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Abstract
Restricted, repetitive behavior, along with deficits in social reciprocity and communication, is
diagnostic of autism. Animal models relevant to this domain generally fall into three classes:
repetitive behavior associated with targeted insults to the CNS; repetitive behavior induced by
pharmacological agents; and repetitive behavior associated with restricted environments and
experience. The extant literature provides potential models of the repetitive behavioral phenotype
in autism rather than attempts to model the etiology or pathophysiology of restricted, repetitive
behavior, as these are poorly understood. This review focuses on our work with deer mice which
exhibit repetitive behaviors associated with environmental restriction. Repetitive behaviors are the
most common category of abnormal behavior observed in confined animals and larger, more
complex environments substantially reduce the development and expression of such behavior.
Studies with this model, including environmental enrichment effects, suggest alterations in
cortical-basal ganglia circuitry in the development and expression of repetitive behavior.
Considerably more work needs to be done in this area, particularly in modeling the development
of aberrant repetitive behavior. As mutant mouse models continue to proliferate, there should be a
number of promising genetic models to pursue.
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1. Introduction
1.1. Restricted, repetitive behavior in autism

Restricted, repetitive behavior is one of three behavioral domains, which concurrent with
deficits in social interaction and communication, is required for the diagnosis of autism
(ICD-10, World Health Organization, 1990; DSM-IV, American Psychiatric Association,
1994). Despite the clinical significance of this class of behavior, the literature devoted to the
study of this repetitive behavior in autism is relatively small in comparison with the
extensive literature on social and communication deficits [40].
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Repetitive behavior refers to the broad class of behaviors linked by repetition, rigidity, and
invariance. In autism these include stereotyped motor movements, repetitive manipulation of
objects, repetitive self-injurious behavior, specific object attachments, compulsions, rituals
and routines, an “anxiously obsessive desire for sameness” [32], repetitive use of language,
and narrow and circumscribed interests. This broad range of behavior has been
conceptualized as two clusters: “lower-order” motor actions (stereotyped movements,
repetitive manipulation of objects and repetitive forms of self-injurious behavior) that are
characterized by repetition of movement, and more complex or “higher-order” behaviors
(compulsions, rituals, insistence on sameness, and circumscribed interests) that have a
distinct cognitive component. The latter behaviors are characterized by an adherence to
some rule or mental set (e.g., needing to have things “just so”) [40,64,80]. Indeed, factor
analyses of items from the Autism Diagnostic Interview-Revised (ADI-R) [10,73] have
yielded two factors (repetitive sensory motor behavior and resistance to change) supporting
this categorization. As autism is characterized by the co-occurrence of “lower-order” and
“higher-order” repetitive behaviors [4], it is important that relevant animal models include
attempts to model both motor and cognitive features of repetitive behaviors.

1.2. Modeling restricted, repetitive behavior in animals
Animal models relevant to restricted, repetitive behavior in autism generally fall into three
classes: repetitive behavior associated with targeted insults to the CNS; repetitive behavior
induced by pharmacological agents; and repetitive behavior associated with restricted
environments and experience. These models have generally focused on stereotyped motor
behaviors which, in animals, are easier to model than, for example, rituals or insistence on
sameness. Nevertheless, some animal work, which we will review, has addressed the
domain of cognitive rigidity or resistance to change characteristic of “sameness” behaviors.

The animal studies that we will review largely reflect studies modeling the repetitive
behavioral phenotype in autism and are not models of etiology or pathophysiology. This is
consistent with our limited understanding of the etiology and pathophysiology of these
behaviors in autism. In addition, little work has used relevant models to identify novel
biological treatments, although our work and the work of others point to the potential
importance of early experiential interventions. In addition to highlighting the role of early
experience, we will also review work relevant to resistance to change in animals and
highlight animal studies relevant to the critical issue of the development of repetitive
behavior.

1.2.1. CNS insult and repetitive behavior in animals—The advent of gene targeting
technologies has given rise to the generation of mutant mouse models of various
neurodevelopmental disorders. In select cases, the behavioral aberrations characteristic of
these genetic models also include specific forms of repetitive behavior. For example,
mutations in the methyl-CpG binding protein 2 (MECP2) gene are responsible for the
majority of cases of Rett syndrome, one of the pervasive developmental disorders. Mice
expressing truncated MeCP2 protein exhibit repetitive forelimb movements resembling the
distinctive hand stereotypies (e.g., hand-wringing, waving, and clapping) observed in Rett
syndrome patients [48,70].

