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Abstract
Heartburn is the most common and characteristic symptom of gastroesophageal reflux disease. It
ultimately results from contact of refluxed gastric acid with nociceptors within the esophageal
mucosa and transmission of this peripheral signal to the central nervous system for cognition.
Healthy esophageal epithelium provides an effective barrier between refluxed gastric acid and
esophageal nociceptors; but this barrier is vulnerable to attack and damage, particularly by acidic
gastric contents. How gastric acid is countered by defensive elements within the esophageal
mucosa is a major focus of this discussion. When the defense is successful, the subject is
asymptomatic and when unsuccessful, the subject experiences heartburn. Those with heartburn
commonly fall into one of three endoscopic types: nonerosive reflux disease, erosive esophagitis
and Barrett's esophagus. Although what determines endoscopic type remains unknown; it is
proposed herein that inflammation plays a key, modulating role.
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Introduction
Gastroesophageal reflux is a common daily occurrence in healthy subjects – and these by
definition experience no symptoms. The reasons for this are mulitfactorial. For instance, the
number and volume of episodes of reflux are limited by the antireflux barriers, principally
the lower esophageal sphincter and the diaphragm, and, after an episode of reflux, the time
of contact between the noxious elements in the refluxate, principally hydrochloric acid and
pepsin, and the esophageal epithelium limited to a few minutes by luminal clearance
mechanisms. Contributing to luminal clearance are gravity and peristalsis, for volume
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clearance, and secretions from salivary and esophageal submucosal glands, for acid
clearance. Since reflux frequency and acid clearance are far from zero, particularly at night
when both gravity, peristalsis and glandular secretions ebb during sleep, the esophageal
epithelium routinely comes into contact with acidic refluxates. The mechanisms available to
the epithelium for defense against acid injury during this time have come to known
collectively as ‘tissue resistance’. In a sense, tissue resistance, as defense against the acidic
refluxate, is the final arbiter of health and (reflux) disease because when ineffective, it leads
to the most commonly recognized symptoms and signs of gastroesophageal reflux disease
(GERD), that is heartburn and esophageal erosions(1,2).

Offensive Factors in the Refluxate
The refluxate contains numerous products with noxious potential, including: hydrochloric
acid (HCl), pepsin, bile salts, and pancreatic enzymes(3). However, it is clear that the most
noxious of these is HCl whose gastric secretion can produce values as low as pH 1.0.
Support for this is provided by the general effectiveness of anti-acid medications in
controlling the symptoms and signs of GERD while absence of acid is associated with
general lack of injury in the upper gastrointestinal tract, including the esophagus.
Additionally, support for the noxious acidity within the esophagus being derived from the
stomach through reflux rather than through ingestion of acidic products with meals is
provided by the effectiveness of both medications that reduce gastric acid secretion, e.g.
histamine-2 receptor antagonists and proton pump inhibitors (PPIs), and surgical
fundoplication. Other factors such as pepsin and conjugated bile salts may, in selected
individuals, contribute to the noxious quality of acidic refluxates. This is based on studies
showing that pepsin and conjugated bile salts increase esophageal damage at acidic pH
(4-6).

Defensive Factors in Esophageal Mucosa
Since the major injurious agent in the refluxate is gastric acid, this section will focus on
those factors within the esophageal mucosa that provide defense against acidity. That this
tissue defense can be formidable is best illustrated by revisiting the Bernstein Test. During
the Bernstein test, the esophagus of a healthy subject can be continuously perfused with
HCl, pH 1.0, for up to 30 min and this without producing heartburn(7). Since this technique
bypasses both antireflux and luminal clearance mechanisms for protection against acid
injury, it speaks directly to the presence and effectiveness of mucosal factors for protection
when in contact with luminal acid. And among these factors, the most important are those
contained within the esophageal epithelium proper, a non-keratinized stratified squamous
epithelium (see Table 1). This is because, unlike stomach and duodenum, the esophagus has
no viscoelastic surface mucous layer and its epithelial cells secrete no bicarbonate(2).
Consequently, the esophagus has no effective means of trapping luminal bicarbonate that
can serve as a means for buffering gastric acid as it back diffuses from lumen toward
epithelium.

Esophageal Epithelium
The multilayered, non-keratinized stratified squamous epithelium, has several surface layers
of flat cells constituting the stratum corneum, several more layers of actively transporting
cells constituting the stratum spinosum, and a single or double cell layer of mitotically-
active cells constituting the stratum (basalis) germinativum. The cells of the most luminal
layers, the stratum corneum, initially provide defense in the form of a permeability
barrier(8,9). This permeability barrier is comprised of apical cell membranes and apical
junctional complexes (AJCs) that prevent the diffusion of luminal acid directly into the cells
or intercellular spaces, respectively. The apical cell membrane does this because of its
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hydrophobicity and because its cation (sodium) channels, though non-selective, are inhibited
at acidic luminal pH; and the apical junctional complex does this by creating an aqueous
permselective pathway formed by tight junctions, adherens junctions and desmosomes that
greatly limits the rate of paracellular ion diffusion(8-11). In particular the tight junction
forms the narrowest component of the pathway, a function supported by the underlying
adherens junction, while structural integrity with close apposition of adjacent cell
membranes is provided by the desmosomes. Within the intercellular space of esophageal
epithelium is also a matrix of glycoproteins that was once considered an aide to the apical
junctional complex in limiting paracellular ion diffusion(8). Recent studies, however, have
shown that their removal by enzymatic digestion had no effect on the esophageal electrical
resistance, a sensitive marker of paracellular permeability to ions. In contrast disruption of
desmosomal binding to intermediate filaments was shown to markedly increase paracellular
permeability(12). Taken together, the combination of apical junctional complexes and apical
cell membranes in the stratum corneum are largely what account for the esophageal
epithelium being ‘electrically tight’ with resistances in human and animal esophageal
epithelium of ≥1000 ohms.cm2 (13,14). [Note: the electrical resistance of healthy human
esophageal epithelium is much lower when measured in esophageal biopsies mounted in
mini-Ussing chambers, i.e. ∼345 ohms.cm2(15). This difference is largely technical and due
to the greater ratio of circumferential edge damage to epithelial surface area in mini-
chambered specimens compared to standard-chambered specimens(14). The greater the ratio
the lower is the recorded electrical resistance.]

