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Abstract

Optogenetic techniques have given researchers unprecedented access to the function of discrete 

neural circuit elements and have been instrumental in the identification of novel brain pathways 

that become dysregulated in neuropsychiatric diseases. For example, stress is integrally linked to 

the manifestation and pathophysiology of neuropsychiatric illness, including anxiety, addiction 

and depression. Due to the heterogeneous populations of genetically and neurochemically distinct 

neurons in areas such as the bed nucleus of the stria terminalis (BNST), as well as their substantial 

number of projections, our understanding of how neural circuits become disturbed after stress has 

been limited. Using optogenetic tools, we are now able to selectively isolate distinct neural circuits 

that contribute to these disorders and perturb these circuits in vivo, which in turn may lead to the 

normalization of maladaptive behavior. This review will focus on current optogenetic strategies to 

identify, manipulate, and record from discrete neural circuit elements in vivo as well as highlight 

recent optogenetic studies that have been utilized to parcel out BNST function.
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Introduction

Stress is defined as the body’s response to any demands for change1. Although stress can be 

positive, as it forces an organism to adapt in order to survive, the neurophysiological 

components of the stress response often times become disturbed in neuropsychiatric 

illnesses, such as depression, generalized anxiety disorder, post traumatic stress disorder and 

drug and alcohol addiction2345. Thus, in order to develop novel and effective treatments, a 

critical understanding of how discrete neural circuit elements are altered through stress-

producing stimuli is essential.

The extended amygdala has been implicated in rodent and human studies as a crucial 

mediator of the behavioral effects of aversive stimuli and both acute and chronic 

stress678910. The region is comprised of the bed nucleus of the stria terminalis (BNST), the 

central (CeA) and medial (MeA) nucleus of the amygdala, and the shell of the nucleus 

accumbens (NAc)11. Since the extended amygdala encapsulates many different structures 

and cell types, which are intermingled within these regions, the neurophysiological 

properties and behavioral importance of genetically distinct neural circuits mediating stress 

and anxiety remain elusive. This review will focus on current optogenetic strategies that can 

be used to examine neural circuit function from synapse to behavior. In addition, this review 

will also highlight recent optogenetic strategies that have been used to dissect the BNST, a 

region that has been implicated in the integration and processing of the stress response10.

Optogenetics

Introduction of the light-gated cation channel channelrhdopsin-2 (ChR2) or chloride and 

proton pumps such as halorhodpson (NpHR) and archaerhodopsin (Arch) into genetically 

defined neural tissues has revolutionized neuroscience12131415. Opsin proteins can be 

delivered into mammalian brain tissue through viral vectors that contain cell specific 

promoters, such as calcium-calmodulin dependent protein kinase IIα (CaMKIIα)161718. 

Additionally, transgenic animals that express cre-recombinase in defined populations of 

neurons can be injected with viral vectors encoding a cre-inducible opsin protein, to express 

opsins in only neurons that contain cre-recombinase192021. This approach has been used to 

target discrete neuronal subtypes in the ventral tegmental area (VTA). For example, infusion 

of a cre-inducible ChR2 into the VTA of Vgat-cre mice transduced only GABAergic 

neurons21. Thus, promoter driven and cre-dependent viral strategies allow for the precise 

control of neurochemically discrete cell bodies and terminals in heterogeneous brain tissue. 

Unlike other neuroscience approaches such as lesions and pharmacology, optogenetics 

allows for more temporally controlled perturbations of distinct neural circuit pathways in 

awake and behaving animals. Furthermore, the combination of optogenetic strategies and 

traditional pharmacological techniques can also increase the precision of neural circuit 

manipulations22. Importantly, optogenetic techniques can be utilized for long term 

behavioral manipulations, which is critical for identifying novel neural circuits that are 

involved in chronic stress. For a more thorough review of optogenetic procedures and 

principles see23142224. This review will now focus on several new strategies that utilize 

optogenetic techniques to assist in the identification and modulation of discrete neural 

circuits in brain slices and behaving animals.
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Optogenetic circuit mapping

