Ouyang, Y., Beck, C. F., Tanksley, S. J., Walton, P. D., Airey, J. A. & Sutko, J. L. (1990) Neuron 5, 135-146
- Feinberg, A. P. & Vogelstein, B. (1984) Anal. Biochem. 137, 266-267
- Ferguson, D. G., Schwartz, H. W. & Franzini-Armstrong, C. (1984) J. Cell Biol. 99, 1735–1742
- Ferris, C. D., Huganir, R. L., Supattapone, S. & Snyder, S. H. (1989) Nature (London) 342, 87–89
- Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N. & Mikoshiba, K. (1989) Nature (London) 342, 32–38
- Gill, D. L. (1989) Nature (London) 342, 16-18
- Henkart, M., Landis, D. M. D. & Reese, T. S. (1976) J. Cell Biol. 70, 338-347
- Holliday, J., Adams, R. J., Sejnowski, T. J. & Spitzer, N. C. (1991) Neuron 7, 787-796
- Inui, M., Saito, A. & Fleischer, S. (1987a) J. Biol. Chem. 262, 1740-1747
- Inui, M., Saito, A. & Fleischer, S. (1987b) J. Biol. Chem. 262, 15637–15642 Laemmli, U. K. (1970) Nature (London) 227, 680–685
- Lai, F. A. & Meissner, G. (1989) J. Bioenerg. Biomemb. 21, 227-246
- Lai, F. A., Anderson, K. A., Rousseau, E., Liu, Q. Y. & Meissner, G. (1988a) Biochem. Biophys. Res. Commun. 151, 441-449
- Lai, F. A., Erickson, H., Rousseau, E., Liu, Q. Y. & Meissner, G. (1988b) Nature (London) 331, 315-319
- Lai, F. A., Misra, M., Xu, L., Smith, H. A. & Meissner, G. (1989) J. Biol. Chem. 264, 16776-16785
- Lai, F. A., Xu, L. & Meissner, G. (1990) Biophys. J. 57, 529a
- Lipscombe, D., Madison, D. V., Poenie, M., Reuter, H., Tsien, R. W. & Tsien, R. Y. (1988) Neuron 1, 355-365
- Liu, Q. Y., Lai, F. A., Rousseau, E., Jones, R. V. & Meissner, G. (1989a) Biophys. J. 55, 415–424
- Liu, Q. Y., Lai, F. A., Xu, L., Jones, R. V., LaDine, J. K. & Meissner, G. (1989b) Biophys. J. 55, 85a
- Maeda, N., Kawasaki, T., Nakade, S., Yokota, N., Taguchi, T., Kasai, M. & Mikoshiba, K. (1991) J. Biol. Chem. 266, 1109–1116
- Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374
- Meissner, G. (1986) Biochemistry 25, 244-251
- Meissner, G., Rousseau, E. & Lai, F. A. (1989) J. Biol. Chem. 264, 1715-1722
- McGrew, S. G., Wolleben, C., Siegl, P., Inui, M. & Fleischer, S. (1989) Biochemistry 28, 1686–1691
- McPherson, P. S. & Campbell, K. P. (1990) J. Biol. Chem. 265, 18454-18460
- McPherson, P. S., Kim, Y. K., Valdivia, H., Knudson, C. M., Takekura, H., Franzini-Armstrong, C., Coronado, R. & Campbell, K. P. (1991) Neuron 7, 17–25
- Mignery, G. A. & Südhof, T. C. (1990) EMBO J. 9, 3893-3898

Received 13 April 1992/12 June 1992; accepted 22 June 1992

- Mignery, G. A., Südhof, T. C., Takei, K. & DeCamilli, P. (1989) Nature (London) 342, 192-195
- Mignery, G. A., Newton, C. L., Archer III, B. T. & Südhof, T. C. (1990) J. Biol. Chem. 265, 12679–12685
- Miyawaki, A., Furuichi, T., Ryou, Y., Yoshikawa, S., Nakagawa, T., Saitoh, T. & Mikoshiba, K. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 4911–4915
