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Abstract
Dysregulation of the dopamine system is linked to various aberrant behaviors, including addiction,
compulsive exercise, and hyperphagia leading to obesity. The goal of the present experiments was
to determine how dopamine contributes to the expression of opposing phenotypes, excessive
exercise and obesity. We hypothesized that similar alterations in dopamine and dopamine-related
gene expression may underly obesity and excessive exercise, as competing traits for central reward
pathways. Moreover, we hypothesized that selective breeding for high levels of exercise or obesity
may have influenced genetic variation controlling these pathways, manifesting as opposing
complex traits. Dopamine, dopamine-related peptide concentrations, and gene expression were
evaluated in dorsal striatum (DS) and nucleus accumbens (NA) of mice from lines selectively bred
for high rates of wheel running (HR) or obesity (M16), and the non-selected ICR strain from
which these lines were derived. HPLC analysis showed significantly greater neurotransmitter
concentrations in DS and NA of HR mice compared to M16 and ICR. Microarray analysis showed
significant gene expression differences between HR and M16 compared to ICR in both brain
areas, with changes revealed throughout the dopamine pathway including D1 and D2 receptors,
associated G-proteins (eg. Golf), and adenylate cyclase (eg. Adcy5). The results suggest similar
modifications within the dopamine system may contribute to the expression of opposite
phenotypes in mice, demonstrating that alterations within central reward pathways can contribute
to both obesity and excessive exercise.
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Introduction
Within the central nervous system, neurotransmitters, peptides, and hormones interact to
establish a balance between energy intake and energy expenditure, resulting in body weight
regulation and homeostasis. Dopamine plays a key role in this complex system, modulating
such motivated behaviors as food intake and physical activity. Moreover, disruption of
normative neurotransmission within dopaminergic pathways has been implicated in binge
eating, obesity, and hyperactivity (Arnsten, 2006; Blum et al., 2008; Davis et al., 2008a;
Davis et al., 2009; Geiger et al., 2008; Gruber et al., 2009; Xu et al., 2009). The genetic
underpinnings of such behaviors are not well understood.

Running-wheel activity has been shown to be rewarding and as such a motivated behavior.
For instance, rats can be conditioned to lever press for access to running wheels (Belke,
2006a; Belke, 2006b; Belke and Christie-Fougere, 2006). Similarly, rats trained to associate
a novel environment with the after-effects of wheel running choose to spend more time in
that environment compared to an environment not paired with wheel running (Lett et al.,
2000). Interestingly, mice selectively bred for high rates of wheel running (HR) show
decreased operant responding for short periods of wheel access compared with control mice;
but when trained to respond for longer periods of access, rates of responding do not differ
among HR and control lines (Belke and Garland, 2007). These data suggest that HR mice
may have an altered reward threshold for wheel running compared to controls. As such, it is
possible that HR mice need to run longer, at a higher intensity, to get the same reward from
wheel running that control mice receive after shorter, less intense bouts. If true, this would
imply that the endogenous reward system in HR mice is dysregulated. In fact, data from
pharmacological experiments suggest that dopamine function in HR mice is altered (Rhodes
et al., 2001; Rhodes and Garland, 2003). For instance, psychostimulants such as
methylphenidate (Ritalin) and cocaine, that stimulate locomotor behavior and wheel running
in control mice, decrease wheel running in HR mice. Similarly, dopamine receptor
antagonists that decrease locomotor behavior in control mice have reduced efficacy or are
ineffective in altering wheel running in HR mice (Rhodes et al., 2001; Rhodes and Garland,
2003). It is hypothesized that the dopamine dysregulation in HR mice manifests as either
decreased DA concentrations, decreased DA receptor densities, or reduced second
messenger signaling (Rhodes, 2005).

Dopamine dysregulation has also been postulated to contribute to development of obesity
and binge eating. Data have illustrated that alterations in the D2 dopamine receptor are
linked to increased reward sensitivity in obese and binge eating individuals (Davis et al.,
2008a). Likewise, research examining obesity prone rats revealed dopamine deficiencies in
the nucleus accumbens and dorsal striatum that were directly linked to hyperphagia and
increased body mass (Geiger et al., 2008). Dopamine D4 receptors are associated with binge
eating in depressed individuals and individuals with bulimia nervosa (Kaplan et al., 2008;
Levitan et al., 2004). In addition, dopamine transporter knock-down mice that show
chronically elevated tissue dopamine display increased goal-directed behavior for food
reward (Cagniard et al., 2006).

Taken together, dopaminergic dysregulation is associated with the expression of both
physical activity and obesity-related phenotypes. The mode of this dysregulation has yet to
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be fully elucidated. The dual vulnerability theory of dopamine dysregulation presents two
opposing hypotheses as to how dopamine and reward sensitivity may contribute to the
expression of motivated behaviors, such as food intake and exercise (Davis et al., 2008a).
The first hypothesis, Reward Deficiency Syndrome, states that individuals with low
dopaminergic function seek rewarding substances (e.g., food, drugs of abuse) to increase
endogenous dopamine levels and improve mood (Blum et al., 2000). Alternatively,
hypersensitivity to reward paired with increased dopaminergic functioning may motivate an
individual to seek rewarding stimuli simply because the reinforcement value of the reward is
so great (Davis et al., 2008a).

