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Abstract

Cell adhesion and migration play important roles in physiological and pathological states,

including embryonic development and cancer invasion and metastasis. The type I transmembrane

protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly

in brain and prostate and its expression is deregulated in prostate cancer. We have previously

shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion

of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In

this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer

cells and that this effect correlates with changes in integrin expression and RhoA activation.

Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented

these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin

and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of

αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells

resulted in increased integrin expression. Results obtained with a double TRAMP/TMEFF2

transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the

mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in
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regulating cell adhesion and migration that involves integrin signaling and is mediated by its

cytoplasmic domain.
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1. INTRODUCTION

Prostate cancer is the most commonly diagnosed cancer and the second leading cause of

cancer deaths in American men [1]. While organ-confined prostate cancer is successfully

treated by surgical methods, no curative treatment is available for the metastatic form of the

disease, which is responsible for the mortality associated with this disease. Prostate cancer

cells are known to metastasize to numerous organs, with the bone, liver, and lymph nodes

being the most common [2]; however, the molecular mechanisms that drive the metastatic

cascade in prostate cancer are poorly understood. Understanding these mechanisms and the

molecules involved in the metastatic cascade is critical to developing strategies for

maximizing the efficacy of prostate cancer treatment.

Integrins are members of a family of transmembrane glycoprotein receptors that mediate

cell-cell and the interactions with the extracellular matrix (ECM) [3]. By interacting with

cytoskeletal-associated proteins, integrins provide a link between the extracellular

environment and the cytoskeleton inside the cells. Integrins are heterodimers composed of

non-covalently associated α and β subunitsthat can recognize and bind multiple ECM

ligands, triggering a variety of signal transduction events that modulate diverse cellular

processes including proliferation, survival, gene expression, adhesion and migration [3, 4].

Evidence of altered integrin signaling has been demonstrated in several types of cancer,

including prostate cancer. These changes correlate with tumor growth, invasion, and

metastatic potential [5, 6].

Several integrins, α2β1, α3β1, α5β1, α6β1, αvβ1, αIIbβ3, and αvβ3 are expressed in

prostate cancer cells [6, 7]. Of those, αvβ3 and β1 seem to play important roles in bone

metastases, the main site of metastatic prostate cancer [7–9]. While not typically expressed

in epithelial cells [8], integrin αvβ3 is expressed in prostate cancer. Its expression correlates

with disease progression, metastatic potential [5, 6–8], and with prostate cancer cell

adhesion to vitronectin, a major extracellular component of mature bone [10]. Integrin β1 -is

upregulated in specimens from prostate cancer patients, and antibodies against β1 integrins

inhibit binding of PC3 prostate cancer cells to human bone marrow endothelial cells [7, 11],

suggesting that β1 integrin mediates bone metastasis.

Integrins signal bidirectionally [12–15]. Intracellular stimuli (inside-out signaling) can

promote a conformational change in the integrin that lead to higher affinity for its ligand

[12–14]. Ligand binding (outside-in signaling) ultimately leads to integrin activation and

clustering into large mature focal adhesions (FA) which generate downstream signaling

events in a temporal fashion [12, 15]. One of the changes that take place early following

integrin activation are cytoskeletal rearrangements that regulate stress fiber formation and
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promote cell spreading and initiation of migration [16]. These events involve integrin-

mediated modulation of specific cellular kinases and of RhoA activity [14, 17]. RhoA is

essential to remodeling actin fibers, regulation of actomyosin contractility, and rear cell

detachment during motility [18]. RhoA is also activated via G-protein coupled receptors

(GPCRs) that couple to the heterotrimeric G12/13 proteins, highlighting a cooperative

relationship between integrin and GPCR signaling. Cross talk has also been described

between integrins and growth factor receptor signaling to affect cell spreading, migration,

growth and survival [19, 20].

TMEFF2 is an evolutionarily conserved type I transmembrane protein expressed in the

embryo, and selectively in the adult brain and prostate [21–23]. A role for TMEFF2 in

prostate cancer was suggested by studies indicating that TMEFF2 expression is altered in a

significant fraction of primary and metastatic prostate tumors [22, 23]. We have described

that TMEFF2 functions as a tumor suppressor, and that this role correlates, at least in part,

with its ability to interact with SARDH to modulate cellular levels of sarcosine [24].

TMEFF2 overexpression blocked basal and sarcosine-induced cellular invasion of prostate

epithelial RWPE cells, while TMEFF2 knockdown in 22Rv1 prostate cancer cells promoted

increased cellular migration/invasion [25]. While these results highlight a role for TMEFF2

in invasion of prostate cells, the molecular mechanism(s) involved in this process are not

known. Here we report that TMEFF2 expression inhibits spreading and migration of

RWPE2 prostate cancer cells on vitronectin. This inhibition correlates with a defect in FA

and stress fibers formation and in RhoA activation and requires the presence of the

cytoplasmic tail of TMEFF2. Importantly, TMEFF2 downregulates the expression of several

integrins in RWPE2 cells indicating that the motility effects observed are integrin-mediated.

