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Abstract
In this paper, we consider theoretical and computational connections between six popular methods
for variable subset selection in generalized linear models (GLM’s). Under the conjugate priors
developed by Chen and Ibrahim (2003) for the generalized linear model, we obtain closed form
analytic relationships between the Bayes factor (posterior model probability), the Conditional
Predictive Ordinate (CPO), the L measure, the Deviance Information Criterion (DIC), the Aikiake
Information Criterion (AIC), and the Bayesian Information Criterion (BIC) in the case of the linear
model. Moreover, we examine computational relationships in the model space for these Bayesian
methods for an arbitrary GLM under conjugate priors as well as examine the performance of the
conjugate priors of Chen and Ibrahim (2003) in Bayesian variable selection. Specifically, we show
that once Markov chain Monte Carlo (MCMC) samples are obtained from the full model, the four
Bayesian criteria can be simultaneously computed for all possible subset models in the model space.
We illustrate our new methodology with a simulation study and a real dataset.
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1 Introduction
Bayesian variable selection is still one of the most theoretically and computationally
challenging problems encountered in practice due to issues regarding i) prior elicitation, ii)
analytic evaluation of the model selection criterion, and iii) numerical computation of the
criterion for all possible models in the model space. These issues have been discussed by many
authors for various linear and generalized linear models including George and McCulloch
(1993), Laud and Ibrahim (1995), George et al. (1996), Raftery (1996), Smith and Kohn
(1996), George and McCulloch (1997), Raftery et al. (1997), Brown et al. (1998), Brown et
al. (2002), Clyde (1999), Chen et al. (1999), Dellaportas and Forster (1999), Ibrahim et al.
(1999), Chipman et al. (1998), Chipman et al. (2001), Chipman et al. (2003), George (2000),
George and Foster (2000), Ibrahim et al. (2000), Ntzoufras et al. (2003), and Chen et al.
(2003). Clyde and George (2004) present an excellent review article on Bayesian model
selection and uncertainty, and give an excellent exposition of the theoretical and computational
issues involved in Bayesian variable selection and Bayesian model uncertainty in general. An
entire monograph devoted to Bayesian model selection is given by Lahiri (2001).
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One of the important unresolved issues in Bayesian model selection and Bayesian variable
selection in particular is what the analytic or empirical connections are between the various
methods. For example, it is not clear what the relationship is between BIC and DIC, or DIC
and the L measure, and whether one is a monotonic function of the other, and whether one can
compute BIC from DIC or vice versa. A related question is that if one has MCMC samples
from the full model, how can those samples be used to obtain all four Bayesian criteria
mentioned above. To answer these questions, we investigate the following in this paper: (i) for
the normal linear model with conjugate priors, we obtain analytic relationships between the
Bayes factor, CPO, the L measure, DIC, AIC, and BIC, and (ii) for the class of GLM’s we
show via the development of several theorems and identities how one can compute all of these
Bayesian criteria simultaneously using only an MCMC sample from the full model.

The relationships obtained in (i) for the linear model shed light on the behavior and connections
between these criteria for GLM’s. The development of (ii) above is important and useful since
it establishes the computational relationships in the model space for each of the four Bayesian
criteria and shows that for variable subset selection in GLM’s using the conjugate priors of
Chen and Ibrahim (2003), we can compute the four Bayesian criteria for all possible 2p subset
models using only an MCMC sample from the full model with p covariates. Another important
issue we examine in this paper is the performance of the conjugate priors proposed by Chen
and Ibrahim (2003) in Bayesian variable subset selection. We demonstrate that these priors
perform quite well in this context, and they are easy to specify and computationally feasible.

The rest of this paper is organized as follows. Section 2 gives formulas for each of the criteria
under the conjugate priors of Chen and Ibrahim (2003) for GLM’s and Section 3 develops the
theoretical connections between the six criteria for the normal linear model. Section 4
establishes the computational connections in the model space for the four Bayesian criteria and
several key identities and theorems that are needed. Section 5 presents a detailed simulation
study examining various properties of the six criteria, and Section 6 presents a real data
example. We conclude the article with brief remarks in Section 7. All proofs are given in the
Appendix.