The aim of the current research was to examine neuropeptide and gene expression in
midbrain dopaminergic nuclei of mice with genetically predisposed extreme physical
activity and obesity phenotypes. In addition, the effect of wheel running on brain dopamine
concentrations and gene expression was evaluated in these mice. Mice having undergone
long-term selective breeding for high rates of wheel running (HR) or increased body mass
and body fat (M16) were used as representative models for extreme and dichotomous
behavioral phenotypes. HR mice, selected for high rates of wheel running on days 5 and 6 of
a 6-day wheel exposure from an ICR (Institute of Cancer Research) background strain, run
significantly more, faster, and are significantly leaner than non-selected ICR controls
(Girard et al., 2001; Nehrenberg et al., 2009; Swallow et al., 2001). M16 mice, also selected
from the ICR strain, are heavier, hyperphagic, and have significantly greater amounts of
body fat than ICR controls (Allan et al., 2004; Nehrenberg et al., 2009). We hypothesize that
similar modifications in dopamine signaling and dopamine related gene expression may
contribute to the expression of opposite phenotypes in mice, suggesting that alterations
within central reward pathways can contribute to both obesity and excess physical activity.

Materials and Methods
Animals

Male and female mice (8 weeks of age) from three different strains (HR, M16,
ICR(Nehrenberg et al., 2009; Swallow et al., 2001)) were housed individually in standard
laboratory cages with attached running wheels (1.12m diameter, Lafayette Industries,
Lafayette, IN) in a temperature (23 ± 1° C) and humidity controlled vivarium with a
standard 12/12 light dark cycle (lights on 0700h). One half of the animals in each strain and
sex (N=10-12) were allowed free access to the wheels for 6 days, while access to the wheels
was blocked for the remaining half (N=10-12). All mice had ad libitum access to standard
laboratory chow (LabDiet 5053, TestDiet, Richmond, IN) and water. Body weight and
composition were measured immediately prior to the start of the experiment and again after
the six-day wheel trial. Body composition was assessed using MRI (EchoMRI, Houston,
TX) to determine fat and lean mass percentages. Food was weighed prior to the start of the
experiment and again after 6 days. Daily average food intake was calculated by dividing the
total amount of food eaten during the experiment by the number of days (i.e. 6). Wheel
running was recorded continuously over the 6-day period using an automated activity wheel
monitoring program (AWM, Lafayette Industries, Lafayette, IN).

After body composition measurements on day 6, mice were sacrificed by cervical
dislocation and whole brains were immediately removed and placed in 0.9% saline chilled to
4°C for 30 seconds to firm the tissue. Chilled brains were placed on an aluminum block
chilled on ice. A 1.0 mm coronal slice was taken between Bregma 1.70-0.74mm(Franklin et
al., 2001). Brains were placed posterior side up and a horizontal cut was made beneath the
lateral ventricle to produce a horizontal section containing the nucleus accumbens. Another
horizontal cut was made beneath the corpus callosum to produce a section containing the
caudate putamen (here forth referred to as dorsal striatum). Cerebral cortex was removed
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from the edges of these sections. Ventral pallidum was then removed from the nucleus
accumbens section. Finally, both sections were bisected at the midline to produce left and
right hemisphere tissues of caudate putamen and nucleus accumbens. Freshly dissected
tissues were flash frozen in liquid nitrogen and stored at -80° C. Samples to be used for gene
expression studies were placed in RNAlater (Ambion/Applied Biosystems, Austin, TX)
prior to freezing.

Brain Monoamines
Nucleus accumbens and dorsal striatum tissue samples were weighed and transferred to a
contract service provider (Dr. Richard Mailman, Department of Psychiatry, NC
Neurosciences Hospital) where norepinephrine (NE), dopamine (DA), the dopamine
metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA),
serotonin (5HT), and its metabolite 5-hydroxyindoleacetic acid (5HIAA) concentrations
were analyzed using high performance liquid chromatography (HPLC)-electrochemical
detection methods as described elsewhere (Kilts et al., 1981; Martin et al., 1994). Serotonin
levels were not reported for the nucleus accumbens samples because concentrations were
too low to be reliably detected. Concentrations of monoamines and their metabolites within
each sample were calculated in reference to established standard curves. Data were
expressed as nanogram of compound per milligram of brain tissue. The ratio of individual
metabolites to monoamine concentrations was calculated as an indirect measure of
monoamine turnover.

RNA Isolation and Purification
RNA was isolated from thawed tissue samples using the Qiagen RNeasy Lipid Tissue Mini
Kit (Qiagen Inc., Valencia, CA) according to the manufacturer's protocol. Briefly, samples
were placed into 1ml of QIAzol lysis reagent and the lysate homogenized using a tissue
homogenizer. RNA was separated from the homogenate using chloroform, mixed with 70%
ethanol and transferred to a binding column. RNA was rinsed using a series of buffer
solutions and eluted with distilled H2O. RNA quality and quantity was determined by full
spectrum spectrophotometry (NanoDrop ND-1000, NanoDrop Technologies, Wilmington,
DE) and bio-analysis (Genomics and Bioinformatics Core Facility, Lineberger
Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC). Any sample
with a 260/230 ratio lower than 1.8 was purified using sodium acetate precipitation and re-
evaluated for quantity and quality.