The results presented point to an important role of TMEFF2 in modulating integrin signaling

and prostate cell motility.

2. MATERIALS AND METHODS

2.1. Cell culture and plasmids

The 22Rv1, RWPE1 and RWPE2 cell lines were purchased from American Type Culture

Collection (ATCC, Manassas, VA). The human prostate epithelial cell line RWPE1 and its

Ki-ras transformed tumorigenic derivative, RWPE2, were cultured in KSF medium

(Invitrogen, Carlsbad, CA). The human prostate carcinoma cell line 22Rv1 was maintained

in RPMI-1640 medium (Invitrogen, Carlsbad, CA). TMEFF2 full length and ΔGA

expression constructs were previously described [24, 26]. Development of a system for

inducible expression of FL_TMEFF2 and TMEFF2_ΔGA in RWPE2 cells was achieved

using the Clontech’s Tet-On Advanced system (Clontech, Mountain View, CA) essentially

as described before for RWPE1 cells [24]. To inducibly express TMEFF2, cultures were

grown in the presence of doxycycline (250 ng/ml; Sigma, St. Louis, MO). 22Rv1 cells

transduced with pLKO.1 vectors containing shRNA to TMEFF2 or scramble control were

described before [25].
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2.2. Reagents

Antibodies recognizing TMEFF2 from cell lysates were purchased from Abcam

(Cambridge, MA) and Sigma (St. Louis, MO). For TMEFF2 detection from mouse tissue

lysates a SDIX, custom antibody was utilized (SDIX, Newark, DE). Other antibodies

utilized in this study are: SV40 T-antigen (Abcam; Cambridge, MA), ITGAV, ITGB1 and

ITGB3 (BD Biosciences, Franklin Lakes, NJ), ITGB3 (for mouse tissue lysates, Sigma, St.

Louis, MO), ITGA5 (Millipore, Billerica, MA), ribosomal protein S6, β-actin, phospho-

FAK, and FAK (Cell Signaling, Danvers, MA). Antibodies used for the

immunofluorescence studies are listed in section 2.5. The U0126 MAPK inhibitor or the

inactive analog U0124 were purchased from Sigma (St. Louis, MO). Bovine serum albumin

(BSA) was from Sigma (St. Louis, MO).

2.3. Mice

Animals were maintained in accordance with the Institutional Animal Care and Use

Committee of East Carolina University. Transgenic TMEFF2 mice (129/Sv background,

Lineberger Cancer Center Transgenic mouse facility) and maintained in a C57BL/6

background (backcrossed for over seven generations to C57BL/6). TRAMP mice (FVB

background) were purchased from the Jackson laboratory (Bar Harbor, ME; stock number

008215) and crossed to C57Bl/6J (stock number 000664). The F1 generation derived from

this cross, was then crossed to the transgenic TMEFF2 mouse and the TRAMP/TMEFF2

and TRAMP progeny were selected after genotyping by PCR using tail genomic DNA. The

TRAMP mice were genotyped as specified by the Jackson Laboratory (Bar Harbor, ME).

The TMEFF2 mice were genotyped using primers 5′-GGAATTGCTCTGGTTATGATG-3′
and 5′-CAAATGTGGTATGGCTGATTATG-3′.

2.4. Cell migration assays

Cell migration was measured using either a wound healing assay or Boyden chambers. Both

assays were performed in the presence of 1 μg/ml aphidicolin (Sigma, St. Louis, MO) to

prevent proliferation. For wound healing assays, 70 μl of cells (from a 3–7×105 cells/ml

suspension) were loaded into each well of a culture plate insert (ibidi, Verona, WI). After 24

hours incubation, the insert was removed to allow cell migration into the wound. Wound

healing process was monitored by taking pictures at 0, 10, 24, or 48 hours after removal of

the insert, using an EVOS FL cell imaging system (Life Technologies, Carlsbad CA). When

specified, 2 μg/ml of CT04 (Cytoskeleton, Denver, CO) was added to the fresh medium after

insert removal.

Cell migration was also assayed using Boyden chambers with non-coated 8 μM pore size

membranes (BD Biosciences, Franklin Lakes, NJ). Cells (5 × 104) were suspended in 200 μl

of serum-free medium and loaded into the upper chamber. The lower chamber was filled

with 500 μl of medium supplemented with 20% fetal bovine serum (FBS; Life

Technologies, Carlsbad, CA) that was used as a chemoattractant. After 20 hours of

incubation, the cells that had migrated to the lower surface of the membrane were fixed with

70% ethanol for 10 minutes, followed by staining with 0.1% crystal violet (Sigma, St. Louis,

MO) and photographed. To assay cell migration towards vitronectin or fibronectin the

following modifications were implemented: i) the lower surface of the membrane in the
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Boyden chambers was treated with 10 μg/ml of the indicated ECM proteins or BSA as

control (prepared in PBS) for 16 hours at 4 °C; ii) Cells (0.5–1 × 104) were suspended in

200 μl of KSF base medium and loaded into the upper chamber; iii)The lower chamber was

also filled with KSF medium; and iv) The culture was maintained for 1–2 days.