ChR2-assisted circuit mapping allows for the characterization of functional connectivity 

between multiple neural substrates in heterogeneous tissue. With ChR2-assisted circuit 

mapping, axons and terminals from an input brain region can be optically stimulated even 

when excised from cell bodies, thus allowing for the examination of circuit connectivity in 

brain slices. In one of the first studies to utilize this procedure, Petreanu et al.25 transduced 

pyramidal neurons in layers 2/3 of the somatosensory cortex with ChR2. Presynaptic 

terminals from this region were then optically stimulated in various cortical output areas to 

examine their synaptic input onto targeted postsynaptic neurons using slice 

electrophysiology. In these experiments, the authors found that layers 2/3 pyramidal neurons 

synapse onto pyramidal neurons in layers 2/3/5/6, a finding that would have been difficult to 

obtain using traditional electrophysiological techniques. In an elegant series of experiments, 

Atasoy et al.19, used ChR2-assisted circuit mapping to functionally dissect subcircuits 

within the arcuate nucleus of the hypothalamus (ARC) and their projection neurons in order 

to deconstruct neural circuits that control hunger and feeding. Initially, the authors 

transduced two populations of neurons: agouti-related peptide (AGRP)- and pro-

opiomelanocortin (POMC)-containing cells, within the ARC with a cre-inducible ChR2 to 

test their functional connectivity. Using optogenetics in conjunction with patch-clamp 

electrophysiology, the authors demonstrated that AGRP-containing neurons formed 

functional synapses on POMC-containing neurons within the ARC and that optical 

stimulation of the ARCAGRP-ARCPOMC circuit produced robust inhibitory post-synaptic 

currents. Furthermore, no synaptic responses were seen in ARCAGRP-ARCAGRP, 

ARCPOMC-ARCAGRP, or ARCPOMC-ARCPOMC circuits. Additionally, the authors 

examined the behavioral consequences of stimulating AGRP-containing ARC neurons on 

two output areas: the paraventricular nucleus of the hypothalamus (PVH) and the 

parabrachial nucleus (PBN). In these studies, AGRP neurons were transduced with a cre-

inducible ChR2 with optical fibers implanted above the PVH and PBN within the same 

animal. Optical stimulation of the ARCAGRP-PVH pathway produced robust increases in 

food intake, whereas optogenetic activation of the ARCAGRP-PBN pathway had no effect.

Although the previous studies examined the functional connectivity of neural circuit output 

regions, optogenetic techniques can also be used to examine synaptic input onto a brain 

region of interest. For example, viral vectors such as rabies, which allow for the retrograde 

transport of proteins, can be employed26. Watabe-Uchida et al.,27 used an EnvA-

pseudotyoed, G-deleted rabies virus to visualize monosynaptic inputs to genetically defined 

neurons within the VTA in an exquisite series of experiments. In these studies, an AAV 

coding a cre-inducible avian receptor TVA, required for initial infection, and an AAV 

encoding rabies virus envelop glycoprotein (RG), necessary for transsynaptic spread, was 

injected into the VTA or substantia nigra reticulata (SNr) in dopamine transporter (DAT) -

cre mice, to transduce only dopaminergic neurons expressing TVA. Approximately 2 weeks 

after the initial viral cocktail injection, the same mice were injected with the modified rabies 

virus. Since only neurons that expressed TVA were transduced by the rabies viral construct, 

inputs to dopamine neurons were visualized and quantified, providing a comprehensive map 

of midbrain dopaminergic circuitry. Furthermore, rabies viral vectors can also be packaged 
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with cre and used in combination with optogenetic strategies in order to selectively control 

presynaptic inputs into a target region. Utilizing these techniques, Chaudhury et al.28, 

injected a pseudorabies virus expressing cre (PRV-cre) into the NAc and an AAV coding a 

cre-inducible ChR2 into the VTA. Consequently, only neurons that expressed cre expressed 

a functional ChR2. Thus, the authors were able to optically stimulate VTA neurons that 

project to the NAC to manipulate behavior during a social-interaction task. Opsins can also 

be tethered to rabies viral vectors for trans-synaptic transduction. Lammel et al.29 injected a 

rabies virus coding a cre-inducible ChR2 into the VTA of tyrosine hydroxylase (TH) -cre 

mice and implanted fibers into two VTA input structures, the laterodorsal tegmentum (LDT) 

and the lateral habenula (LHb). Due to the retrograde insertion of ChR2, the authors were 

able to control two distinct inputs onto VTA dopamine neurons. The authors found that 

optical stimulation of the LDT caused a conditioned place preference, whereas optogenetic 

activation of the LHb resulted in a conditioned place aversion, consistent with previous 

data30. One caveat in using a rabies viral vector for retrograde transsynaptic labeling, 

however, is that the virus will cause cell death approximately 2 weeks post transduction26. 