The gabrb3 homozygous knockout mouse also shows stereotyped behavior such as intense
circling or “tail-chasing” which may continue for hours [11,25]. The GABRB3 gene, which
codes for the β3 subunit of the GABAA receptor, lies within the q11-13 region of
chromosome 15. In addition to being implicated in autism, deletions or mutations of this
region are associated with two human genetic disorders, Prader-Willi syndrome and
Angelman syndrome depending on parental contribution. Compulsive behaviors are a
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particularly salient feature of the behavioral phenotype of Prader-Willi syndrome [12].
Ts65Dn mice are segmentally trisomic for the distal portion of mouse chromosome 16, the
region containing murine orthologs to human chromosome 21, and provide a model for
Down syndrome. The behavioral repertoire of Ts65Dn mice includes repetitive jumping and
cage-top twirling. Repetitive motor behaviors, in addition to being diagnostic for autism, are
also frequently observed in individuals with Down syndrome [78].

Compulsive grooming leading to hair removal and self-inflicted wounds has been identified
as a major behavioral phenotype of the Hoxb8 homozygous mutant mouse [21]. These mice
spent almost twice the time self-grooming as wild-type mice and excessively groomed or
barbered control cagemates. Interestingly, high levels of expression of Hoxb8 were observed
in brain regions known to comprise circuitry mediating obsessive compulsive disorder
(OCD) symptoms in patients. This model is particularly relevant to OC spectrum problems
such as trichotillomania as well as self-injurious behaviors observed in individuals with
autism.

Rather than targeting the major candidate genes or loci thought to be associated with autism,
other animal models have examined the role of prenatal risk factors in the etiology of
autism. Some models have been generated based on the observation that prenatal exposure
to teratogenic agents increases the risk of autism. For example, exposure to valproic acid
(VPA), an antiepileptic drug, on embryonic day 12.5 in rats not only produces
neuroanatomical abnormalities similar to those reported in autistic individuals but also long-
term disturbances in postnatal behavior including increased time spent engaged in
stereotypic activity [27,63,67]. The stereotypies expressed by the VPA-treated rats are
sensitive to environmental perturbations such that housing in an enriched environment
results in their attenuation [68]. The VPA induced repetitive behaviors reported in this study
represent small movements in the same location in an automated activity monitor. Although
such methods allow for high throughput testing, detailed information on the form and
temporal structure of the repetitive behavior is often lacking.

The pathogenesis of autism has also been linked to viral infection and lesion-induced
damage during early development. In support of this putative association, intracerebral
inoculation of newborn rats with Borna disease virus (BDV) induces neuroanatomical and
neurochemical deficits similar to those seen in autism. The resulting phenotype of the BDV
rat recapitulates many of the behavioral impairments, including stereotypies, commonly
observed in autism spectrum disorders [26]. In non-human primates, early damage to
amygdala, hippocampal formation and adjacent temporal cortex resulted in a number of
behavioral abnormalities including stereotypies [1]. Again, the stereotypies associated with
these models are not well described in terms of topography, intensity, or temporal structure.

1.2.2. Drug-induced repetitive behavior—Much of what has been learned about the
neurobiological basis of repetitive motor behaviors comes from studies of drug-induced
stereotyped behavior. For example, early experiments established the importance of the
basal ganglia in the mediation of repetitive behaviors by showing that dopamine or a
dopamine agonist (e.g., apomorphine) injected into the corpus striatum induced stereotyped
behavior in rats (e.g. [13]). Intrastriatal administration of the glutamate receptor ligand,
NMDA, also induces stereotyped behavior that is often indistinguishable from dopamine
agonist-induced stereotypy. Such stereotypy can be attenuated by intrastriatal administration
of the NMDA receptor antagonist CPP [33]. Notably, glutamatergic induction of stereotypic
behavior is not restricted to NMDA-sensitive glutamate receptors, but can also be influenced
through modulation of other types of glutamate receptors in the dorsal striatum [43].
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Intracortical manipulations enhancing the activity of excitatory cortico-striatal projections
exacerbate the expression of stereotypy. For instance, administration of either the D2
antagonist sulpiride or the GABA antagonist bicuculline into the frontal cortex enhances the
motor stimulatory effects of amphetamine [35,38]. Conversely, amphetamine-induced
stereotypy can be attenuated via intracortical infusion of DA or GABAergic agonists [34]. It
is thought that midbrain dopaminergic projection neurons regulate the excitability of these
corticofugal efferents through activation of GABAergic cortical interneurons, as well as
through direct interaction with cortical pyramidal neurons.