2.5. Cell spreading assay and immunofluorescence

Round cover glass (Fisher Scientific, Hampton, NH) were coated with collagen (40 μg/ml;

BD Biosciences, Franklin Lakes, NJ), laminin (10 μg/ml; Sigma, St. Louis, MO), fibronectin

(40 μg/ml; Millipore, Billerica, MA), or vitronectin (2 μg/ml; Promega, Fitchburg, WI) by

incubation at 4 °C overnight and rinsed twice with PBS. Once coated, the cover glass were

placed inside the wells of 12-well culture plates and 40,000 cells were loaded onto each

well. Following 3 hours incubation, pictures were taken for 10 random fields for each cover

glass using an EVOS FL cell imaging system (Life Technologies, Carlsbad, CA) and spread/

round cells were counted. For immunofluorescence analysis, cells were fixed with 4%

paraformaldehyde in PBS (Affymetrix USB, Cleveland, OH) for 10 min, permeabilized with

0.5% Triton X-100 (Bio-Rad, Hercules, CA) in PBS (PBS-T) for 5 min, and blocked with

5% normal goat serum in PBS-T for 30 min. Samples were then incubated with anti-vinculin

antibody (Sigma, St. Louis, MO) at 4 °C overnight followed by goat anti-mouse Alexa Fluor

488 (Invitrogen, Carlsbad, CA) and rhodamine phalloidin (Cytoskeleton, Denver, CO) for 1

h. Nuclei were counterstained with DAPI (Santa Cruz Biotechnology, Santa Cruz, CA). For

immunofluorescence analysis with rhodamine phalloidin only staining, cells were seeded in

8 well glass chamber slides (Lab-Tek, Scotts Valley, CA) and the primary antibody and the

corresponding secondary antibody were omitted. Immunofluorescent images were taken on

an Optiphot-2 fluorescent microscope (Nikon) with an AxioCam MRm digital camera

(Zeiss).

2.6. G-LISA RhoA activation assay

Cells were incubated in serum free EpiLife CF/PRF medium (Invitrogen, Carlsbad, CA) for

3 d and then stimulated with 10% FBS for 2 min. RhoA activity was determined using a

colorimetric G-LISA RhoA activation assay biochem kit (Cytoskeleton, Denver, CO)

according to the manufacturer’s instructions.

2.7. Western blotting

Western blot analysis was conducted as described before [24] using cell lysates or lysates

from individual mouse prostate lobes. Briefly, cells were lysed in radioimmunoprecipitation

assay (RIPA) buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM sodium chloride, 1%

Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, protease inhibitor cocktail (Sigma, St.

Louis, MO), sodium orthovanadate and beta-glycerophosphate. Lobes were lysed in the

same buffer using a glass homogenizer. Equal amounts of proteins were resolved by SDS-

PAGE and transferred to Immobilon transfer membrane (Millipore, Billerica, MA). Blots

were blocked in 5% non-fat milk or bovine serum albumin (BSA; Sigma, St. Louis, MO)

and probed with the appropriate antibodies. Immunoreactive bands were visualized using

SuperSignal West Pico or Femto chemiluminescent substrate (Thermo Scientific, Waltham,

MA).
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2.8. RT2 Profiler PCR Array

The Human Focal Adhesion RT2 Profiler PCR Array (SABiosciences, Valencia, CA) was

used to determine cellular adhesion-related gene expression affected by TMEFF2 according

to the manufacturer’s instructions. Briefly, total RNA was extracted from cells expressing

TMEFF2 or the vector, as a control, with RNeasy mini kit and cDNA was synthesized with

RT2 First Strand Kit (Qiagen, Valencia, CA). The cDNA was combined with RT2 SYBR

Green Mastermix (Qiagen, Valencia, CA) and dispensed into the RT2 Profiler PCR Array.

Real-time PCR was performed on an iQ5 instrument (Bio-Rad, Hercules, CA).

2.8. Statistical analysis

Data are presented as mean ± SD. Student’s t test (paired, two-tailed) was used to compare

two groups of independent samples. P values under 0.05 or 0.01 were considered significant.

3. RESULTS

3.1. The cytoplasmic domain of TMEFF2 is necessary for its tumor suppression role

The transmembrane and cytoplasmic domains of TMEFF1 and TMEFF2, the two members

of the TMEFF family of proteins, are very well conserved at the amino acid level, and

contain potential GPCR-signaling motifs in the membrane and cytoplasmic domains [27].