Apical Junctional Complex
The trio of tight junctions, adherens junctions and desmosomes, comprising the apical
junctional complex, are individually highly complex organelles. While detailed descriptions
of each are beyond the scope of this discussion (and can be found elsewhere – (16,17)), each
has an extracellular (equivalent of intercellular), transmembrane and intracellular domain
useful for cell signaling as well as barrier function. Noteworthy is that the barrier function
for these junctions ultimately falls to those proteins that bridge the intercellular space. For
the tight junctions these proteins are occludin, and members of a family of claudins(18). In
esophageal epithelium, claudin 1 and claudin 4 are the most prominent(19). For the adherens
junction, the major protein is e-cadherin(20,21); and for the desmosome, the major proteins
are desmogleins and desmocollin(22). Importantly, the proteins of the tight junction and
adherens junction encircle the entire perimeter of the cell creating a seal that separates the
lumen from intercellular space of the epithelium. The desmosome, however, produces only a
‘spot weld’ that does not encircle the cell. Nonetheless, the desmosome contributes to barrier
function indirectly by maintaining close apposition of adjacent cell membranes throughout
the multilayered epithelium. In effect, the desmosomes enable formation of a long
serpiginous intercellular pathway that contributes to barrier function by its narrow width,
long length and electrical charges present within the membranous proteins of adjacent
cells(12).

Acid Buffering and Neutralization
Although the apical cell membrane and apical junctional complex provide the structural
barriers that prevent penetration of luminal ions, particular hydrogen ions (H+) derived from
refluxed gastric acid, into the cell or intercellular space, this defensive alignment remains
imperfect. Therefore, H+ can diffuse slowly into the cell cytosol or into the intercellular
space requiring an alternative defense to prevent acidification of these two compartments.
This is accomplished by the presence within these compartments of substances that buffer
and/or neutralize H+. Such substances include proteins, phosphates and bicarbonate, with
bicarbonate being the most versatile and replenishable(2). This is because bicarbonate can
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readily diffuse from blood into the extracellular space and so intercellular spaces within the
epithelium and then be transported by proteins located in the basolateral cell membranes
from extracellular space to cell cytosol. In addition to diffusion from blood to extracellular
space and transport from extracellular space to cell cytosol, bicarbonate can also be
generated de nova within the cell cytosol and intercellular compartments by an enzymatic
reaction. This reaction is mediated by carbonic anhydrases and converts water and carbon
dioxide to carbonic acid and carbonic acid ionizes to H+ and bicarbonate(23). In effect, slow
rates of H+ back diffusing from the lumen to the cell cytosol and intercellular spaces are
buffered or neutralized and so in a healthy epithelium have little to no impact on cytosolic or
intercellular pH.

Acid Transport
When H+ generated metabolically and/or diffusing into the cell cytosol by back diffusion
from refluxed gastric acid overwhelm cell buffer capacity, cytosolic pH declines to acidic
levels. To keep such acidity from injuring the cell, cell membranes come equipped with ion
transporters capable of removing excess H+ from the cell and restoring pH to neutrality. In
esophageal epithelial cells, these transporters are localized to the basolateral membrane and
include a sodium-dependent, chloride-bicarbonate, exchanger and a sodium-hydrogen ion
exchanger of isotype-1(24-27). As noted by the nomenclature, these transporters utilize the
transmembrane gradient for sodium ions to move sodium into the cell either to promote the
exchange of intracellular chloride for extracellular bicarbonate ions to neutralize cytosolic H
+, or to promote the exchange of extracellular sodium directly for removal of intracellular H
+. In both instances, the end result of the action of these transporters is to increase cytosolic
pH toward neutrality. Moreover, if these actions overshoot their mark, i.e. cytosolic pH
exceeds its set point of ∼ 7.4, the basolateral membrane of esophageal cells possess a third
acid transporter known as the Na-independent, chloride-bicarbonate exchanger(25).
However, and in contrast to the other two exchangers, this transporter operates to bring H+
into the cell by promoting the exchange of extracellular chloride for intracellular bicarbonate
– and removal of intracellular bicarbonate is effectively the same as the addition of H+ to
the cell cytosol. Thus, these three transporters cooperate in esophageal cells to tightly
regulate the cytosolic pH within the neutral range.