Gene Expression Analysis
Approximately 300ng RNA was amplified and biotin labeled using Illumina TotalPrep RNA
Amplification Kit (Ambion/Applied Biosystems, Austin, TX) according to the
manufacturer's protocol. cRNA was eluted with warm, nuclease-free water and quantified
using spectrophotometry. A total of 1.5ug labeled cRNA was hybridized at 58°C for 17.5
hours to the Illumina Sentrix Bead Chip Array mouse 6v1.1 (Illumina, San Diego, CA)
according to the manufacturer's protocol. Arrays were washed, blocked, and analyzed using
Illumina BeadArray reader (Mammalian Genotyping Core, Lineberger Comprehensive
Cancer Center, UNC School of Medicine, Chapel Hill, NC). Image files were extracted
using Illumina Bead Studio v3.0.

Statistical Analysis
Main effects of strain, sex, running condition (wheel access or not), and the interactions
among the three on body weight, body composition, food intake, and brain monoamine
concentrations were determined using Multivariate GLM ANOVA (SPSS, Chicago, IL). A
separate Multivariate GLM ANOVA was performed to identify significant effects of strain
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and sex on wheel running distance and speed, with wheel freeness as a covariate. LSD and
multiple t-test post hoc analyses were used to delineate significant main effects of strain and
sex, respectively.

Using a hypothesis-driven approach (e.g., see Bronikowski et al., 2004), one hundred and
twenty nine genes were chosen a priori using Ingenuity Pathway Analysis (IPA, Ingenuity
Systems, Redwood City, CA, USA) and citations from the literature for their role in the
dopamine signaling pathway, G-protein coupled receptor mediated signaling, as well as
common neurotransmitters known to interact with the dopamine system within the two brain
areas examined (Supplemental material) Gene expression differences were determined using
the SAM statistical package for microarray analysis (Stanford University, Palo Alto, CA).
Raw gene expression scores were exported from Bead Studio and normalized using Loess-
Quantile normalization methods using R v2.9.0 statistical software (www.r-project.com).
Transcripts with a detection score greater than or equal to 0.95 were imported into SAM for
differential expression analysis. Significant expression differences were detected using the
two class unpaired t-statistic and 1000 permutations. Genes detected with a FDR <0.01%
and displaying fold changes greater than 1.5 were considered significant. Using both FDR
and fold change to determine significant differences in gene expression increases the
reproducibility of the results as well as the likelihood that differences in gene expression
detected in the analyses have biological relevance (McCarthy and Smyth, 2009; Patterson et
al., 2006).

Results
Body Weight and Composition prior to Wheel Running

Prior to the initiation of the 6-day wheel trial, there were significant strain differences in
body weight (p<0.001), percent lean mass (p<0.001), and percent fat mass (p<0.001 (Table
1). M16 mice had higher values than HR mice, with ICR being intermediate, for each
phenotype. Likewise, there were significant effects of sex on body weight (p<0.001) and
percent lean mass (p<0.001), with males having increased values, and significant sex by
strain interactions for body weight (p<0.002), percent lean mass (p<0.001), and percent fat
mass (p<0.002 (Table 1). There was no statistical difference in percent body fat between
males and females in the HR and ICR strains; however, female M16 mice had significantly
greater body fat percentages than their male counterparts (p<0.02) (Table 1).

Wheel Running
Significant strain differences were also identified in wheel-running behavior. Multivariate
GLM ANOVA revealed significant strain differences in total distance run (p<0.001) and
average running speed (p<0.001), a significant effect of sex (p<0.005) and a sex by strain
interaction (p<0.05) in total distance run on days 5 and 6 of the experiment (Table 2). LSD
and multiple t-test post hoc tests showed that the HR mice ran significantly greater distances
(p<0.001) and at faster speeds (p<0.001) than either the ICR or M16 mice (Figure 1). There
were no differences in running distance or speed between males and females within the HR
or M16 strains. However, within the ICR strain, males ran significantly less than the females
(p<0.03) (Figure 1).

As expected, running-wheel activity had profound effects on body composition and food
intake. Details of the effects of wheel running on body composition and food intake in these
mouse strains have been recently described by Nehrenberg and coworkers (2009). Because
the effects of wheel running in this experiment are consistent with previous findings, and the
focus of this manuscript is on the strain differences and wheel running in dopamine related
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functions in the CNS, data regarding wheel running effects on body composition are not
presented or discussed.

Brain Monoamines
Analysis of neurochemical concentrations within the dorsal striatum and nucleus accumbens
of male and female HR, ICR, and M16 mice showed significant strain effects on monoamine
concentrations. Specifically, analyses revealed significant effects of strain on the
concentration of dopamine (p<0.001), the dopamine metabolites DOPAC (p<0.01) and
HVA (p<0.001), and norepinephrine (p<0.05) in the nucleus accumbens (Figure 2a). LSD
post hoc comparisons revealed that monoamine and metabolite concentrations in the nucleus
accumbens of HR mice were significantly greater than either the M16 or the ICR mice.
Analyses also showed a significant strain by sex interaction for DA (p<0.01), DOPAC
(p<0.05), and HVA (p<0.01) concentrations (Figure 2a). Female HR mice showed
significantly higher DA concentrations in the nucleus accumbens than their male
counterparts, while M16 males displayed significantly greater DA, DOPAC, and HVA
concentrations than their female counterparts (Figure 2a).