Experiments in which the expression of drug-induced stereo-typy was shown to be sensitive
to manipulations in the sub-stantia nigra pars reticulata (SNpr) of the direct pathway and the
sub-thalamic nucleus (STN) of the indirect pathway also support the hypothesized role of
these pathways in repetitive behaviors. Specifically, intranigral GABA agonist
administration induces intense stereotypy in rats [66], and administration of a serotonergic
(5-HT2) antagonist into the STN reduces stereotypy. These manipulations are expected to
have altered either directly (intranigral GABA agonist administration) or indirectly (intra-
STN 5HT2 antagonist administration) inhibitory GABAergic tone over thalamocortical relay
neurons [6] such that manipulations disinhibiting thalamocortical projections induced
stereotypy, whereas stereotypy was attenuated by manipulations increasing inhibitory tone
in the thalamus [3]. Similarly, direct injections of opiate agonists into the substantia nigra
produce intense stereotypies in rats [28], presumably due to disinhibition of nigrostriatal
dopaminergic projections, as this manipulation has been shown to elevate striatal dopamine
release in mice [87].

1.2.3. Environmental restriction and repetitive behavior—Abnormal repetitive
behaviors are commonly displayed in animals housed in zoo, farm, and laboratory
environments [44], as well as animals subjected to early social deprivation [23]. Indeed,
repetitive behaviors are the most common category of abnormal behavior observed in
confined animals [88]. For example, pacing and route-tracing in birds [15,16,29,46], sham-
chewing and bar-mouthing in pigs [5,62]; crib-biting and head-shaking in horses [2,18,47];
vertical-jumping and backward somersaulting in deer mice [72]; body-rocking and tail-
biting in rhesus monkeys [42,75]; pacing and over-grooming in prosimians [74]; and head-
twirling in minks [45] are but some examples of aberrant repetitive behaviors observed in
animals maintained in confinement. Animal models focused on the sequelae of experiential
restriction are relevant to autism given that the early occurrence of social, communicative
and adaptive behavior deficits in very young children with autism likely markedly attenuate
experience-dependent behavioral and brain development. Of interest is the fact that
repetitive motor behavior appears to be an invariant consequence of experiential deprivation
or restriction of all species tested.

Although environmentally induced repetitive behaviors share some similarities with drug-
induced stereotypies, they can be dissociated. For example, in our own studies, neither
systemically or intrastriatally administered apomorphine increased cage related stereotypies
in deer mice, although other repetitive behaviors (e.g., stereotyped sniffing) were observed
[56,59]. These results were also consistent with work done showing that apomorphine did
not affect spontaneous stereotypies in bank voles, and nor did the NDMA antagonist
MK-801 [82,83].

1.2.4. Resistance to change and repetitive motor behavior—Complex or higher-
order repetitive behavior (rituals, insistence on sameness, restricted interests) in individuals
with autism reflects a cognitive rigidity or inflexible adherence to routines and rituals.
Recent work has shown that the degree of restricted, repetitive behavior in individuals with
autism correlates positively with deficits on executive function tasks that index cognitive
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flexibility [41]. Importantly, this association was observed after controlling for level of
cognitive function. Cognitive flexibility, or resistance to change, can be assessed in animals
using a variety of tasks that range in complexity from response extinction to reversal
learning to intra- and extra-dimensional set shifting (e.g. [8]). Recent work conducted with
several different species has demonstrated that motor stereotypies are inversely correlated
with measures of cognitive flexibility. For example, in bank voles and bears extinction
learning was significantly inversely correlated with the amount of stereotypy [15,84].
Similarly, Orange wing Amazon parrots were assessed for stereotypy and performance on a
variation of a gambling task which indexed the tendency to repeat responses or perseverate.
Animals with higher stereotypy scores exhibited greater sequential dependency in their
responses on this task [16]. In our own work, we have examined the performance of deer
mice in a procedural learning task that involved learning to turn down the right or left arm of
a T-maze for reinforcement. Following acquisition the reinforced arm was reversed. Our
results indicate that high levels of stereotypy in deer mice were associated with deficits in
reversal learning in the T-maze. The relationship between cognitive rigidity (deficits in set
shifting, extinction, and reversal learning) and motor stereotypy is perhaps not surprising
given the common mediation by cortical-basal ganglia pathways. Thus, alterations in this
circuitry could well impair the ability to inhibit pre-potent responding, the ability to orient to
novel events and the ability to generate flexible patterns of behavior.