For TMEFF1, the relevance of these domains is underscored by data pointing to different

functions of the protein depending on their presence [28].

TMEFF2 overexpression in prostate epithelial RWPE1 cells inhibits the intrinsic and

sarcoine-induced migration potential of these cells [24]. To examine the role of the TMEFF2

cytoplasmic domain, we used a deletion mutant lacking 13 consecutive basic-rich amino

acids in the C-terminus of the protein (TMEFF2_ΔGA). Full length TMEFF2 FL_TMEFF2)

or TMEFF2_ΔGA were expressed in RWPE1 and RWPE2 cells and their effect on cell

migration was analyzed. Expression of the different forms of TMEFF2 was achieved using

cell lines that express FL_TMEFF2 or TMEFF2_ΔGA under the control of a doxycycline-

inducible promoter (Figure 1A and B). Control cells were transduced with the transactivator

construct only (vector).

Results obtained using a wound-healing assay indicated that, as opposed to cells expressing

the full length TMEFF2 protein, RWPE1 or RWPE2 cells expressing the TMEFF2_ΔGA

protein did not significantly show inhibition of migration when compared with cells

transfected with the vector control only (Figure 1C, 1D and Supplementary Fig. S1A).

Similar results were obtained using Boyden chambers (Supplementary Fig. S1B). These

results suggest that the cytoplasmic tail of TMEFF2 is necessary for its ability to inhibit

migration of prostate epithelial and cancer cells. Interestingly, a tendency towards slower

migration was observed in cells expressing TMEFF2_ΔGA when compared with cells

expressing the vector control. This may reflect more than one mechanism to inhibit

migration. All together these results suggest that the cytoplasmic tail of TMEFF2 is

important for its tumor suppressor function.

It is worth noting that while in RWPE2 cells the expression of the TMEFF2_ΔGA mutant

seems lower than expression from the FL_TMEFF2, variable levels of expression have been
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frequently observed from experiment to experiment and this does not seem to be the reason

why TMEFF2_ΔGA does not have an effect on migration. In fact, as shown in Figure 1A,

the expression level of the FL_TMEFF2 and TMEFF2_ΔGA was similar in RWPE1 cells

but the TMEFF2_ΔGA did not affect migration in this cell line.

3.2. TMEFF2 promotes cell rounding and reduces cell spreading

In order for cells to migrate they must attach and spread. In these studies we observed that

TMEFF2 promotes cell rounding of RWPE2 and several other cell lines (Figure 2A and not

shown), suggesting defective attachment and spreading of TMEFF2 expressing cells,

perhaps accounting for the inhibitory effect of TMEFF2 on migration. To test this

hypothesis, attachment/spreading to tissue culture plates of RWPE2 cells expressing the

inducible FL_TMEFF2, TMEFF2_ΔGA proteins or the empty vector, as a control, was

examined. As shown in Figure 2B, when grown in the presence of doxycycline to induce

FL_TMEFF2 expression, a two-fold increase in the number of round cells was observed

when compared to cells expressing the empty vector or the TMEFF2_ΔGA. These rounded

cells had few lamellipodia protrusions (Figure 2C), indicating that the initial stages of

spreading were affected. Cell attachment/spreading to plates coated with the ECM proteins

vitronectin, fibronectin, laminin and collagen type I was also analyzed. RWPE2 cells

expressing the empty vector control or the TMEFF2_ΔGA behaved similarly, with over 90%

of cells attaching/spreading to fibronectin and collagen type I and 80–85% to vitronectin and

laminin (Figure 3A). However, when compared to cells expressing the empty vector or the

TMEFF2_ΔGA, expression of FL_TMEFF2 significantly reduced the ability of cells to

attach/spread on the vitronectin coated surface (only 58% of the cells; Figure 3A). This

suggests that TMEFF2 blocks spreading on vitronectin coated surfaces, and this could

ultimately affect migration. Further, results obtained using a transwell assay, indicated that

migration of RWPE2 cells expressing FL_TMEFF2 was significantly reduced in vitronectin

but not in fibronectin, when compared to cells expressing TMEFF2_ΔGA or the empty

vector control (Figure 3B). Migration towards BSA coated transwell membranes was

negligible independent of the cells examined (not shown). All together, these results suggest

that TMEFF2 inhibits attachment/spreading on vitronectin and that this inhibitory effect

requires the presence of the cytoplasmic tail.