Within the dorsal striatum, analyses showed significant strain effects on concentrations of
dopamine (p<0.001), DOPAC (p<0.001), HVA (p<0.001), serotonin (p<0.01) and its
metabolite 5HIAA (p<0.01). Post hoc tests demonstrated that HR mice had significantly
higher concentrations of all peptides than the other two strains (Figure 2b). There were no
significant effects of running wheel activity on dorsal striatum monoamine concentrations;
however, there was a significant effect of sex on 5HIAA concentrations (p<0.05) and a
significant strain by sex interaction for DOPAC concentrations (p<0.05). Post hoc tests
revealed that female mice had significantly higher 5HIAA concentrations than male mice
across all three strains and that female HR mice had lower, while M16 and ICR females had
higher, DOPAC concentrations (Figure 2b).

Concentrations of dopamine and its metabolites within the nucleus accumbens were
significantly correlated with wheel running distance and speed in HR mice, but not in M16
and ICR mice. Pearson's R correlations showed that greater wheel running speeds and
distances were associated with lower nucleus accumbens dopamine, DOPAC and HVA
concentrations in the HR mice (Table 2). Monoamine concentrations within the dorsal
striatum were not significantly related to running wheel behaviors in any of the three strains.

Univariate GLM analysis revealed significant strain effects for dopamine turnover in the
nucleus accumbens (p<0.02). Turnover ratios for HR mice and M16 mice were significantly
lower than those of ICR mice, however, they did not differ from one another. There were no
significant effects of wheel running, sex, or the interactions of wheel, sex and strain on
turnover ratios in the nucleus accumbens. Turnover ratios for DA did not differ in the dorsal
striatum.

Gene Expression
Within the dorsal striatum, 38 genes were significantly differentially expressed between
male HR and ICR mice. Of these, 18 were down-regulated and 20 were up-regulated in HR
mice compared to ICR (Table 3). Gene expression profiles in M16 mice were significantly
different from ICR, but the number of genes that differed was considerably lower than those
seen with the HR by ICR comparisons. Only 8 genes were differentially expressed in M16
compared with ICR mice, with 4 down-regulated and 4 up-regulated (Table 4). Expression
differences varied only slightly when analyzed separately by running condition. Significant
genes, their functions and fold changes for all comparisons are listed in Tables 5 and 6.
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Differences in gene expression within the nucleus accumbens were less pronounced than
those observed in the dorsal striatum. Between the HR and ICR or M16 and ICR males,
three genes were differentially expressed. When analyzed separately by running condition,
differential gene expression did not change dramatically (Table 7). A separate experiment
assessing gene expression differences in the nucleus accumbens among female runners
within the HR, M16 and ICR strains showed similar results (Table 8).

Discussion
Our results demonstrate that mice selectively bred for high rates of wheel running or
polygenic obesity show significant dopaminergic dysregulation compared with control ICR
mice. HPLC analysis showed that HR mice had significantly elevated dopamine and
dopamine metabolite concentrations in the dorsal striatum and nucleus accumbens compared
to M16 and ICR mice. These results are independent of wheel activity as HR mice with and
without access to wheels showed elevated levels of tissue dopamine compared to M16 and
ICR mice. Calculated dopamine turnover was significantly lower in the nucleus accumbens
of HR and M16 mice compared to ICR mice. Gene expression data demonstrate that these
two selected lines have down-regulated dopamine receptor gene expression paired with
significant alterations in gene expression for transcripts that regulate second-messenger
signaling within the dorsal striatum. Fewer changes in gene expression were detected within
the nucleus accumbens, yet there were significant increases, in both M16 and HR mice, in
the expression of transcripts encoding genes that regulate dopaminergic neurogenesis and
neurotransmission. Gene transcript expression was similar between runners and non-runners
(mice housed with and without wheel access, respectively) within each of the three strains,
although running-wheel activity altered gene transcript expression among the three strains.
Collectively, these findings support the hypothesis that the expression of seemingly
antithetical phenotypes -- such as excessive exercise and obesity -- may be the consequence
of similar alterations in dopamine gene expression within central reward pathways (Fulton et
al., 2006; Geiger et al., 2008; Rhodes et al., 2001; Rhodes and Garland, 2003; Rhodes et al.,
2003). However, we speculate that the functional consequences of these gene expression
changes may be modulated by strain dependent differences in neurotransmitter
concentrations, thus manifesting as opposing phenotypes.

Increased dopamine neurotransmission increases locomotor activity, prolongs the duration
of physical activity, and attenuates the development of fatigue from physical activity (Foley
et al., 2006; Foley and Fleshner, 2008). Animals genetically modified to over-express
dopamine, such as dopamine transporter knockout mice, also show increased locomotor
activity (Wu et al., 2007). Likewise, rats selectively bred for increased aerobic capacity
show increased striatal DA activity, decreased body mass, and increased running distances
compared to rats selectively bred for low aerobic capacity (Waters et al., 2008). Thus,
hyperdopaminergia in the HR mice may contribute to the expression of the excessive
exercise phenotype.

Alternatively, physical activity has been shown to increase tissue dopamine levels as well as
dopamine synthesis and metabolism (Hattori et al., 1994; Meeusen et al., 1997). However,
no effects of wheel running on dopamine or dopamine metabolite concentrations in HR mice
were revealed in this study. Moreover, previous studies reported significantly elevated home
cage activity levels in HR mice denied access to running wheels compared to control mouse
lines (Malisch et al., 2008; Malisch et al., 2009). In addition, Rhodes and coworkers (2001)
showed that HR mice had elevated basal activity levels compared to controls when housed
individually without wheel access for 48 hours (Rhodes et al., 2001). These data provide
evidence to suggest that elevated dopamine levels in HR mice may be causal to, rather than
an effect of, increased wheel running in these mice. In other words, elevated dopamine
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levels may have been a direct target of selection and a key driver of establishment of lines of
mice genetically predisposed to increased activity levels, both in the home cage and when
allowed to access to running wheels. However, replication of these results in one or more of
the other HR replicate selection lines for wheel running (Swallow et al., 1998) is required to
differentiate actual selection response from possible effects of genetic drift.