Thus, long-term behavioral manipulations are often not feasible. Herpes simplex viral 

vectors (HSV), which can also retrogradely transport proteins, such as opsins, may be 

beneficial for long term in vivo applications since cell death from viral infection is 

significantly lowered when compared to rabies. Additionally, HSV allows for rapid 

transduction (approx. 24 hr) into cell bodies, whereas AAV vectors take approximately 10–

14 days for maximal expression. Figure 1 depicts a schematic summary detailing various 

strategies discussed for optogenetic circuit mapping.

Optogenetic manipulation of projection neurons in vivo

Although a majority of optogenetic experiments have focused on controlling cell bodies to 

measure a behavioral phenotype31323334353620, opsins can be trafficked from the soma to 

axon terminals for pathway specific stimulation or inhibition, as mentioned previously in the 

experiments conducted by Atasoy et al19. In another example, Stamatakis et al.30 globally 

transduced lateral habenula (LHb) neurons with ChR2 and implanted a fiber optic above the 

rostromedial tegmental nucleus (RMTg) in order to stimulate the LHb-RMTg pathway 

during behavioral tasks. The authors found that optical stimulation of LHb-RMTg neural 

circuit resulted in active, passive, and conditioned behavioral avoidance, indicating that this 

pathway is aversive. One drawback for stimulating axon terminals in vivo using optogenetic 

manipulations is that ChR2-activation of axon terminals produces back-propagating action 

potentials, thereby activating transduced cell bodies, which in turn can activate axons to 

other brain regions. To minimize the potential contribution of network activity, 

pharmacological inactivation of ChR2-infected cell bodies, in conjunction with optical 

stimulation, during behavioral assays can be employed. In a study by Stuber et al.17, BLA 

glutamatergic efferents were transduced with ChR2 and a guide cannula was placed above 

the NAc for optogenetic activation of the BLA-NAc pathway. In these studies, mice reliably 

nose poked to receive optogenetic stimulation of BLA glutamatergic fibers terminating 

within the NAc. To further test the specificity of the BLA-NAc pathway in promoting 

reward seeking, the authors injected lidocaine into the BLA to inactivate ChR2-expressing 

cell bodies before the start of the nose-poking task. Infusions of lidocaine did not alter the 
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acquisition or expression of reward-seeking behavior, indicating that the effects observed 

were not due to the influence of network mediated activity through the BLA. Another 

limitation of using optogenetic terminal stimulation in vivo is that fibers of passage from the 

transduced brain region may also be activated if they pass through the output target area. 

Therefore, to demonstrate that the behavioral effects of ChR2 terminal stimulation are 

specific to the circuit, and not from fibers of passage, traditional pharmacological 

manipulations can be incorporated with optogenetic strategies. As previously discussed, 

Atasoy et al.,19 optically stimulated inhibitory AGRP fibers originating in the ARC within 

the PVH, which increased food intake. In a separate series of experiments, the authors 

infused a GABA antagonist into the PVN during ARCAGRP-PVN optical stimulation in a 

feeding paradigm. This resulted in a significant reduction of food intake, indicating the 

behavioral necessity of ARCAGRP signaling within the PVN in promoting feeding.

Optogenetic identification of neurons in vivo

By combining optogenetics techniques and in vivo electrophysiology, real-time 

identification and recordings of distinct, genetically identified neurons is possible in 

heterogeneous brain tissue. In a recent study, Cohen et al.37, recorded the activity of 

neurochemically distinct neurons in the VTA using optogenetic strategies in vivo. Here, the 

authors utilized the cre-dependent viral strategy in order to selectively target either 

dopaminergic or GABAergic neurons with ChR2 in DAT-cre and Vgat-cre mice, 

respectively. By coupling a fiber optic to a multielectrode array, which was implanted in the 

VTA, the authors revealed the identity of the recorded neurons using ChR2-mediated 

spiking during a classical conditioning task.