3.3. TMEFF2 reduces stress fiber and focal adhesion formation and activation

Since the presence of focal adhesions (FA) correlates with cell attachment and spreading

[29] the ability of FL_TMEFF2 to inhibit formation of these macromolecular structures was

examined. RWPE2 cells expressing FL_TMEFF2, TMEFF2_ΔGA or the empty vector

control were grown on cover glass coated with fibronectin or vitronectin and stained with

rhodamine-phalloidin to detect polymerized actin and vinculin antibodies to detect FA. As

described above, expression of FL_TMEFF2, but not the mutant lacking the cytoplasmic

tail, resulted in an increase in rounded cells when cells were grown on vitronectin. These

rounded cells revealed a cortical actin cytoskeleton, without stress fibers, and a lack of FAs

as demonstrated by diffuse vinculin staining (Figure 4A; middle row). Conversely, the

normal attachment/spreading of FL_TMEFF2 expressing RWPE2 cells to fibronectin

correlated with stress fiber formation and the presence of FA at the ends of the fibers (Figure

4A, Supplementary Fig. S2). Expression of the TMEFF2_ΔGA mutant, did not affect stress
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fiber or FA formation when grown on either vitronectin or fibronectin (Figure 4A bottom

row) when compared to cells expressing the vector control (Figure 4A, upper row). Finally,

phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 (Y397) was analyzed by

western blot. FAK phosphorylation is required for FA formation and cell migration. The

results, shown in figure 4B, indicated that FL_TMEFF2 but not TMEFF2_ΔGA inhibited

FAK-Y397 phosphorylation. All together these results indicate that TMEFF2 interferes with

FA formation/activation and, as a consequence, it inhibits cell spreading and migration. The

cytoplasmic tail of TMEFF2 is required for these effects.

3.4. TMEFF2 inhibits RhoA activation

RhoA activation promotes stress fiber formation and maturation of focal adhesions. Since

the results obtained indicated that expression of TMEFF2 affects these processes, the ability

of TMEFF2 to affect RhoA activation was examined. Rho is active in the GTP-bound state,

which is catalyzed by the Dbl family of guanine nucleotide exchange factors (GEFs) [30].

The amount of activated RhoA was determined using the G-LISA kit in RWPE2 cells

expressing the different forms of TMEFF2 and compared to the activity of cells expressing

the vector as control. Cells were grown in serum-free media and then stimulated with fetal

bovine serum (FBS). The results indicated that TMEFF2 expression significantly reduced

the level of active RhoA to 78% of that in the control cells (Figure 5). RhoA activity in cells

expressing TMEFF2_ΔGA did not differ significantly from either the FL_TMEFF2

expressing or empty vector control expressing cells. Changes in RhoA activation correlated

with the formation of stress fibers, since expression of FL_TMEFF2, but not

TMEFF2_ΔGA, also inhibited stress fiber formation (Figure 5). These results indicate that

TMEFF2 decreases RhoA activation in FBS-stimulated conditions and this may in part be

mediated by the cytoplasmic tail of TMEFF2. Since RhoA plays a role in migration, it is

possible that the observed TMEFF2-mediated inhibition of migration is, at least partly, due

to its effect on RhoA activation. In support of this, treatment of RWPE2 cells with CT04, a

Rho inhibitor, dramatically reduced stress fiber formation and inhibited cellular migration

by 50% (Supplementary Fig S3A).

3.5. TMEFF2 modulates expression of integrins in part through the MAPK pathway

Integrins are the main ECM receptors. They are involved in motility and migration, and

integrin signaling can modulate RhoA activation [17]. To determine whether the effect of

TMEFF2 on migration and RhoA activation is mediated by an effect on integrin levels,

changes in the expression of a subset of integrins in response to TMEFF2 were analyzed.

The human extracellular matrix and adhesion molecules RT2 profiler PCR array was used to

investigate differences in expression of 21 different integrin subunits (15 α and 6 β) – other

genes important for cell-cell and cell-matrix interactions are also included in the array— in

RWPE2 cells. Expression of FL_TMEFF2 but not TMEFF2_ΔGA in RWPE2 cells reduced

the levels of some integrin’s mRNA, including αv, β1 and β3 (Supplementary Fig. S4). For

those integrins, the observed decrease in mRNA levels corresponded with a decrease in total

protein levels as measured by western blot (Figure 6A). Expression of these integrins was

also analyzed in 22Rv1/sh_TMEFF2 cells [25], in which expression of endogenous

TMEFF2 is reduced by sh_RNA, and in 22Rv1/sh_scramble control cells. As shown in

figure 6A, decreasing the level of TMEFF2 by sh_RNA promoted an increase in integrin αv
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protein levels. Expression of the β1 and β3 integrins was not detected in these cells (Figure

6A and data not shown). These results demonstrate that FL_TMEFF2 inhibits expression of

the αv, β1 and β3 integrins, and that the cytoplasmic tail is required for this inhibition.

Attempts to rescue the effect on migration mediated by TMEFF2 by transiently

overexpressing αv and β3 integrins failed. However, these experiments are complicated by

the large number of integrins that appear to be affected by TMEFF2 (see Supplementary Fig.

S4) and the rather promiscuous function of the integrins [31].