Blood Flow
The barrier and transport functions of the esophageal epithelium are integral processes for
protection of the tissue against injury upon exposure to gastric acid. These processes,
however, would not be durable were it not for an adequate blood supply. For it is the blood
supply that provides the oxygen and nutrients for growth and repair and for acid-base
balance the delivery of electrolytes and removal of carbon dioxide. Moreover, the blood
supply can adapt to such threatening environments as acid exposure and acid injury to
esophageal epithelium with an increase in flow rate. This process is mediated both neutrally
and non-neural chemical signaling and serves an important protective function(28,29).

Pathophysiology of Reflux Esophagitis
The ability of luminal acid to injure the esophageal epithelium is well established. In
humans, this is based on the positive clinical response to acid suppressing agents such as
proton pump inhibitors; and in animals this is based on morphologic and functional changes
to the esophageal epithelium induced by acid perfusion. In the rabbit model, it has been
shown that acid (HCl) initially injures the esophageal epithelium by altering the AJC; and
this in turn causes an early increase in paracellular permeability and a morphologic lesion
known as dilated intercellular spaces (DIS)(2). DIS is a sensitive marker of GERD(30-34);
but it is not specific, having been produced by acidified bile salts, hypertonic media, cold
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water-restraint stress and exposure to the zwitterionic detergent, empigen. It is also observed
in patients with eosinophilic esophagitis, candida esophagitis, and esophageal
cancer(6,12,33,35-39). To date the alterations in the AJC of acid-damaged esophagi include
changes in the tight junction proteins, occludin and claudins 1,3, and 4, changes in the
number of desmosomes and changes to the adherens junction protein, e-cadherin(40-43). As
a consequence, paracellular permeability increases and this enables greater concentrations of
luminal H+ to diffuse into and acidify the intercellular space. In addition, there is an increase
in paracellular diffusion of chloride ions that results in an osmotic gradient for water
movement into the intercellular spaces(44). It is the hydrostatic force created by this osmotic
action that is responsible for generation of DIS. [Note: When carefully sought in subjects
with GERD or in animal models of acid damage to esophageal epithelium, DIS are evident
in all layers. However, they are particularly prominent and so more readily apparent in the
basal layers. While not formally studied, this is likely a reflection of greater compliance and
so separation of basal cell membranes versus luminal cell membranes in response to the
increase in intercellular hydrostatic force. Unlike basal cells, differentiation produces
luminal cells that are flat, rigid and tightly compacted, thus yielding little room for
membrane separation.] Further, acidification of the intercellular space by paracellular
diffusion of H+ triggers the firing of pH-sensitive nociceptors within the esophageal
mucosa, e.g. the transient receptor potential vanilloid channel, type 1 and acid sensing ion
channel, type 3(45-48). Where in the mucosa these nerve endings reside has not been
resolved; but evidence exists in both primates and humans that sensory fibers can extend
into the intercellular spaces of the epithelium(45,49). Also unresolved is how luminal acidity
activates these sensory nerves; that is, do back diffusing H+ acidify the intercellular space
and so directly activate the nociceptors as proposed above or are the nociceptors activated
by carbon dioxide formed after the reaction of luminal or back diffusing H+ with
bicarbonate ions(50)? In either case, transmission of this peripheral signal to the brain then
results in the symptom of ‘heartburn’(51). Acidification of the intercellular space not only
triggers heartburn but can cause cell acidification, the latter the proximate cause of cell
injury and necrosis. The reason this occurs is because, unlike apical cell membranes, the
basolateral cell membranes contain an acid-absorbing transporter, that is, the Na-
independent, chloride/bicarbonate exchanger(2). Because this transporter is driven by the
transmembrane concentration gradients for chloride and bicarbonate, a low intercellular pH
is readily translated into low intracellular pH(52,53). It is persistence of a low intracellular
pH that sets in motion a series of events leading to cell injury and necrosis.

Tissue Repair
Although prolonged acidification results in cell injury and necrosis, this process can be
contained by two epithelial reparative mechanisms. One is epithelial restitution and the other
is epithelial replication. Restitution is a rapid form of repair, 30 – 60 minutes, because it
doesn't require deoxyribonucleic acid (DNA) and protein synthesis; instead it relies on the
migration of viable cells adjacent to those that are necrotic to maintain the barrier function
of the epithelium(54,55). In contrast, regeneration is a slower form of repair, days to weeks
depending upon the size of the necrotic area, because it depends on mitosis and so synthesis
of DNA and proteins(56). Notably, during repair, injury may still be ongoing if acid
exposure is repeated and prolonged. Consequently, the balance between rate of injury and
rate of repair determine whether the epithelial changes remain microscopic or are magnified
into the macroscopic changes of erosive esophagitis.

Inflammation
Following acid-induced cell injury, there is an important modulator of the rate of cell injury
and repair – and this is inflammation. Inflammation is a well-established tissue response
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whose pattern varies with the degree, extent, type and duration of injury. It is triggered by
the release of chemokines and cytokines from injured cells, and these chemicals through
diffusion to adjacent areas and to the systemic circulation attract immune cells to the area.
Within the area of injury, immune cells are capable of digestion and removal of necrotic
debris, and by so doing help ultimately in repair of the area. Inflammation, however, is not a
highly tuned process, such that the influx of immune cells may result in additional damage
even while acting as the means of repair. This phenomena was first shown in the acid-
perfused rabbit esophagus and more recently in a rat model where damage was induced by
creation of a esophagoduodenostomy(57-59). In the rabbit model, esophageal injury was
reduced by blocking white blood cell migration to the area with ketotifen and, by blocking
their production of oxygen-derived free radicles with either superoxide dismutase or
catalase. In the rat model, release of interleukin-8 was shown to be one of the signaling
molecules released from esophageal squamous cells for recruitment of inflammatory cells to
the area of injury. These data indicate that inflammation, per se, is a double-edged sword
with the capacity to directly injure as well as to repair squamous epithelium. Moreover, and
perhaps more importantly, inflammation promotes and perpetuates injury indirectly; this is
done by altering neuromuscular transmission of esophageal smooth muscle(60-67).
Consequently, inflammation can reduce lower esophageal sphincter pressure, impair
peristaltic contractility, and contract longitudinal muscle, the latter a means of promoting
creation of a hiatal hernia (see Figure 1). In effect, inflammation can both augment acid
reflux and delay acid clearance, producing a vicious cycle in which ‘reflux-induced cell
damage begets inflammation which begets more reflux-induced cell damage which begets
more inflammation’. As cornerstone of this cycle, inflammation is an attractive candidate to
serve as modulator of endoscopic type of GERD (see below).