A recent study used a similar optical identification technique in order to identify genetically 

distinct circuit projection neurons. In these studies, Jennings, Sparta et al.38 transduced 

glutamate and GABA neurons with ChR2 in the BNST of Vglut2-cre and Vgat-cre mice, 

respectively. Additionally, a multielectrode array was implanted in the BNST with an 

optical fiber above the VTA. By photostimulating terminals in the VTA, antidromic spiking 

was reliably detected within the BNST based on back propagating action potentials. 

Latencies in spike detection were then utilized to filter possible transsynaptic spikes from 

responses due to antidromic activation. Importantly, these experiments were completed in 

awake and behaving animals, which allowed for the real-time measurement of neuronal 

activity in optically identified VTA-projecting BNST glutamate and GABA during 

behavioral assays.

Strategies for optogenetic manipulation in vivo

Acutely implanted optical fibers were initially used to optogenetically perturb neural circuits 

in vivo. For this procedure, a fiber optic coupled to a laser was inserted into a guide cannula 

before any behavioral manipulations. However, these optical fibers often broke inside the 

cannula and repeated insertion of the optical fiber led to tissue damage. Therefore, the 

development of implantable optical fibers that can manipulate neural circuit elements with 

minimal tissue damage or change in light output over time has optimized optogenetic tools 

with long-term behavioral experimentation. These implanted optical fibers readily interface 
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with in vivo electrophysiological arrays or electrochemical detection electrodes to provide a 

more thorough probing of neural circuits in vivo39. Importantly, implantable optical fibers 

can penetrate into deep brain structures such as the VTA21. Light emitting diodes (LEDs) 

can also be used to deliver light to mammalian tissue. These devices have been used to 

photostimulate neurons transduced with ChR2 in the barrel cortex during a detection task40. 

Recently, wireless LEDs have been developed, which allow for the transmission of light into 

the brain without the need to tether an animal to an optical patch cable41. These devices 

weigh between 2–3 g, allow the animal a full range of movement, and can deliver up to 2 W 

of power. Wentz et al.41 used wireless LEDs to deliver light in vivo to activate ChR2-

transuced neurons within the motor cortex during a locomotor assay. One caveat with LEDs 

is the limited level of depth that light can penetrate into brain tissue. Studies using LEDs for 

optical stimulation in vivo have focused primarily on cortical regions although a recent study 

has utilized an injectable wireless LED in order to perturb deep brain structures such as the 

VTA42. These microLEDs are approximately 1000 × smaller than traditional LEDs and can 

provide better spatial resolution. Additionally, these devices can be coupled with electrode 

arrays that allows for concurrent collection of photostimulation and neuronal spiking from 

the same brain region. This review will now focus on optogenetic strategies used to dissect 

the BNST, an integral structure of the stress response.

BNST

The BNST is considered to be a connective locus between amygdaloid stress regions 

including the BLA and CeA and brain reward centers such as the VTA and 

NAc114344454610. The BNST can be subdivided into many sub-nuclei, including the oval, 

juxtacapsular, and rhomboid nuclei47, yet consists primarily of GABAergic neurons48. 

However, neurons expressing vesicular glutamate transporters (Vglut2 and Vglut3) are also 

evident464950. Neuropeptides including corticotropin releasing factor (CRF), neuropeptide Y 

(NPY), enkephalin, substance P, neurotensin, and dynorphin also comprise many BNST 

neurons5152535455565057. These neuropeptides can be used as selective markers for small 

subpopulations of cells. However, their role is not well-understood in the regulation of the 

stress response.

BNST and stress

The BNST has been implicated in integrating and processing stress as well as pathological 

anxiety states, such as post traumatic stress disorder (PTSD), that result from chronic stress 

exposure and/or aversive stimuli58596061626364. The BNST has been hypothesized to mediate 

“sustained” fear and/or anxiety after repeated stressors, as well as contextual cues that 

predict aversive and/or stressful stimuli65. Information pertaining to acute or phasic fear 

responses, on the other hand, is thought to be mediated by other amygdala nuclei, such as 

the BLA and CeA6664. Additionally, the BNST has been linked as a key structure in 

modulating stress-induced reinstatement of drug seeking67. Inactivation of the BNST, using 

muscimol and baclofen, can block cocaine reinstatement following injections of the 

pharmacological stressor yohimbine68. Interestingly, BNST efferents to brain reward centers 

such as the VTA can encode stressful stimuli, as VTA-projecting BNST neurons exhibit 
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increased c-Fos protein levels following cocaine reinstatement and a forced swim 

stressor6970.