1.3. Environmental enrichment and repetitive behavior
If environmental restriction induces repetitive behavior, environmental complexity should
ameliorate or prevent it. Indeed, providing animals more complex environments appears to
be an effective means of attenuating repetitive behavior [5,46,71,72]. In our own work, we
have shown that deer mice reared in larger, more complex environments exhibit
substantially less stereo-typy than do deer mice reared in standard laboratory cages
[54,55,72,73,75]. Deer mice (Peromyscus maniculatus) exhibit repetitive behaviors (i.e.,
hindlimb jumping, backward somersaulting) that occur at a high rate, persist across the life
of the animal and appear relatively early in development. These behaviors are associated
with standard laboratory housing and do not require isolation housing, specific cues or
contexts, or a pharmacological agent for induction. These features plus considerable
heterogeneity in individual levels of expression, modulation by early experience, mediation
by cortical-basal ganglia circuitry, and association with cognitive rigidity (see later section)
make this model an appealing model of restricted, repetitive behavior in autism.

The efficacy of environmental complexity in attenuating or preventing aberrant repetitive
behavior leads to the question of neurobiological mechanisms and potential translation to
clinical intervention. Environmental enrichment has been reported to be associated with
myriad CNS effects including dendritic branching, spine density, synaptogenesis,
angiogenesis, gliogenesis (e.g. [9,20]), gene expression, apoptosis, and neurogenesis
[37,60,81,89]. Moreover, exposing animals to more complex environments has also been
shown to attenuate or reverse the sequelae of such CNS insults as seizures, ischemia, infarct,
cortical lesion, and traumatic brain injury [22,30,31,39,89], and to be protective with regard
to the sequelae of genetic mutations. Enrichment studies can assist in identifying the
molecular targets associated with experience-dependent plasticity and prevention/attenuation
of repetitive behaviors. Such information may well be useful in the development of novel
pharmacological agents targeted for the treatment of abnormal repetitive behaviors in
autism.

2. Methods
A critical question for our group has been which of the large number of brain changes
associated with increased environmental complexity are operative in the prevention of
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abnormal repetitive behavior. We are not aware of any work, save our own, identifying
neurobiological mechanisms that mediate the ameliorative or preventative effects of
environmental complexity on repetitive behavior. In three related studies [76,77,79], we
examined the enrichment-related changes in neuronal structure and function and related
these to stereotypic behavior in our animals. In all the studies, deer mice were reared in
enriched or standard cages for 60 days post-weaning, before being tested and classified as
‘low stereotypy’ or ‘high stereotypy’. This testing paradigm thus yielded four distinct
groups: enriched high stereotypy, enriched low stereotypy, standard cage high stereotypy,
and standard cage low stereotypy. This four-group design allowed us to avoid confounding
behavioral outcome (high stereotypy/low stereotypy) with housing condition (standard/
enriched).

In subsequent studies using deer mice housed in standard laboratory cages, we examined
directly the role of cortical-basal ganglia circuitry on the expression of repetitive behavior.
This was done using intrastriatal administration of select pharmacological agents that
blocked cortico-striatal glutamatergic afferents and nigrostriatal dopamine projections. We
also examined the balance between direct and indirect basal ganglia pathways using
radioimmunoassays to quantify the activity of neuropeptides (dynorphin and enkephalin,
respectively) that serve as markers of these pathways.