Endoscopic Types in GERD
The fact that there is such seeming stability among the three common endoscopic types of
GERD – NERD, erosive esophagitis, and Barrett's epithelium – has lead to the concept that
these are different disorders rather than a continuum that progresses from NERD to erosive
esophagitis to Barrett's epithelium(68,69). Yet, there is clear evidence in support of the
continuum among types. Certainly NERD progresses to erosive esophagitis and erosive
esophagitis can revert to NERD(70,71). Barrett's esophagus is more of an enigma since it is
typically present fully-formed on initial endoscopy rather than appearing to progress
gradually in those with erosive disease(72). Nonetheless, Barrett's has been produced in a rat
model of reflux, is more commonly found in GERD than in healthy subjects and is reported
to appear in those with erosive esophagitis that did not initially have Barrett's
esophagus(73-75). Moreover, there is evidence that NERD, erosive esophagitis and Barrett's
esophagus share a common histopathologic feature within esophageal (squamous)
epithelium, that is DIS(34,76). Since DIS is a reflection of a break in barrier function, it
supports the concept that these three forms of GERD share a common pathogenesis (see
Figure 2). As proposed above, the type and extent of inflammation induced by acid injury to
esophageal epithelium that may be the modulating key as to who develops NERD, erosive
esophagitis and Barrett's esophagus. For instance, subjects in which esophageal acid
exposure, either by quantity of acid reflux, environmental factors that can amplify mucosal
injury such as alcohol, stress, smoking, or by a programmed host (genetic) response,
produces little or no inflammation presents as NERD while those with significant
inflammation present with erosive esophagitis. Barrett's esophagus, an aberrant form of
repair, emerges in those with erosive esophagitis as a means of defense against acid
injury(74,77). Based on differences in frequency between Caucasian and African American
populations in the United States, the emergence of Barrett's esophagus likely involves a
distinct set of host genetics(78,79).
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Summary
Heartburn is the most common and characteristic symptom of GERD. It results from
sufficient contact of refluxed gastric acid with the esophageal epithelium that it ‘breaks the
barrier’. The break in the barrier is manifest functionally by an increase in paracellular
permeability and structurally by the appearance of DIS. The increase in paracellular
permeability provides a pathway for luminal acid to diffuse into the esophageal mucosa
where it can acidify the intercellular space. Acidification of this space is hypothesized to
trigger the sensory nociceptors responsible for heartburn and to enable acid to penetrate the
cell across the basolateral membrane on a sodium-independent, chloride/bicarbonate
exchanger. Cell acidification leads to cell injury and necrosis. Cell injury and necrosis lead
to activation of cell reparative phenomena, a component of which is tissue inflammation.
Inflammation, however, is a double-edged sword, producing additional injury even as it aids
repair. Moreover, inflammation alters esophageal motor function, promoting greater reflux
and delaying acid clearance. This creates a vicious cycle that may serve to modulate the
outcome as to endoscopic type of GERD.

Research Agenda

• Research is needed to define the mechanisms that cause alteration in the apical
junctional complex in those with GERD and strategies for their restoration
beyond acid suppression.

• Research is needed to better define the nature of the esophageal nocieptors
responsible for the symptom of heartburn.

• Research is needed to better define the mechanisms that determine whether
subjects with GERD have NERD or erosive esophagitis and whether subjects
with GERD progress to Barrett's esophagus.

References
1. Orlando, RC. Reflux esophagitis. In: Yamada, T.; Alpers, D.; Owyang, C.; Powell, D.; Laine, L.,

editors. Textbook of Gastroenterology. 3rd. Philadelphia: JB Lippincott Williams & Wilkins; 1999.
p. 1235-63.

2. Orlando, RC. Pathophysiology of gastroesophageal reflux disease: Esophageal epithelial resistance.
In: Castell, DO.; Richter, JE., editors. The Esophagus. 4th. Philadelphia: Lippincott Williams &
Wilkins; 2004. p. 421-33.