Since we have previously demonstrated that TMEFF2 modulates MAPK signaling in

response to growth factors [26], the possibility that TMEFF2 affects integrin expression

through this pathway was examined. RWPE2 cells expressing FL_TMEFF2 or the empty

vector as a control, were treated with the U0126 MAPK inhibitor or with U0124, a chemical

analog that does not have MAPK inhibitory activity, and the effect on integrin expression

was determined. As shown in figure 6B, in the presence of the inactive analog U0124,

expression of TMEFF2 resulted in a decrease in integrin β3 level that was less pronounced

in the presence of U0126 – four fold difference. No effect was observed in the level of

integrin αv (data not shown). Western blot analysis with antibodies against phosphorylated

ERK indicated that U0126 inhibited the MAPK pathway. There was not a significant

inhibition observed with U0124. While the effect of TMEFF2 on integrin expression was

not fully abolished by U0126, these results indicate that MAPK signaling plays a role in

modulation of integrin expression by TMEFF2.

3.6. TMEFF2 expression inhibits integrin expression in vivo

In humans TMEFF2 is expressed mainly in brain and prostate, however, TMEFF2 is not

expressed in the adult mouse prostate [23]. We have generated a transgenic TMEFF2 mouse

model that expresses TMEFF2 driven by the probasin promoter with transgene expression

restricted to the prostate (Supplementary Fig. S5). As described for the probasin promoter

expression pattern [32], TMEFF2 is expressed more in the ventral (VP) and dorsolateral

(DLP) prostate with almost no expression in the anterior lobe (AP) of the transgenic mouse

(Supplementary Fig. S5; Overcash, RF and Ruiz-Echevarria, MJ, unpublished observations).

The TMEFF2 transgenic animals were crossed to a mouse model of prostate cancer

designated TRAMP (transgenic adenocarcinoma of mouse prostate) and 15 weeks TMEFF2/

TRAMP and TRAMP siblings were selected for analysis of integrin expression. After

euthanasia, the prostates were dissected and protein lysates from the anterior, ventral and

dorsolateral lobes were prepared and analyzed for the expression of αv, β3 and β1 integrin

subunits by western blot analysis. β1 integrin has been previously shown to be upregulated

in the TRAMP mouse [33]. As shown in figure 6C, as compared with the TRAMP model,

expression of TMEFF2 in the TRAMP mouse led to reduced expression of the αv, β1 and

β3, integrins indicating that expression of TMEFF2 reduces integrin expression in vivo.

Changes in the level of the α5 integrin subunit were not observed, as it was the case in the

prostate cell lines tested.

4. DISCUSSION

Cell migration is an essential step in embryogenesis as well as in the development of

metastatic lesions during cancer progression. While the metastatic process is not fully
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understood, enhanced migration on extracellular matrix (ECM) substrates correlates with

increased metastasis. Here we present data to show that TMEFF2, a transmembrane protein

with limited expression to embryo and adult brain and prostate, plays a role in cellular

adhesion and migration by modulating activation of the small GTPase RhoA, and/or integrin

expression.

In this study, we demonstrated that expression of TMEFF2 in prostate cancer cells, or in

prostate lobes of a TRAMP/TMEFF2 transgenic mouse, significantly reduced the expression

of at least three integrin subunits, αv, β3 and β1. In agreement with this, we observe that

TMEFF2 inhibits prostate cancer cell migration in vitronectin; αvβ3 is the major receptor

for vitronectin. Importantly, in vitro and in vivo experiments have demonstrated that

expression of αvβ3 plays an essential role in the metastasis of prostate cancer to bone,

accounting for more than 80% of prostate cancer metastases [2]. The αvβ3 integrin plays

numerous roles in prostate cancer metastasis. By modulating engraftment and survival after

bone colonization tumor cell expression of this integrin is critical to the success of

metastatic lesions. Expressed also in osteoclasts, αvβ3 is also critical to bone resorption and

the metastatic growth of the tumor in the bone [9]. Similar results have been observed in

breast cancer where expression of αvβ3 in a mammary carcinoma line that metastasizes to

the lung, but not to bone, was sufficient to promote its spontaneous metastasis to bone [34,

35]. Expression of αvβ3 has also been associated with metastasis to lungs [36].