- Näbauer, M., Callewaert, G., Cleemann, L. & Morad, M. (1989) Science 244, 800-803
- Nakai, J., Imagawa, T., Hakamata, Y., Shigekawa, M., Takeshima, H. & Numa, S. (1990) FEBS Lett. 271, 167–177
- Oakley, B. R., Kirsch, D. R. & Morris, N. R. (1980) Anal. Biochem. 105, 361-363
- Otsu, K., Willard, H. F., Khanna, V. J., Zorzato, F., Green, N. M. & MacLennan, D. H. (1990) J. Biol. Chem. 265, 13472–13483
- Padua, R. A., Wan, W., Nagy, J. I. & Geiger, J. D. (1991) Brain Res. 542, 135-140
- Pessah, I. N. & Zimanyi, I. (1991) Mol. Pharmacol. 39, 679-689
- Rios, E. & Pizarro, G. (1988) News Physiol. Sci. 3, 223-227
- Ross, C. A., Meldolesi, J., Milner, T. A., Satoh, T., Supattapone, S. & Snyder, S. H. (1989) Nature (London) 339, 468-470
- Rousseau, E., Smith, J. S., Henderson, J. S. & Meissner, G. (1986) Biophys. J. 50, 1009–1014
- Rousseau, E., Smith, J. S. & Meissner, G. (1987) Am. J. Physiol. 253, C364-C368
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- Sar, M. (1985) in Techniques in Immunocytochemistry (Bulbele, G. R. & Petruez, P., eds), vol. 3, pp. 43–54, Academic Press, New York
- Sar, M., Culler, M. D., McGimsey, W. C. & Negro-Vilar, A. (1987) Neuroendocrinology 45, 180–192
- Smith, J. S., Coronado, R. & Meissner, G. (1985) Nature (London) 316, 446–449
- Smith, J. S., Coronado, R. & Meissner, G. (1986) J. Gen. Physiol. 88, 573–588
- Smith, J. S., Imagawa, T., Ma, J., Fill, M., Campbell, K. P. & Coronado, R. (1988) J. Gen. Physiol. 92, 1–26
- Suarez-Isla, B. A., Irribara, V., Oberhauser, A., Larralde, L., Bull, R., Hidalgo, C. & Jaimovich, E. (1988) Biophys. J. 54, 737-741
- Supattapone, S., Worley, P. F., Baraban, J. M. & Snyder, S. H. (1988) J. Biol. Chem. 263, 1530–1534
- Takeshima, M., Nishimura, S., Matsumoto, T., Ishida, M., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T. & Numa, S. (1989) Nature (London) 339, 439-445
- Thayer, S. A., Hirning, L. D. & Miller, R. J. (1988a) Mol. Pharmacol. 34, 664-673
- Thayer, S. A., Perney, T. M. & Miller, R. J. (1988b) J. Neurosci. 8, 4089-4097
- Wagenknecht, T., Grassuci, R., Frank, J., Saito, A., Inui, M. & Fleischer, S. (1989) Nature (London) 338, 167–170
- Walton, P. D., Airey, J. A., Sutko, J. L., Beck, C. F., Mignery, G. A., Südhof, T. C., Deerinck, T. J. & Ellisman, M. H. (1991) J. Cell Biol. 113, 1145–1157
- Wilkinson, D. G., Bailes, J. A., Champion, J. E. & McMahon, A. P. (1987) Development **99**, 493-500
- Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S. & Snyder, S. H. (1987) J. Biol. Chem. 262, 12132–12136
- Xue, G. P., Calvert, R. A. & Morris, R. J. (1990) Development 109, 851-864
- Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N. M., Lai, F. A., Meissner, G. & MacLennan, D. H. (1990) J. Biol. Chem. 265, 2244–2256