3. Gotley DC, Morgan AP, Ball D, Owen RW, Cooper MJ. Composition of gastrooesophageal
refluxate. Gut 1991 Oct;32(10):1093–9. [PubMed: 1955160]

4. Tobey NA, Hosseini SS, Caymaz-Bor C, Wyatt HR, Orlando GS, Orlando RC. The role of pepsin in
acid injury to esophageal epithelium. Am J Gastroenterol 2001 Nov;96(11):3062–70. [PubMed:
11721751]

5. Harmon JW, Johnson LF, Maydonovitch CL. Effects of acid and bile salts on the rabbit esophageal
mucosa. Dig Dis Sci 1981 Jan;26(1):65–72. [PubMed: 7460707]

6. Farre R, van Malenstein H, De Vos R, Geboes K, Depoortere I, Vanden Berghe P, et al. Short
exposure of oesophageal mucosa to bile acids, both in acidic and weakly acidic conditions, can
impair mucosal integrity and provoke dilated intercellular spaces. Gut 2008 Oct;57(10):1366–74.
[PubMed: 18593808]

7. Bernstein LM, Baker LA. A clinical test for esophagitis. Gastroenterology 1958 May;34(5):760–81.
[PubMed: 13538145]

8. Orlando RC, Lacy ER, Tobey NA, Cowart K. Barriers to paracellular permeability in rabbit
esophageal epithelium. Gastroenterology 1992 Mar;102(3):910–23. [PubMed: 1537527]

Orlando Page 7

Best Pract Res Clin Gastroenterol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



9. Elias PM, McNutt NS, Friend DS. Membrane alterations during cornification of mammalian
squamous epithelia: a freeze-fracture, tracer, and thin-section study. Anat Rec 1977 Dec;189(4):
577–94. [PubMed: 339780]

10. Tobey NA, Argote CM, Awayda MS, Vanegas XC, Orlando RC. Effect of luminal acidity on the
apical cation channel in rabbit esophageal epithelium. Am J Physiol Gastrointest Liver Physiol
2007 Mar;292(3):G796–805. [PubMed: 16614374]

11. Awayda MS, Bengrine A, Tobey NA, Stockand JD, Orlando RC. Nonselective cation transport in
native esophageal epithelia. Am J Physiol Cell Physiol 2004 Aug;287(2):C395–402. [PubMed:
15197006]

12. Tobey NA, Djukic Z, Brighton LE, Gambling TM, Carson JL, Orlando RC. Lateral cell
membranes and shunt resistance in rabbit esophageal epithelium. Dig Dis Sci Jul 55(7):1856–65.

13. Tobey NA, Argote CM, Awayda MS, Vanegas XC, Orlando RC. Effect of Luminal Acidity on the
Apical Cation Channel in Rabbit Esophageal Epithelium. Am J Physiol Gastrointest Liver Physiol
2007 Apr 13;292:G796–805. [PubMed: 16614374]

14. Orlando, RC.; Powell, D. Studies of esophageal epithelial electrolyte transport and potential
difference in man. In: Allen, A.; Flemstrom, G.; Garner, A.; Silen, W., editors. Mechanisms of
Mucosal Protection in the Upper Gastrointestinal Tract. New York: Raven Press; 1984. p. 75-9.

15. Tobey NA, Argote CM, Vanegas XC, Barlow W, Orlando RC. Electrical parameters and ion
species for active transport in human esophageal stratified squamous epithelium and Barrett's
specialized columnar epithelium. Am J Physiol Gastrointest Liver Physiol 2007 Jul;293(1):G264–
70. [PubMed: 17431220]

16. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the
actin cytoskeleton. Biochim Biophys Acta 2008 Mar;1778(3):660–9. [PubMed: 17854762]

17. Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta
2008 Mar;1778(3):572–87. [PubMed: 17854763]

18. Angelow S, Yu AS. Claudins and paracellular transport: an update. Curr Opin Nephrol Hypertens
2007 Sep;16(5):459–64. [PubMed: 17693762]

19. Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, et al. Claudin-18:
a dominant tight junction protein in Barrett's esophagus and likely contributor to its acid
resistance. Am J Physiol Gastrointest Liver Physiol 2007 Dec;293(6):G1106–13. [PubMed:
17932229]

20. Tobey NA, Argote CM, Hosseini SS, Orlando RC. Calcium-switch technique and junctional
permeability in native rabbit esophageal epithelium. Am J Physiol Gastrointest Liver Physiol 2004
Jun;286(6):G1042–9. [PubMed: 14739143]

21. Gumbiner B, Stevenson B, Grimaldi A. The role of the cell adhesion molecule uvomorulin in the
formation and maintenance of the epithelial junctional complex. J Cell Biol 1988 Oct;107(4):
1575–87. [PubMed: 3049625]

22. Garrod DR, Merritt AJ, Nie Z. Desmosomal cadherins. Curr Opin Cell Biol 2002 Oct;14(5):537–
45. [PubMed: 12231347]

23. Christie KN, Thomson C, Xue L, Lucocq JM, Hopwood D. Carbonic anhydrase isoenzymes I, II,
III, and IV are present in human esophageal epithelium. J Histochem Cytochem 1997 Jan;45(1):
35–40. [PubMed: 9010466]

24. Tobey NA, Koves G, Orlando RC. Human esophageal epithelial cells possess an Na+/H+
exchanger for H+ extrusion. Am J Gastroenterol 1998 Nov;93(11):2075–81. [PubMed: 9820376]

25. Tobey NA, Reddy SP, Khalbuss WE, Silvers SM, Cragoe EJ Jr, Orlando RC. Na(+)-dependent and
-independent Cl-/HCO3- exchangers in cultured rabbit esophageal epithelial cells.
Gastroenterology 1993 Jan;104(1):185–95. [PubMed: 8419242]