3. Results
3.1. Neuronal metabolic activity

Our initial studies assessed whether environmental enrichment-related effects on the
development of stereotyped behavior in deer mice were associated with alterations in
neuronal metabolic activity [79]. Neuronal activity was assessed using cytochrome oxidase
(CO) histochemistry, an index of oxidative energy metabolism. CO indexes long-term
changes in neuronal functional activity and has been shown to correlate with indices of
activity-dependent plasticity [53,86]. In motor cortex, striatum, nucleus accumbens,
thalamus, and hippocampus, our findings revealed a clear and striking environment by
behavior interaction. The low stereotypy, enriched housed animals had relatively high CO
activity in all of these brain regions. High stereotypy animals had relatively low CO levels,
regardless of their housing type. So too did the standard housed mice which did not develop
stereotypies; and these three groups did not significantly differ.

3.2. Dendritic morphology
In a subsequent study, we evaluated whether the environmental enrichment-related effects
on the development of stereotyped behavior were associated with alterations in dendritic
morphology [77]. Dendritic morphology was assessed in layer V pyramidal neurons of the
motor cortex, medium spiny neurons of the dorsolateral striatum and granule cells of the
dentate gyrus using Golgi-Cox histochemistry [17]. These brain regions were selected based
on our CO findings suggesting the importance of cortical-basal ganglia circuitry and relative
lack of importance of limbic areas. Again, we found an environment by behavior interaction,
with the low stereotypy, enriched housed animals differing from each of the three other
groups, which in turn were statistically indistinguishable from each other. The enriched low
stereotypy mice exhibited significantly higher dendritic spine densities in the motor cortex
and striatum, compared with the other groups. Importantly no group differences in
hippocampal spine density were found.

3.3. Neurotrophic factors
As neurotrophins promote neuron survival and growth, and play an important role in use-
dependent plasticity, we assessed their relationship to the prevention or attenuation of the
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development of stereotypy [76]. Levels of brain-derived neurotrophic factor (BDNF) and
nerve growth factor (NGF) were assessed in motor cortex, striatum, and hippocampus. There
were no differences in either NGF or BDNF in either the motor cortex or the hippocampus
of enriched and standard cage mice. As we predicted, however, enriched, low stereotypy
mice exhibited significantly more BDNF (but not NGF) in the striatum than the enriched
high stereotypy and standard cage mice.

3.4. Basal ganglia mediated learning and cognitive flexibility
As indicated in a preceding section, we have shown that deer mice exhibiting high levels of
repetitive motor behavior exhibit deficits in reversal learning. We have also observed poorer
procedural learning in a group of high stereotypy animals consistent with alterations in basal
ganglia function (unpublished observations). We hypothesized that environmental
enrichment associated with the prevention of stereotypy would also be associated with better
performance on both procedural learning and reversal learning tasks. This hypothesis was
supported by our preliminary findings.

3.5. Summary
Taken together, these results suggest three general conclusions. First, enrichment-related
brain differences were observed only in mice that “benefited” from enrichment as defined by
prevention/attenuation of stereotypy. Second, enrichment effects were regionally selective
for motor cortex and basal ganglia. Finally, enrichment effects on repetitive motor behaviors
were associated with improved performance on procedural and reversal learning tasks.
These results point to the importance of cortical-basal ganglia circuitry in the development
and expression of repetitive behavior.

3.6. Repetitive behavior and cortical-basal ganglia circuitry
Our environmental complexity findings suggest alterations in cortical-basal ganglia circuitry
in the development of repetitive behavior. The view that spontaneous and persistent
repetitive behavior is linked to dysfunction of the neural circuits that transmit information
between the cortex and basal ganglia is supported by several lines of evidence from studies
in autism. For example, in Fragile X syndrome, caudate volume has been significantly
correlated with stereotypies [61]. In MRI studies of autism, caudate volume was associated
with repetitive behavior [69,24], and frontal white matter and caudate volumes were reduced
in stereotypy subjects who had no other known developmental or neurological disorder [36].

We postulate that stereotypic behavior is expressed as a consequence of abnormal
facilitation of selected motor programs due to imbalanced activity between this direct (or
striatonigral) pathway and the indirect (or striatopallidal) basal ganglia pathway (see Fig. 1).