Interestingly, preliminary data from our laboratory indicates that formation of metastasis to

lungs is reduced in the double TRAMP/TMEFF2 transgenic when compared with the

TRAMP mouse (not shown), suggesting that TMEFF2 inhibits metastasis by affecting

integrin expression. The results presented here also indicated that TMEFF2 affects

expression of the β1 integrin. Interestingly, it has been reported that β1 integrin deletion in a

TRAMP mouse increases prostate epithelial cell differentiation and results in more

aggressive tumors while having no effect on the frequency of metastases, as determined by

visual inspection [37]. Conversely, in our TRAMP/TMEFF2 transgenic animal, in which

expression of β1 and other integrins is reduced, we do not observe changes in the latency or

grade of the tumors but in the occurrence and number of metastases (Overcash RF. and

Ruiz-Echevarria MJ., unpublished observations). It is possible that this reflects differences

in the balance of integrin heterodimer formation. Interestingly, it has recently been reported

that inactivation of integrin β1 promotes expression of β3 in malignant cells, enhancing

metastatic progression [38]. Based on these results, the fact that TMEFF2 reduces the levels

of integrins β1 and β3 could provide an explanation to the phenotypic differences observed

between the TRAMP mouse with a deletion of integrin β1 and the TRAMP/TMEFF2

transgenic animals.

In prostate cancer cells, expression of TMEFF2 affects cellular migration and invasion [24,

25, and this study]. Overexpression of TMEFF2 inhibited migration ofRWPE1 and RWPE2

cells. Conversely, interference of TMEFF2 expression in prostate cancer 22Rv1 cells

promoted increased migration/invasion. Interestingly, the invasive ability of 22Rv1 cells in

which expression of TMEFF2 was reduced, was highly susceptible to the anti-folate drug

methotrexate [25] suggesting that one-carbon availability is central to the migration/invasion

phenotype mediated by changes in TMEFF2. Based on these results, it is reasonable to
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speculate that TMEFF2, by affecting one carbon metabolism, may affect expression of

integrin genes epigenetically, via methylation. Although we have not directly tested that

hypothesis, several studies have described epigenetic alterations –DNA methylation and

histone modifications –that affect integrin expression during tumor progression [39, 40].

The role of TMEFF2 in prostate cancer is complex, and while the full length membrane

bound form functions as a tumor suppressor, a soluble shed form of TMEFF2, the

ectodomain, promotes growth [24]. This has led to the hypothesis that the predominant form

of TMEFF2, and therefore its role, changes as the disease progresses [24, 26, 41]. It is likely

that the full length and the TMEFF2 ectodomain differentially affect integrin expression

during disease progression. We have previously demonstrated that TMEFF2 affects Akt

and/or ERK activation so that the full-length activates ERK but has no effect on Akt

phosphorylation while the ectodomain inhibits ERK phosphorylation concomitantly with

Akt activation in response to growth factors [26]. The results presented here suggest that

TMEFF2 modulates integrin expression, in part via the MAPK pathway. Other mechanisms

need to be identified. Since integrins have been shown to induce Akt [42, 43] and ERK

phosphorylation [44], it is also possible that TMEFF2 modulates MAPK and PI3K pathways

via its effects on integrin expression establishing a negative feedback loop. This would

suggest that TMEFF2 may modulate the cross-talk between integrins and growth factor

receptors to control cellular responses including survival, growth, differentiation and

migration. In this respect, it is known that signaling through receptor tyrosine kinases

(RTKs) is not only regulated by growth factors but also by functional collaboration with

integrins, and integrins may activate RTKs in the absence of growth factors [19, 45].

In this study we have demonstrated that expression of TMEFF2 resulted in decreased RhoA

activation and stress fiber formation and that the latter effect was also depended on the

presence of an intact cytoplasmic domain of TMEFF2. Based on a predicted homology of

this domain with G-protein couple receptors (GPCR), initially plausible hypothesis is that

TMEFF2 may modulate RhoA activation by, for example, restricting the function of GPCRs

that are involved in Gα12/13 or Gαq activation which induce Rho [46], or by promoting the

activity of the Rho inhibitory Gαz signaling [47]. If this were the case, TMEFF2 would

control migration via two independent mechanisms since RhoA inactivation does not seem

to affect integrin expression (Supplementary Fig. S3B). While we have not formally ruled

out this possibility, the fact that integrins can control the activation of Rho-GTPases, either

by engaging Src-tyrosine kinases, or via crosstalk with growth factor receptor signaling,

suggests an alternative mechanism by which TMEFF2 may also control RhoA activation by

controlling integrin expression and thus, cell spreading and migration. It is known, that by

regulating the balance between Rac1-mediated membrane protrusion and RhoA-mediated

contractility, integrins control cytoskeletal-dependent processes involved in cell adhesion

and spreading and therefore cell movement and migration [17, 48].