Wheel running distance and speed were significantly negatively correlated with DA,
DOPAC, and HVA concentrations in the nucleus accumbens of HR, but not M16 or ICR,
mice suggesting the reinforcement potential of wheel running is decreased in these animals.
In fact, HR mice show decreased operant responding for short, but not long, periods of
wheel running access compared to control mice, indicating that HR mice may be less
sensitive to the reinforcing properties of wheel running than controls (Belke and Garland,
2007). Thus, the excessive exercise phenotype in HR mice is most likely a dopamine driven
increase in general locomotor behavior rather than a reward driven behavior. It is important
to note that increased variability in wheel running for the HR mice increased the statistical
power to detect significant correlations with DA levels compared to M16 and ICR mice.
When controlling for running levels using a treadmill test, HR mice failed to show any
significant correlations between running and DA levels (Rhodes, 2005). However,
differences in the physiological response to treadmill versus wheel running may have
contributed to these discrepant findings (Dishman, 1997).

Tissue dopamine levels were not different between M16 and ICR mice. However, calculated
dopamine turnover was significantly decreased in the NA of M16 mice compared to ICR.
Decreased turnover indicates that dopamine may be persisting at the receptor for a longer
period of time, leading to receptor down-regulation or desensitization and decreased
dopamine neurotransmission in M16 mice. Deficiencies in dopamine neurotransmission
within the nucleus accumbens have been associated with obesity phenotypes in rats (Geiger
et al., 2008; Geiger et al., 2009). Similarly, stimulation-induced dopamine signaling is
decreased in the nucleus accumbens of ob/ob mice (Fulton et al., 2006). Moreover, obese
rats are less motivated to respond for food reward in an operant conditioning paradigm and
show decreased DA turnover in the NA (Davis et al., 2008b). Reduced dopaminergic
signaling in these obese models is proposed to signify enhanced motivation for food intake
whereby dopamine deficient animals seek food reward in an attempt to increase
dopaminergic signaling, thus leading to obese phenotypes (Geiger et al., 2008).
Alternatively, decreased dopamine turnover may occur as the result of persistent
hyperphagia-induced dopamine release (Davis et al., 2008b). M16 mice are selected for
increased growth and body mass at 3-6 weeks of age. During this developmental period,
M16 mice display significant hyperphagia, which contributes to the obesity phenotype
(Allan et al., 2004; Eisen and Leatherwood, 1978a; Eisen and Leatherwood, 1978b). Thus,
decreased DA turnover in M16 mice may be evidence for hyperphagia-induced
neuroadaptation within central reward pathways. Although dopaminergic dyregulation is
evident in obese M16 mice, the role of the dopaminergic system in the ontogeny of the
obesity phenotype is not clear.

Several genes involved in the dopamine signaling pathway were differentially expressed
among HR, M16, and ICR mouse strains in the dorsal striatum. For example, transcripts
encoding the dopamine D1a and D2 receptor genes were down-regulated in both HR and
M16 mice compared to ICR. Down-regulation of transcripts encoding the dopamine D1a
receptor gene in the dorsal striatum of HR mice was accompanied by a down-regulation of
transcripts encoding Gnal (adenylate-cyclase stimulating G-protein, alpha, Golf), the key G-
protein involved in D1 receptor signal transduction, and Adcy5 (adenlyate cyclase 5) was
down regulated in both HR and M16 mice. Transcripts encoding adenylate cyclase subtypes
and activating polypeptides were also differentially expressed in the dorsal striatum of HR
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and M16 mice compared with ICR mice. These genes are involved in second messenger
signaling of G-protein coupled receptors, such as those described above. When gene
expression in the dorsal striatum was analyzed separately by running condition, there was
little difference in the transcripts that were differentially expressed between active and
inactive male HR or M16 mice compared with ICR mice. However, M16 mice allowed to
run for 6 days displayed down regulation of Gnal compared to ICR mice. These results
clearly show that dopaminergic signaling is different in HR and M16 mice compared with
ICR controls, yet the exact function of these genes in dopaminergic signaling and
interactions with other neurotransmitter systems in HR and M16 mice requires further study
(see (Keeney et al., 2008)).

Gene expression analyses within the nucleus accumbens identified several genes that may be
involved in the neurological changes that occur within the dopaminergic system of animals
bred for high rates of wheel running or increased body mass. For example, HR mice
displayed increased expression of Nr4a2 compared to both the ICR and M16 mice.
Similarly, M16 mice showed increased Nr4a2 expression compared to ICR mice, but only
when given access to a running wheel. Nr4a2, or Nurr1, is a key player in DA neuronal
differentiation, development of the midbrain dopaminergic system, and DA
neurotransmission and has been associated with locomotor activity, wheel running, and
reward-mediated behaviors (Rojas et al., 2007; Werme et al., 2003). Thus, upregulation of
Nurr1 in the nucleus accumbens of HR mice compared with ICR controls may complement
increased DA concentrations and physical activity in these animals. Moreover, upregulation
of Nurr1 in M16 mice, only when they had access to a running wheel, may indicate that
wheel running acts to increase dopamine neurotransmission in this strain, perhaps serving as
a reinforcing stimulus.