26. Shallat S, Schmidt L, Reaka A, Rao D, Chang EB, Rao MC, et al. NHE-1 isoform of the Na+/H+
antiport is expressed in the rat and rabbit esophagus. Gastroenterology 1995 Nov;109(5):1421–8.
[PubMed: 7557121]

27. Layden TJ, Schmidt L, Agnone L, Lisitza P, Brewer J, Goldstein JL. Rabbit esophageal cell
cytoplasmic pH regulation: role of Na(+)-H+ antiport and Na(+)-dependent HCO3- transport
systems. Am J Physiol 1992 Sep;263(3 Pt 1):G407–13. [PubMed: 1329529]

Orlando Page 8

Best Pract Res Clin Gastroenterol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



28. Feldman MJ, Morris GP, Dinda PK, Paterson WG. Mast cells mediate acid-induced augmentation
of opossum esophageal blood flow via histamine and nitric oxide. Gastroenterology 1996 Jan;
110(1):121–8. [PubMed: 8536848]

29. Feldman MJ, Morris GP, Paterson WG. Role of substance P and calcitonin gene-related peptide in
acid-induced augmentation of opossum esophageal blood flow. Dig Dis Sci 2001 Jun;46(6):1194–
9. [PubMed: 11414293]

30. Solcia E, Villani L, Luinetti O, Trespi E, Strada E, Tinelli C, et al. Altered intercellular
glycoconjugates and dilated intercellular spaces of esophageal epithelium in reflux disease.
Virchows Arch 2000 Mar;436(3):207–16. [PubMed: 10782878]

31. Villanacci V, Grigolato PG, Cestari R, Missale G, Cengia G, Klersy C, et al. Dilated intercellular
spaces as markers of reflux disease: histology, semiquantitative score and morphometry upon light
microscopy. Digestion 2001;64(1):1–8. [PubMed: 11549831]

32. Caviglia R, Ribolsi M, Maggiano N, Gabbrielli AM, Emerenziani S, Guarino MP, et al. Dilated
intercellular spaces of esophageal epithelium in nonerosive reflux disease patients with
physiological esophageal acid exposure. Am J Gastroenterol 2005 Mar;100(3):543–8. [PubMed:
15743349]

33. Ravelli AM, Villanacci V, Ruzzenenti N, Grigolato P, Tobanelli P, Klersy C, et al. Dilated
Intercellular Spaces: A Major Morphological Feature of Esophagitis. J Pediatr Gastroenterol Nutr
2006 May;42(5):510–5. [PubMed: 16707972]

34. Tobey NA, Carson JL, Alkiek RA, Orlando RC. Dilated intercellular spaces: a morphological
feature of acid reflux--damaged human esophageal epithelium. Gastroenterology 1996 Nov;
111(5):1200–5. [PubMed: 8898633]

35. Bove M, Vieth M, Dombrowski F, Ny L, Ruth M, Lundell L. Acid challenge to the human
esophageal mucosa: effects on epithelial architecture in health and disease. Dig Dis Sci 2005 Aug;
50(8):1488–96. [PubMed: 16110841]

36. Farre R, De Vos R, Geboes K, Verbecke K, Vanden Berghe P, Depoortere I, et al. Critical role of
stress in increased oesophageal mucosa permeability and dilated intercellular spaces. Gut 2007
Sep;56(9):1191–7. [PubMed: 17272649]

37. Long JD, Marten E, Tobey NA, Orlando RC. Effects of luminal hypertonicity on rabbit esophageal
epithelium. Am J Physiol 1997 Sep;273(3 Pt 1):G647–54. [PubMed: 9316468]

38. Rodrigo S, Abboud G, Oh D, DeMeester SR, Hagen J, Lipham J, et al. High intraepithelial
eosinophil counts in esophageal squamous epithelium are not specific for eosinophilic esophagitis
in adults. Am J Gastroenterol 2008 Feb;103(2):435–42. [PubMed: 18289205]

39. Takubo K, Honma N, Aryal G, Sawabe M, Arai T, Tanaka Y, et al. Is there a set of histologic
changes that are invariably reflux associated? Arch Pathol Lab Med 2005 Feb;129(2):159–63.
[PubMed: 15679411]

40. Jovov BJ, Djukic Z, Shaheen NJ, Orlando RC. E-cadherin cleavage in GERD. Gastroenterology
2009;136(May):M1834.

41. Asaoka D, Miwa H, Hirai S, Ohkawa A, Kurosawa A, Kawabe M, et al. Altered localization and
expression of tight-junction proteins in a rat model with chronic acid reflux esophagitis. J
Gastroenterol 2005 Aug;40(8):781–90. [PubMed: 16143882]

42. Miwa H, Oshima T, Sakurai J, Tomita T, Matsumoto T, Iizuka S, et al. Experimental oesophagitis
in the rat is associated with decreased voluntary movement. Neurogastroenterol Motil 2009 Mar;
21(3):296–303. [PubMed: 19126182]

43. Li FY, Li Y. Interleukin-6, desmosome and tight junction protein expression levels in reflux
esophagitis-affected mucosa. World J Gastroenterol 2009 Aug 7;15(29):3621–30. [PubMed:
19653339]

44. Tobey NA, Gambling TM, Vanegas XC, Carson JL, Orlando RC. Physicochemical basis for
dilated intercellular spaces in non-erosive acid-damaged rabbit esophageal epithelium. Dis
Esophagus 2008;21(8):757–64. [PubMed: 18522636]