In summary, these results demonstrate that TMEFF2 negatively regulates cell adhesion and

migration to the ECM by affecting integrin expression and RhoA activation, and suggest a

potentially important role for TMEFF2 as a metastasis inhibitor.
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HIGHLIGHTS

• TMEFF2 affects cell adhesion and migration of prostate cancer cells on

vitronectin

• TMEFF2 modulates RhoA activation, stress fiber and focal adhesion formation

• TMEFF2 modulates integrin expression in prostate cancer cells and in a mouse

model
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Figure 1.
TMEFF2 inhibits migration in RWPE1 and RWPE2 cells. A, B) Cells were grown in the

presence of 250 ng/ml doxycycline to induce the expression of FL_TMEFF2 or

TMEFF2_ΔGA. Overexpression of these proteins in RWPE1 (A) and RWPE2 (B) cells after

doxycycline treatment was assessed by western blot. The slow mobility band corresponds to

a previously described highly glycosylated form of the protein [22]. The reason why this

from is over-represented when the TMEFF2_ΔGA mutant is expressed is not clear. C, D)

Cell migration of RWPE1 (C) or RWPE2 (D) cells expressing the different forms of

TMEFF2, was determined using a wound healing assay, 48 (RWPE1) or 10 hours (RWPE2)

after the wound was made. Quantification of relative migration (fold over the vector) is

presented as mean ± SD of three independent experiments.
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Figure 2.
TMEFF2 inhibits RWPE2 cell spreading on tissue culture plates. A) Representative images

of cell morphology of RWPE2 cells expressing different forms of the TMEFF2 protein, or

the empty vector, on tissue culture surface. Arrows point to rounded cells. Scale bars, 100

μm. B) Quantification of round cells at 3 h after seeding 40,000 cells/well in a 12-well plate.

Data are presented as mean ± SD of three independent experiments. C) Representative

images of cell morphology of RWPE2 cells expressing the inducible FL_TMEFF2 before

and after the addition of doxycycline. Note that FL_TMEFF2 expression promotes cell

rounding and those cells lack lamellipodia.
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Figure 3.
Effect of TMEFF2 in different ECM substrates. A) TMEFF2 significantly inhibits cell

spreading on vitronectin-coated surfaces. RWPE2 cells expressing FL_TMEFF2,

TMEFF2_ΔGA, or the vector were plated onto cover glass coated with the different ECM

substrates. Percentages of spread cells were analyzed 3 h after seeding. Data are presented as

mean ± SD of five independent experiments. B) TMEFF2 inhibits RWPE2 cell migration

towards vitronectin but not fibronectin as measured in a Boyden chamber assay. Shown are

representative images of RWPE2 cells expressing the different TMEFF2 constructs after 48

h migration (top), and quantification of those images by densitometric analysis using ImageJ

(bottom). Data are presented as mean ± SD of three independent experiments.
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Figure 4.
TMEFF2 reduces stress fiber and focal adhesion formation and activation. A) RWPE2 cells

expressing FL_TMEFF2, TMEFF2_ΔGA, or the vector were cultured on cover glass coated

with fibronectin or vitronectin for 3 h and then stained with anti-vinculin (green), rhodamine

phalloidin (orange), and DAPI (blue). Scale bar, 20 μm. B) Immunoblotting of

phosphorylated FAK (Y397), FAK and β-actin (ACTB) in RWPE2 cells. Numbers under

the western blots represent the densitometry quantifications using ImageJ.
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Figure 5.
TMEFF2 inhibits Rho activation. RWPE2 cells expressing FL_TMEFF2, TMEFF2_ΔGA,

or the vector were incubated in serum-free EpiLife CF/PRF medium for 3 days and then

stimulated with 10% FBS for 2 min. Levels of GTP-bound RhoA were determined by G-

LISA RhoA activation assays. Data are presented as mean ± SD of five independent

experiments (top). Rhodamine phalloidin staining of the cells stimulated with 10% FBS for

10 min (bottom) demonstrating lack of stress fibers in the cells expressing FL_TMEFF2.

Scale bar, 25 μm.
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Figure 6.
TMEFF2 modulates the abundance of αv, β1 and β3 integrins in cell lines and in mouse

prostates. A) Total lysates of the indicated cells lines were subjected to immunoblotting with

antibodies against the integrins as shown. Note that TMEFF2 did not promote changes in α5

integrin levels and that 22Rv1 cells do not express β3 integrin. B) Total lysates of RWPE2

cells treated with 10μM MAPK inhibitor U0126 or inactive analog U0124 for 24 h were

subjected to immunoblotting with integrin β3 antibody. The effectiveness of MAPK

inhibition was demonstrated using an antibody against phosphorylated ERK. C) Tissue

lysates from the anterior (A), ventral (V) or dorsolateral (DL) lobes of the mouse prostate

were subjected to immunoblotting with antibodies against the specified integrins. Arrows

indicate the sizes of the individual integrin subunits observed in cell lines. Additional bands

may represent precursor proteins, which are also decreased by TMEFF2. β-tubulin (TUBB)

or ribosomal protein S6 (RPS6) were used as a loading controls. Numbers under the western

blots are the densitometry quantifications of the arrow-pointed bands normalized to the

loading control using ImageJ. Note that the complexity of the banding pattern for the β3

integrin in mouse prostate lobes did not allow quantification however, the decrease in the

abundance as a result of TMEFF2 expression is clear.

Chen et al. Page 21

Biochim Biophys Acta. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