In support of such a model, we have shown that stereotypy in deer mice was attenuated
selectively via intrastriatal administration of either the D1 dopamine receptor selective
antagonist SCH23390 or the NMDA receptor-selective glutamate antagonist MK-801 [58].
Importantly, observational data indicated no significant drug-related changes in non-
stereotypic motor behavior. These results show that interruption of cortical projections to
striatum by MK-801 or dopaminergic projections to striatum from substantia nigra can
selectively reduce spontaneous stereotypy via alterations in the direct pathway.

Furthermore, we hypothesized that repetitive behavior in deer mice would be associated
with an imbalance in the activity of the direct and indirect pathways of the basal ganglia,
favoring overactivity of the direct pathway. We measured the concentrations of the striatal
neuropeptides dynorphin and enkephalin in dorsolateral striatum in high and low stereotypy
deer mice reared in standard cages [57]. These neuropeptides are expressed in striatonigral
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and striatopallidal medium spiny GABA neurons, respectively. Our results indicated
significantly decreased leu-enkephalin content and significantly increased [dynorphin]/
[enkephalin] content ratios in the high-stereotypy mice relative to low-stereotypy mice.
Moreover, we saw a significant negative correlation between striatal enkephalin content
(indexing indirect pathway activity) and frequency of stereo-typy (r = −0.40), as well as a
significant positive correlation between the dynorphin/enkephalin content ratio and
frequency of stereotypy (r = 0.42) in these mice. These data are consistent with our
hypothesis that spontaneous stereotypic behavior is a consequence of relative hyperactivity
along cortico-basal ganglia-cortical feedback circuits involving the direct (facilitative)
pathway, but suggest that primary perturbations to the indirect (inhibitory) pathway give rise
to such imbalanced activity.

4. Discussion
4.1. Development of repetitive behavior: neurobiological mechanisms

As Symons et al. [72] have pointed out in their recent review, very little is known about the
development of repetitive behaviors in children at risk for neurodevelopmental disorders
such as autism. This lack of knowledge seriously impairs the ability of clinicians to design
efficacious early intervention and prevention strategies. Appropriate animal models could
provide a wealth of information about the developmental characteristics of such behavior.
For example, such models could help identify the neurobiological mechanisms that mediate
the transition from repetitive behavior common to typically developing children [14] to the
developmentally inappropriate, persistent, fixed, and habitual repetitive behaviors
characteristic of autism. Animal models used by several labs appear to be highly relevant to
this developmental question.

For example, there is now considerable evidence that the development of repetitive behavior
(e.g., stereotypies, dyskinesia) following repeated drug exposure is associated with a
preferentially increased immediate early gene (IEG) expression in striatal striosomes (e.g.
[65]). Indeed, this increased IEG expression (c-Fos, FosB) in striosomes following drugs
like cocaine and amphetamine reliably predicts motor stereotypies [7]. These plasticity
related changes also appear to be progressively more evident in the dorsal aspect of the
striatum with increased drug exposure. In addition, the shift in metabolic activity to
striosomes appears to be due largely to a decline in matrix activity. This shift from matrix to
striosomes could reflect a shift toward more motivationally driven behavior with a
consequent narrowing of focus and escalation of repetition [19].

There has, as yet, been no examination of similar dynamical changes occurring coincident
with the development and consolidation of non-drug induced stereotypies. Nonetheless, the
persistence of spontaneous stereotypies is presumably due to changes in gene expression as
well. For these longer-term changes associated with chronic exposure to environmental
conditions, transcription factors are also likely altered in brain. As Nestler has suggested
[49,50], ΔFosB may be a good candidate for examining long-term experience-dependent
plasticity. ΔFosB is a member of the Fos family of transcription factors (c-Fos, FosB,
FRA1, FRA2) that heterodimerize with Jun proteins to form active AP-1 transcription
factors that bind to AP-1 sites expressed in the promoters of certain genes. Importantly,
whereas some Fos and Jun family proteins are induced very rapidly, albeit transiently,
isoforms of ΔFosB have been shown to be induced after chronic exposure to different
stimuli (e.g., stress, drugs of abuse, chronic wheel running) and to persist in brain for much
longer periods of time. For example, virtually all drugs of abuse result in ΔFosB induction.
Voluntary wheel running induces ΔFosB in striatal dynorphin containing neurons and L-
DOPA induced dyskinesias are associated with increased ΔFosB expression, again in
neurons of the direct pathway. Interestingly, transgenic animals that selectively over-express
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the transcription factor ΔFosB in striatonigral projection neurons exhibit excessive wheel
running, whereas wheel running is significantly inhibited in animals that overexpress the
gene in striatopallidal projection (indirect pathway) neurons [85]. These studies support the
hypothesis that repetitive behaviors are expressed as a result of imbalanced activity along
the direct and indirect pathways of the basal ganglia and that this imbalance is characterized
by a relative increase in striatonigral tone. Thus, ΔFosB isoforms may play a very important
role in mediating long-term changes in gene expression that mediate repetitive behavior
[50].