One intriguing signaling molecule within the BNST that plays a key role in modulating 

stress is CRF. Stress-producing stimuli can elevate CRF expression in the dorsolateral and 

ventrolateral regions of the BNST71727374. Additionally, overexpression of CRF by a 

lentivirus in the BNST enhances a conditioned fear response75. Consistent with the BNST’s 

role in promoting sustained fear/anxiety, administration of a CRF antagonist into the BNST 

blocked sustained, but not phasic, fear behaviors65. Moreover, intra-BNST injections of 

CRF antagonists can block both stress-induced reinstatement of cocaine seeking and 

morphine conditioned place preference7677. Interestingly, acute inhibition of the BNST by 

tetrodotoxin (TTX) injection during stress exposure prevents the expression of stress-

induced anxiety58 and activation of CRF receptors directly in the BNST induces social 

anxiety78. In a recent study, Gafford et al.,79 knocked out GABAA α1 subunits in CRF-

containing neurons within in the BNST, causing increases in anxiety-like behavior as well as 

impairments in the extinction of conditioned fear. These behavioral deficits were rescued 

with an intra-BNST infusion of a CRF antagonist.

Since the BNST comprises many different subnuclei and genetically distinct cell types, 

parceling out specific neural circuit elements that are altered during or following stress 

exposure has been extremely challenging. Moreover, little is known about specific BNST 

projection targets since electrical stimulation of this structure often results in indirect 

stimulation of other brain regions and fibers of passage. However, by utilizing optogenetic 

strategies, we now have a contemporary toolkit that will provide a circuit-aided design to 

determine how genetically defined BNST neural circuits process and respond to stress-

producing stimuli.

Optogenetic manipulations of BNST neural circuits

Within the BNST, this type of precise functional circuit mapping described above will be 

essential for dissecting the plethora of genetically distinct neurons and neural circuit 

elements that are involved in the stress response, which traditional anatomical tracing and 

electrophysiology techniques cannot address. Conventional circuit tracing experiments 

cannot differentiate between distinct cell types in heterogeneous tissue. Additionally, 

electrophysiology experiments, which utilize electrical stimulation, do not provide precise 

synaptic connectivity due to stimulation of all cell types as well as fibers of passage. Two 

recent studies have utilized optogenetic strategies to parcel out distinct BNST circuits 

involved in reward, stress, and anxiety-related behaviors. Kim et al.80 globally transduced 

BNST neurons with NpHR in order to inhibit cell bodies within this region. The authors 

demonstrated that photoinhibition of the BNST increased open-arm time in an elevated plus 

maze (EPM), indicative of anxiolysis. Conversely, photostimulation of the BNST with 

ChR2 resulted in anxiogenesis, as mice spent less time in the open arm of the EPM. In the 

same study, the authors then examined the role of BLA inputs into the BNST on anxiety-like 

behaviors. In these experiments, separate groups of mice were injected with a viral vector 

containing either ChR2 or NpHR into the BLA. Additionally, mice were implanted with 

optical fibers above the BNST in order to stimulate or inhibit BLA terminals within the 
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BNST. Surprisingly, the authors found that photostimulation of the BLA-BNST pathway 

produced anxiolysis, whereas photoinhibition of this pathway resulted in anxiogenesis in 

both the EPM and respiration rate. In a final series of experiments, the authors examined the 

behavioral ramifications of stimulating three discrete BNST output regions: LH, VTA, and 

PBN. Here, the authors reported that photostimulation of BNST efferents in each of the 

target output regions resulted in a unique behavioral phenotype of the anxiety-like state. 