45. Bhat YM, Bielefeldt K. Capsaicin receptor (TRPV1) and non-erosive reflux disease. Eur J
Gastroenterol Hepatol 2006 Mar;18(3):263–70. [PubMed: 16462539]

Orlando Page 9

Best Pract Res Clin Gastroenterol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



46. Bielefeldt K, Davis BM. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal
sensation in mice. Am J Physiol Gastrointest Liver Physiol 2008 Jan;294(1):G130–8. [PubMed:
17975130]

47. Boudaka A, Worl J, Shiina T, Neuhuber WL, Kobayashi H, Shimizu Y, et al. Involvement of
TRPV1-dependent and -independent components in the regulation of vagally induced contractions
in the mouse esophagus. Eur J Pharmacol 2007 Feb 5;556(1-3):157–65. [PubMed: 17156774]

48. Yu S, Undem BJ, Kollarik M. Vagal afferent nerves with nociceptive properties in guinea-pig
oesophagus. J Physiol 2005 Mar 15;563(Pt 3):831–42. [PubMed: 15649987]

49. Rodrigo J, Hernandez CJ, Vidal MA, Pedrosa JA. Vegetative innervation of the esophagus. III.
Intraepithelial endings. Acta Anat (Basel) 1975;92(2):242–58. [PubMed: 1155013]

50. Akiba Y, Mizumori M, Kuo M, Ham M, Guth PH, Engel E, et al. CO2 chemosensing in rat
oesophagus. Gut 2008 Dec;57(12):1654–64. [PubMed: 18682519]

51. Kern M, Hofmann C, Hyde J, Shaker R. Characterization of the cerebral cortical representation of
heartburn in GERD patients. Am J Physiol Gastrointest Liver Physiol 2004 Jan;286(1):G174–81.
[PubMed: 14512287]

52. Tobey NA, Orlando RC. Mechanisms of acid injury to rabbit esophageal epithelium. Role of
basolateral cell membrane acidification. Gastroenterology 1991 Nov;101(5):1220–8. [PubMed:
1936791]

53. Tobey NA, Reddy SP, Keku TO, Cragoe EJ Jr, Orlando RC. Mechanisms of HCl-induced lowering
of intracellular pH in rabbit esophageal epithelial cells. Gastroenterology 1993 Oct;105(4):1035–
44. [PubMed: 8405846]

54. Jimenez P, Lanas A, Piazuelo E, Esteva F. Effect of growth factors and prostaglandin E2 on
restitution and proliferation of rabbit esophageal epithelial cells. Dig Dis Sci 1998 Oct;43(10):
2309–16. [PubMed: 9790470]

55. Jimenez P, Lanas A, Piazuelo E, Esteva F. Effects of extracellular pH on restitution and
proliferation of rabbit oesophageal epithelial cells. Aliment Pharmacol Ther 1999 Apr;13(4):545–
52. [PubMed: 10215741]

56. Tsuji H, Fuse Y, Kawamoto K, Fujino H, Kodama T. Healing process of experimental esophageal
ulcers induced by acetic acid in rats. Scand J Gastroenterol Suppl 1989;162:6–10. [PubMed:
2595309]

57. Lanas A, Soteras F, Jimenez P, Fiteni I, Piazuelo E, Royo Y, et al. Superoxide anion and nitric
oxide in high-grade esophagitis induced by acid and pepsin in rabbits. Dig Dis Sci 2001 Dec;
46(12):2733–43. [PubMed: 11768267]

58. Souza RF, Huo X, Mittal V, Schuler CM, Carmack SW, Zhang HY, et al. Gastroesophageal reflux
might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury.
Gastroenterology 2009 Nov;137(5):1776–84. [PubMed: 19660463]

59. Naya MJ, Pereboom D, Ortego J, Alda JO, Lanas A. Superoxide anions produced by inflammatory
cells play an important part in the pathogenesis of acid and pepsin induced oesophagitis in rabbits.
Gut 1997 Feb;40(2):175–81. [PubMed: 9071927]

60. Biancani P, Barwick K, Selling J, McCallum R. Effects of acute experimental esophagitis on
mechanical properties of the lower esophageal sphincter. Gastroenterology 1984 Jul;87(1):8–16.
[PubMed: 6724278]

61. Rieder F, Cheng L, Harnett KM, Chak A, Cooper GS, Isenberg G, et al. Gastroesophageal reflux
disease-associated esophagitis induces endogenous cytokine production leading to motor
abnormalities. Gastroenterology 2007 Jan;132(1):154–65. [PubMed: 17241868]

62. Cheng L, Harnett KM, Cao W, Liu F, Behar J, Fiocchi C, et al. Hydrogen peroxide reduces lower
esophageal sphincter tone in human esophagitis. Gastroenterology 2005 Nov;129(5):1675–85.
[PubMed: 16285965]

63. Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, Harnett KM. Platelet-activating factor and
prostaglandin E2 impair esophageal ACh release in experimental esophagitis. Am J Physiol
Gastrointest Liver Physiol 2005 Sep;289(3):G418–28. [PubMed: 15890711]

64. Cao W, Cheng L, Behar J, Fiocchi C, Biancani P, Harnett KM. Proinflammatory cytokines alter/
reduce esophageal circular muscle contraction in experimental cat esophagitis. Am J Physiol
Gastrointest Liver Physiol 2004 Dec;287(6):G1131–9. [PubMed: 15271650]

Orlando Page 10

Best Pract Res Clin Gastroenterol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