The results described within this manuscript are consistent with existing data demonstrating
that HR mice have dopaminergic dysfunction, resulting in hyperactivity not only in the
running wheel but also in the home cage (Malisch et al., 2008; Malisch et al., 2009; Rhodes
et al., 2001). Pharmacologic experiments have demonstrated that HR mice have altered
sensitivity to the behavioral effects of dopaminergic drugs (Rhodes et al., 2001; Rhodes and
Garland, 2003). For instance, HR mice decrease while control mice increase wheel running
in response to ritalin administration (Rhodes and Garland, 2003). Likewise, HR mice
decrease while control mice do not alter running wheel activity in response to the dopamine
reuptake inhibitors cocaine and GBR12909 (Rhodes et al., 2001). Moreover, a recent study
(Knab et al., 2009) examining dopamine receptor expression in inbred strains with innate
differences in wheel running reported that D1 receptors and tyrosine hydroxylase, the rate-
limiting enzyme for dopamine production, were significantly down-regulated in the nucleus
accumbens and dorsal striatum of a high-running inbred strain of mice compared to a low-
running inbred strain. These differences in gene expression were the result of genetic
differences in the inbred strains, and running wheel activity had no statistical effect on gene
expression (Knab et al., 2009).

The HR behavioral, pharmacologic, and D1and D2 gene expression traits are reminiscent of
traits characterizing the dopamine transporter knockout (DAT KO) mouse. The dopamine
transporter, through its rapid uptake of DA, controls the temporal and spatial activity of
synaptic DA. DAT KO mice are characterized by hyperlocomotion in novel environments
and enhanced perseverative behaviors (Gainetdinov et al., 1998), hyperlocomoter activity
that is attenuated by psychostimulants like methylphenidate and cocaine, and reduced
expression of D1 and D2 receptors compared to wild type mice (Giros et al., 1996). In
contrast to HR mice, DAT KO exhibit low levels of striatum DA, but higher extracellular
and slower clearance levels than wild type mice resulting in a hyperdopaminergic state
(Giros et al., 1996; Jones et al., 1998). In HR mice the perseverative exercise phenotype,
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elevated DA levels, and down-regulation of D1 and D2 receptors indicate a
hyperdopaminergic phenotype as well. Since HR mice exhibit a paradoxical decrease in
wheel running behavior following methylphenidate and cocaine (Rhodes et al., 2001;
Rhodes and Garland, 2003) it is possible that HR mice are also characterized by dopamine
transporter deficiency. Interestingly, a dopamine transporter binding QTL has been reported
on MMU7: 46.2 cM (Jones et al., 1999) near a QTL detected for average and maximum
wheel running speed on MMU7: 53.39 in a HR × C57BL/6J backcross (Nehrenberg et al.,
2010).

Likewise, alterations in dopamine receptor expression and dopamine neurotransmission
have been implicated in the etiology of obesity. Obese individuals have been shown to have
decreased D2 receptor expression (Davis et al., 2008a; Davis et al., 2009). Obesity-prone
rats have decreased receptor expression accompanied by decreased extracellular DA levels
in the nucleus accumbens(Geiger et al., 2008; Geiger et al., 2009). Although M16 mice did
not show decreased tissue DA levels in the NA, they did display decreased DA turnover,
revealing a deficiency in DA neurotransmission within this brain area. D1 receptors have
been associated with palatable food intake and the motivation to acquire food related reward
(Katz et al., 2006; MacDonald et al., 2004; Terry and Katz, 1992). The fact that transcripts
encoding D1 receptors are down-regulated in M16 mice suggests that these mice may have a
reduced sensitivity to food-related reward.