Advances in the neural basis of birdsong appear to have much to contribute to our
understanding of the transition in behavior from variability to stereotypy. For example,
oscine songbirds imitate older members of their species and progress through stages where
song production starts out highly variable but becomes increasingly stereotyped. Recent
studies have determined that lesions of the anterior forebrain pathway (AFP; homologous to
basal ganglia thalamo-cortical loops) in juvenile zebra finches markedly disrupt song
development but have few effects in adult birds. Specifically, inactivation of an AFP nucleus
(lateral magnocellular nucleus of the nidopallium or LMAN) results in a dramatic loss of
variability in song typical of juveniles [51]. Instead song production is highly stereotyped,
similar to that observed in adults. Models such as these may be of great help in
understanding the mechanism by which variable behavior becomes stereotyped.

5. Summary
Our understanding of abnormal repetitive behavior in animals has come largely from models
involving pharmacological induction of repetitive behavior and from models of
environmental restriction or deprivation. Pharmacological studies have provided much of
what we know about the relevant neuronal circuitry and a number of the drugs (e.g., cocaine,
amphetamine) used to induce repetitive behavior in animals also can induce repetitive
behavior in humans. Models of insult to the CNS (e.g., genetic mutations, viral exposure,
lesions) associated with repetitive behaviors are particularly appealing as they promise clues
to etiology and pathophysiology. As yet, there are only a limited number of these models
and the accompanying repetitive behaviors have often not been well characterized.
Nonetheless, as mutant mouse models continue to proliferate, there should be a number of
promising models to pursue.

A very large literature exists on repetitive behavior and environmental restriction or social
deprivation. Many species are represented in this literature [42] and the effects of early
social deprivation have, unfortunately, been demonstrated to extend to humans. Models of
restricted, repetitive behavior induced by environmental restriction may, on the surface,
seem of limited relevance to autism. Nonetheless, individuals with autism suffer from
deficits in a number of domains of functioning including social, emotional, motor, and
cognitive. Thus, such children may be thought of as functionally environmentally restricted.
Marked deficits in exploration [52] would support such a view. The efficacy of
environmental enrichment in preventing repetitive behavior may have important clinical
implications. The development of effective strategies for bringing children with autism into
more functional or meaningful contact with their environment would seem a promising
strategy. In addition, as we identify enrichment-induced changes in specific molecular
processes, specific proteins can be targeted for pharmacological or biological intervention.

Work with animal models of repetitive behavior has pointed to the importance of cortical-
basal ganglia circuitry in mediating the expression of these behaviors. More detailed work
with multiple models needs to be done to determine what specific loops map onto what
specific repetitive behaviors. This more refined understanding of pathophysiology should, in
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turn, lead to better treatment options. Considerably more work needs to be done in the area
of modeling the development of aberrant repetitive behavior. Ultimately, this work holds the
greatest promise for generating research findings that can be used for early intervention and
treatment.
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Fig. 1.
Cortical-basal ganglia circuitry. Green indicates projection uses glutamate as a
neurotransmitter; red indicates use of GABA; blue indicates use of dopamine.
Abbreviations: GPe (external aspect of the globus pallidus); GPi (internal aspect of the
globus pallidus); STN (sub-thalamic nucleus); SNpr (substantia nigra pars reticulata); SNpc
(substantia nigra pars compacta). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)
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