65. White RJ, Zhang Y, Morris GP, Paterson WG. Esophagitis-related esophageal shortening in
opossum is associated with longitudinal muscle hyperresponsiveness. Am J Physiol Gastrointest
Liver Physiol 2001 Mar;280(3):G463–9. [PubMed: 11171629]

66. Paterson WG. Role of mast cell-derived mediators in acid-induced shortening of the esophagus.
Am J Physiol 1998 Feb;274(2 Pt 1):G385–8. [PubMed: 9486193]

67. Paterson WG, Kolyn DM. Esophageal shortening induced by short-term intraluminal acid
perfusion in opossum: a cause for hiatus hernia? Gastroenterology 1994 Dec;107(6):1736–40.
[PubMed: 7958685]

68. Fass R. Gastroesophageal reflux disease revisited. Gastroenterol Clin North Am 2002 Dec;31(4
Suppl):S1–10. [PubMed: 12489466]

69. Fass R, Ofman JJ. Gastroesophageal reflux disease--should we adopt a new conceptual
framework? Am J Gastroenterol 2002 Aug;97(8):1901–9. [PubMed: 12190152]

70. Labenz J, Nocon M, Lind T, Leodolter A, Jaspersen D, Meyer-Sabellek W, et al. Prospective
follow-up data from the ProGERD study suggest that GERD is not a categorial disease. Am J
Gastroenterol 2006 Nov;101(11):2457–62. [PubMed: 17029609]

71. Pace F, Pallotta S, Vakil N. Gastroesophageal reflux disease is a progressive disease. Dig Liver Dis
2007 May;39(5):409–14. [PubMed: 17379585]

72. Cameron AJ, Lomboy CT. Barrett's esophagus: age, prevalence, and extent of columnar
epithelium. Gastroenterology 1992 Oct;103(4):1241–5. [PubMed: 1397881]

73. Hanna S, Rastogi A, Weston AP, Totta F, Schmitz R, Mathur S, et al. Detection of Barrett's
esophagus after endoscopic healing of erosive esophagitis. Am J Gastroenterol 2006 Jul;101(7):
1416–20. [PubMed: 16863541]

74. Orlando, RC. Pathogenesis of reflux esophagitis and Barrett's esophagus. In: Cappell, MS., editor.
Medical Clinics of North America. Philadelphia: WB Saunders Company; 2005. p. 219-42.

75. Su Y, Chen X, Klein M, Fang M, Wang S, Yang CS, et al. Phenotype of columnar-lined esophagus
in rats with esophagogastroduodenal anastomosis: similarity to human Barrett's esophagus. Lab
Invest 2004 Jun;84(6):753–65. [PubMed: 15094711]

76. Alvaro-Villegas JC, Sobrino-Cossio S, Hernandez-Guerrero A, Alonso-Larraga JO, de-la-Mora-
Levy JG, Molina-Cruz A, et al. Dilated intercellular spaces in subtypes of gastroesophagic reflux
disease. Rev Esp Enferm Dig May 102(5):302–7.

77. Orlando, RC. Mucosal defense in Barrett's esophagus. In: Sharma, P.; Sampliner, R., editors.
Barrett's esophagus and esophageal adenocarcinoma. 2nd. Malden: Blackwell Publishing; 2006.

78. El-Serag HB, Petersen NJ, Carter J, Graham DY, Richardson P, Genta RM, et al. Gastroesophageal
reflux among different racial groups in the United States. Gastroenterology 2004 Jun;126(7):1692–
9. [PubMed: 15188164]

79. Wang A, Mattek NC, Holub JL, Lieberman DA, Eisen GM. Prevalence of complicated
gastroesophageal reflux disease and Barrett's esophagus among racial groups in a multi-center
consortium. Dig Dis Sci 2009 May;54(5):964–71. [PubMed: 19255852]

Orlando Page 11

Best Pract Res Clin Gastroenterol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The diagram depicts a proposed means by which acid injury to esophageal epithelium is
perpetuated by inflammation. Inflammation is shown to alter both longitudinal and circular
smooth muscle function in distal esophagus, resulting in impairment in both antireflux
mechanisms [reduction in lower esophageal sphincter (LES) pressure and creation of a hiatal
hernia] and luminal clearance (impaired peristalsis). These defects in turn are shown to
create more damage and inflammation by cycling back to induce more acid reflux.
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Figure 2.
The diagram depicts a proposed means by which acid injury to esophageal epithelium leads
to the three common endoscopic types of gastroesophageal reflux disease (GERD):
nonerosive reflux disease (NERD), erosive esophagitis, and Barrett's esophagus. Notably, all
three have in common the histopathologic lesion of dilated intercellular spaces within
esophageal ‘squamous’ epithelium; and inflammation is shown to be the promoter of
progression from NERD to erosive esophagitis. Barrett's esophagus is an aberrant form of
repair that occurs in some subjects and this is shown to extend from erosive esophagitis.
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TABLE 1
Properties within the esophageal epithelium for protection against luminal acidity

Apical Cell Membrane

 Hydophobic lipid bilayer

 Nonselective sodium channel

Apical Junctional Complex

 Tight junction

 Adherens junction

 Desmosome

Ion Transport

 Na+/H+ exchanger

 Na+-dependent Cl-/HCO3
- exchanger

Buffers

 Bicarbonate ions

 Phosphate ions

 Basic proteins

Reparative Processes

 Cell replication

 Cell regeneration

 Inflammation
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