In summary, these data demonstrate significant differences in CNS dopamine concentrations
and gene expression in mice selectively bred for extreme exercise or obesity related
phenotypes. HR mice demonstrated significantly elevated dopamine concentrations in the
mesolimbic and nigrostriatal reward pathways. These increases in dopamine and its
metabolites were accompanied by down-regulation of gene transcripts encoding dopamine
receptors, corresponding G-proteins and second messenger signaling molecules. Similarly,
while M16 mice did not show increased dopamine concentrations within the CNS, they did
demonstrate decreased dopamine turnover and similar down-regulation of transcripts
encoding DA receptors and second messenger signaling molecules compared with ICR
controls. These data suggest that aberrant functioning of the dopaminergic system may
underlie both excessive exercise and obesity related phenotypes. Speculatively, we may
hypothesize that DNA variation in genes controlling and/or regulating this system can act as
substrate for diametric selection responses depending on the phenotype under selection.
However, further evidence to support this must be based in validation using replicated
selection lines in order to differentiate actual selection responses from effects caused by
genetic drift. Nonetheless, our findings may inform clinical research by providing targets for
pharmacologic interventions to treat obesity related disorders and compulsive exercise or
hyperactivity phenotypes that are often comorbid with disorders such as anorexia nervosa or
attention deficit-hyperactivity disorder.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Wheel running distances (A) and running speed (B) in HR, M16 and ICR mice. Mice were
given access to running wheels for 6 days and distances and speeds for days 5 and 6 were
averaged. HR mice ran significantly greater distances (F(2,60)=56.82, P<0.001) at greater
speeds (F(2,60)=54.37, P<0.001) than M16 and ICR mice. There were no differences in
running distance or speed between males and females within the HR or M16 strains.
However, within the ICR strain, males ran significantly less than the females (t(17)=3.68,
p<0.03). Data are presented as mean +/- SEM.
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Figure 2.
Peptide concentrations in the nucleus accumbens for ICR, HR and M16 mice. HPLC
analysis of tissue samples from nucleus accumbens in HR, M16 and ICR mice was
performed to measure tissue concentrations of DA, DOPAC, HVA, NE and 5HIAA. Peptide
concentrations for DA (F(2,110)=23.65, p<0.001), DOPAC (F(2,110)=8.14, p<0.01), HVA
(F(2,110)=42.65, p<0.001) and NE (F(2,110)=3.44, p<0.05) were significantly higher in HR
mice than in M16 or ICR mice. There were no differences in 5HIAA concentrations among
the strains. DA concentrations were significantly higher in female compared to male HR
mice (F(2,110)=5.26, p<0.01). DA (F(2,110)=5.26, p<0.01), DOPAC (F(2,110)=4.35,
p<0.05) and HVA (F(2,110)=7.53, p<0.01) concentrations were significantly higher in male
compared to female M16 mice. Data are presented as mean +/- SEM.
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Figure 3.
Peptide concentrations in the dorsal striatum for ICR, HR and M16 mice. HPLC analysis of
tissue samples from dorsal striatum in HR, M16 and ICR mice was performed to measure
tissue concentrations of DA, DOPAC, HVA, NE, 5HT and 5HIAA. Peptide concentrations
for DA (F(2,92)=60.53, p<0.001), DOPAC (F(2,92)=34.34, p<0.001), HVA (F(2,92)=61.98,
p<0.001), 5HT (F(2,92)=6.61, p<0.01) and 5HIAA (F(2,92)=7.37, p<0.01) were
significantly higher in HR mice than in M16 or ICR mice. There were no differences in NE
concentrations among the strains. 5HIAA concentrations were significantly higher in female
compared to male mice across all three strains (F(1,92)=5.40, p<0.05). Female HR mice had
lower, while M16 and ICR females had higher, DOPAC concentrations (F(2,92)=4.47,
p<0.05) than their male counterparts. Data are presented as mean +/- SEM.
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Table 1
Body weight and body composition of HR, M16 and ICR mouse strains prior to wheel
running

Body Weight (g) Lean Mass (%) Fat Mass (%)

HR Females 23.79 ± 2.22 aa bb 85.49 ± 2.43 aa bb 10.17 ± 2.26 aa bb

Males 29.5 ± 3.46 aa bb * 83.42 ±2.41 aa bb * 10.01 ± 2.14 aa b

ICR Females 28.83 ± 2.51 aa cc 77.03 ± 4.02 aa cc 17.04 ± 3.98 aa cc

Males 35.98 ± 3.81 aa cc * 78.12 ± 3.60 a cc * 14.03 ± 3.97 aa b

M16 Females 45.6 ± 5.84 bb cc 66.60 ± 4.52 bb cc 28.85 ± 4.44 bb cc *

Males 42.23 ± 2.79 bb cc * 74.30 ± 5.63 b cc * 19.45 ± 5.63 bb cc

Data expressed as MEAN ± SEM

a
significantly different than M16, p<0.05

aa
p<0.01

b
significantly different than ICR, p<0.05

bb
p<0.01

c
significantly different than HR, p<0.05

cc
p<0.01

*
significant differences between males and females, p<0.05
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Table 3
Differential gene expression in the dorsal striatum between HR and ICR male mice

Gene ID Fold Change Description

Gfap + 3.85 glial fibrillary acidic protein

Mapk11 + 3.21 mitogen-activated protein kinase 11

Adcyap1 + 3.04 adenylate cyclase activating polypeptide 1

Klc2 + 2.80 kinesin complex : microtubule motor activity

Tp53i11 + 2.76 tumor protein p53 inducible protein 11

Osbpl1a + 2.26 oxysterol binding protein-like 1A

Oprs1 + 2.03 opioid receptor, sigma 1

Npy1r + 1.97 neuropeptide Y receptor Y1

Junb + 1.87 Jun-B oncogene

Mapk8ip3 + 1.87 mitogen-activated protein kinase 8 interacting protein 3

Mapkapk2 + 1.86 MAP kinase-activated protein kinase 2

Jund1 + 1.83 Jun proto-oncogene related gene d1

Adcy2 + 1.78 adenylate cyclase 2

Akt1s1 + 1.74 AKT1 substrate 1 (proline-rich)

Snca + 1.63 synuclein, alpha

Jun + 1.62 Jun oncogene

Mapk10 + 1.62 mitogen activated protein kinase 10

Adcy8 + 1.60 adenylate cyclase 8

Oprl + 1.54 orphan receptor; opioid receptor-like 1

Ucp2 + 1.53 uncoupling protein 2, mitochondrial

Drd1a - 2.91 dopamine receptor D1A

Adcy5 - 2.70 adenylate cyclase 5

Cdk5r1 - 2.68 cyclin-dependent kinase 5, regulatory subunit 1

Gnal - 2.66 adenylate cyclase-stimulating G alpha protein

Adra2c - 2.24 adrenergic receptor, alpha 2c

Drd2 - 2.18 dopamine receptor 2

Gnaq - 2.12 guanine nucleotide binding protein, alpha q polypeptide

Pccb - 1.96 propionyl Coenzyme A carboxylase, beta polypeptide

Akt2 - 1.96 thymoma viral proto-oncogene 2

Atf4 - 1.82 activating transcription factor 4

Fosb - 1.81 FBJ osteosarcoma oncogene B

Akt3 - 1.74 thymoma viral proto-oncogene 3

Klf16 - 1.73 Kruppel-like factor 16

Htr1d - 1.73 5-hydroxytryptamine (serotonin) receptor 1D

Adcyap1r1 - 1.71 adenylate cyclase activating polypeptide 1 receptor 1

Gria3 - 1.71 glutamate receptor, ionotropic, AMPA3 (alpha 3)