Jennings, Sparta et al.38, demonstrated that parallel yet opposing BNST subcircuits modulate 

divergent motivational states by utilizing optogenetic techniques. The authors transduced 

both glutamatergic and GABAergic BNST neurons with ChR2 in Vglut2-cre and Vgat-cre 

mouse lines, respectively. By antidromically stimulating BNST terminals within the VTA, 

the authors were able to identify VTA-projecting BNST glutamate and GABAergic neurons 

during a foot-shock stress paradigm. The authors found that aversive foot shock caused a net 

enhancement of activity of optically identified VTA-projecting BNST glutamate neurons. In 

contrast, aversive foot shock resulted in the reduction of activity in optically identified 

VTA-projecting BNST GABA neurons. In a separate series of experiments, the authors 

found that photostimulation of BNST-VTA glutamatergic fibers resulted in aversion and 

anxiety-like behavior, whereas photostimulation of BNST-VTA GABAergic terminals 

promoted reward-related behaviors and buffered stress induced anxiety. The results from 

both of these studies indicate that the BNST has a more complex role than what is 

canonically thought in regard to stress, anxiety, and reward. Figure 2 depicts a schematic of 

potential BNST output stress neural circuits, which can be manipulated by optogenetic 

strategies discussed above.

Conclusions

Using optogenetic strategies, we now have the ability to parcel out neural circuits within 

heterogeneous structures, such as the BNST, in order to examine their contribution to the 

stress response. With these new techniques, we will come to a greater understanding of 

BNST neural circuits that are recruited during exposure to stressful stimuli and potentially 

identify new pharmacological targets for the treatment of neuropsychiatric illness.
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List of acronyms

AAV adeno-associated virus

AGRP agouti-related peptide

ARC arcuate nucleus of the hypothalamus

Arch archaerhodopsin

BLA basolateral amygdala

BNST bed nucleus of the stria terminalis
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CaMKIIα calcium-calmodulin dependent protein kinase IIα

CeA central nucleus of the amygdala

ChR2 channelrhodopsin-2

CRF corticotropin releasing factor

DAT dopamine transporter

GABA γ-Aminobutyric acid

HSV herpes simplex virus

LED light emitting diode

LDT laterodorsal tegmentum

LH lateral hypothalamus

LHb lateral habenula

MeA medial nucleus of the amygdala

NAc nucleus accumbens

NpHR halorhodopsin

NPY neuropeptide Y

PAG periaqueductal gray

PBN parabrachial nucleus

POMC pro-opiomelanocortin

PRV pseudorabies virus

PTSD post traumatic stress disorder

PVH paraventricular nucleus of the hypothalamus

RG rabies virus envelop glycoprotein

RMTg rostromedial tegmental nucleus

SNr substantia nigra reticulata

TH tyrosine hydroxylase

TTX tetrodotoxin

TVA avian retroviral receptor

Vgat vesicular GABA transporter

Vglut vesicular glutamate transporters

W watts
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Highlights

Review of current techniques for optogenetic neural circuit mapping.

Strategies for optogenetic manipulation of neural circuit elements in vivo.

Review of optotgenetic techniques used to dissect the BNST.
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Figure 1. Optogenetic strategies for circuit mapping
a. Schematic detailing how to employ ChR2 assisted circuit mapping in slice 

electrophysiology. Presynaptic neurons are transduced with ChR2-eYFP. Optical 

stimulation (473 nm light to optimally activate ChR2) of transduced presynaptic terminals 

results in the detection of ChR2 mediated currents in the patch clamped postsynaptic neuron. 

Additionally, the recording pipette can be filled with dye to identify its neurochemical 

makeup. b. Schematic detailing how to employ a rabies viral delivery strategy in order to 

manipulate VTA neurons terminating in the NAc. Pseudorabies (PRV) that express a 

functional cre protein is injected into the NAc. PRV-cre is taken up by presynaptic terminals 

in the NAc. Infusion of a cre-inducible ChR2 into the VTA. Only neurons that express cre 

will express ChR2. An optical fiber is implanted above the VTA in order to manipulate 

VTA neurons that project to the NAc.
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Figure 2. Potential BNST stress neural circuits
The BNST sends projections to the VTA, PAG, CeA, PBN, and LH. These potential stress 

neural circuits can be analyzed using optogenetic strategies detailed above.

Sparta et al. Page 16

Behav Brain Res. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