Oprk1 - 1.71 opioid receptor, kappa 1

Cdk5rap1 - 1.67 CDK5 regulatory subunit associated protein 1
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Table 4
Differential gene expression in the Dorsal Striatum of HR and ICR male mice with and
without access to running wheels for 6 days

Runner NonRunner

Gene ID Fold Change Gene ID Fold Change

Gfap + 3.79 Gfap + 3.91

Mapk11 + 3.29 Klc2 + 3.33

Adcyap1 + 3.26 Mapk11 + 3.25

Tp53i11 + 2.74 Adcyap1 + 2.84

Osbpl1a + 2.47 Tp53i11 + 2.77

Klc2 + 2.35 Junb + 2.09

Nr4a2* + 2.18 Oprs1 + 2.08

Npy1r + 2.16 Osbpl1a + 2.07

Oprs1 + 1.98 Jund1 + 2.06

Adcy2 + 1.87 Mapkapk2 + 2.05

Mapk8ip3 + 1.83 Mapk8ip3 + 1.91

Snca + 1.75 Oprs1 + 1.80

Akt1s1 + 1.71 Npy1r + 1.80

Mapkapk2 + 1.69 Ucp2* + 1.78

Junb + 1.68 Akt1s1 + 1.77

Gfap + 1.64 Mapk10 + 1.74

Jund1 + 1.62 Jun + 1.72

Adcy8 + 1.56 Adcy2 + 1.68

Jun + 1.53 Adcy8 + 1.64

Mapk10 + 1.51 Oprl* + 1.63

Drd1a - 2.71 Snca + 1.52

Adcy5 - 2.50 Gfap + 1.51

Gnal - 2.36 Gnaq* - 3.64

Adra2c - 2.16 Drd1a - 3.13

Drd2 - 2.12 Adcy5 - 2.93

Akt2* - 2.04 Adra2c - 2.32

Pccb - 1.93 Drd2 - 2.25

Atf4* - 1.89 Pccb - 1.98

Htr1d - 1.77 Oprk1 - 1.92

Klf16 - 1.77 Fosb - 1.88

Pdyn* - 1.76 Gnal - 1.85

Fosb - 1.73 Cdk5rap1 - 1.78

Adcyap1r1* - 1.64 Klf16 - 1.69

Cdk5rap1 - 1.57 Htr1d - 1.69

Oprk1 - 1.53
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Runner NonRunner

Gene ID Fold Change Gene ID Fold Change

Mapkap1* - 1.50

*
indicates gene transcripts whose expression differs by running condition
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Table 5
Differential gene expression in the dorsal striatum between M16 and ICR male mice

Gene ID Fold Change Description

Gnaq + 3.25 guanine nucleotide binding protein, alpha q polypeptide

Adcy9 + 1.69 adenylate cyclase 9

Mapk11 + 1.65 mitogen-activated protein kinase 11

Adcyap1 + 1.58 adenylate cyclase activating polypeptide 1

Drd1a - 1.92 dopamine receptor D1A

Adcy5 - 1.91 adenylate cyclase 5

Drd2 - 1.80 dopamine receptor 2

Htr1d - 1.61 5-hydroxytryptamine (serotonin) receptor 1D
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Table 6
Differential gene expression in the Dorsal Striatum of M16 and ICR male mice with and
without access to running wheels for 6 days

Runner NonRunner

Gene ID Fold Change Gene ID Fold Change

Gnaq* + 4.87 Adcy5 - 1.76

Drd1a - 2.20 Drd2 - 1.71

Adcy5 - 2.06 Drd1a - 1.68

Htr1d* - 1.90

Drd2 - 1.89

Gnal* - 1.85

Ppp1r1b* - 1.63

Adra2c* - 1.59

*
indicates gene transcripts whose expression differs by running condition
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Table 7
Differential gene expression in the Nucleus Accumbens of male mice with and without
access to running wheels for 6 days

Runner Non Runner

Gene ID Fold Change Gene ID Fold Change

HR vs. ICR

Nr4a2 + 2.40 Nr4a2 + 2.48

Snca + 1.68 Mapk1 + 1.57

Mapk11 + 1.57 Mapk10 + 1.53

Snca + 1.51

Mapk8ip3 + 1.50

M16 vs. ICR

Gnaq + 3.47 Gnaq + 2.78

Nr4a2 + 1.90 Osbp - 2.30

Osbp - 1.52
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Table 8
Differential gene expression in the Nucleus Accumbens of female mice allowed access to
running wheels for 6 days

HR vs. ICR M16 vs. ICR

Gene ID Fold Change Gene ID Fold Change

Nr4a2 + 1.99 Gnaq + 3.59

Gfap - 1.57 Nr4a2 + 1.75

Sdfr2 + 1.71

Osbp - 1.91
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