2 The Method
2.1 Model and Notation

Suppose that {(xi, yi), i = 1, 2, …, n} are independent observations, where yi is the response
variable, and xi = (1, xi1, …, xik)′ is a (k + 1) × 1 random vector of covariates. Let ℳ denote
the model space. We enumerate the models in ℳ by m = 1, 2,…, , where  is the dimension
of ℳ and model  denotes the full model. Also, let β( ) = (β0, β1, …, βk)′ denote the regression

coefficients for the full model including an intercept, and let  and β(m) denote km × 1 vectors
of covariates and regression coefficients for model m with an intercept, and a specific choice

of km − 1 covariates. We write , and β( ) = (β(m)′, β(−m)′)′, where  is xi

with  deleted and β(−m) is β( ) with β(m) deleted.

Under model m, the generalized linear model (GLM) is assumed for [ ], which has the
conditional density given by

(1)
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where  is the canonical parameter, , and τ is a dispersion parameter.
The functions a, b and c determine a particular family in the class. The functions ai(τ) are
commonly of the form , where the wi’s are known weights. For ease of exposition,
we assume throughout that τ = 1 and wi = 1, as, for example, in logistic and Poisson regression.
The methods proposed here can be easily extended to the case when τ is unknown. Under this
assumption, (1) can be rewritten as

(2)

2.2 Prior and Posterior
In the context of Bayesian variable selection, a prior distribution for β(m) needs to be specified
for each model in the model space ℳ. To this end, we consider a conjugate prior for the GLM
proposed by Chen and Ibrahim (2003). Under model m, the conjugate prior is of the form

(3)

where a0 > 0 is a scalar prior parameter, y0 = (y01, …, y0n)′ is an n × 1 vector of prior parameters,

J is an n×1 vector of ones, and  is an n×1 vector of the ’s.
As discussed in Chen and Ibrahim (2003), y0i can be viewed as a prior prediction for the
marginal mean of yi at xi. Thus, in eliciting y0, the user must focus on a prediction (or guess)
for E(y), which narrows the possibilities for choosing y0. Moreover, the specification of all
y0i equal has an appealing interpretation. A prior specification with y01 = … = y0n implies a
prior in which the prior modes of the slopes in the regression model are the same, but the prior
modes of intercepts in the regression model vary. For example, a prior with y0i = 0.5 will have
the same modes of slopes but a different mode of intercept than a prior with y0i = 0.1. This is
intuitively appealing since in this case the prior prediction on y0i does not depend on the ith
subject’s specific information. Mathematically, this result was established in Chen and Ibrahim
(2003). The details are as follows. Suppose we drop model index m. Let μ0 be any prespecified
p × 1 vector, where p = k + 1. Suppose we take

where ḃ(θ) is the gradient vector of b(θ). Then, the conjugate prior yields a prior mode of β
equal to μ0. Now we can see that μ0 = (β0, 0, …, 0)′ yields y01 = y02 = … = y0n = ḃ(θ(β0)). On
the other hand, as under some mild conditions, the prior mode is unique, and, hence, the
specification of y0 = y01 leads to the prior mode μ0 = (β0, 0, …, 0)′, where β0 satisfies ḃ(θ
(β0)) = y0. For instance, under normal linear regression, we can show that the prior mode μ0
of β is given by

If we specify y0 = y01, we have
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which implies that all the slopes are 0 while the intercept is equal to y0. This attractive feature
allows us to do sensitivity analyses by varying the intercepts in the prior. The parameter a0 in
(3) can be generally viewed as a precision parameter that quantifies the strength of our prior
belief in y0.

In the context of Bayesian variable selection, (3) specifies the priors for all models in ℳ in an
automatic and systematic fashion. Although various theoretical properties of (3) were
examined in Chen and Ibrahim (2003) in a great detail, it is not clear how well this type of the
prior performs in the context of Bayesian variable selection.

Now, under model m, the posterior distribution of β(m) with the conjugate prior (3) is given by

(4)

where D = {(yi, xi), i = 1, 2, …, n} denotes the observed data. From (4), we can see that under
the conjugate prior, the resulting posterior has a very attractive form. Furthermore, when a0
→ 0, the posterior π(Σ(m)|D, m) in (4) reduces to

which is the posterior distribution based on an improper uniform prior for β(m).

2.3 Variable Selection Criteria
In this section, we consider four Bayesian model assessment criteria, namely, Conditional
Predictive Ordinate (CPO) statistic (Geisser (1993); Gelfand et al. (1992); and Gelfand and
Dey (1994)), L measure (Ibrahim and Laud (1994); Laud and Ibrahim (1995); Gelfand and
Ghosh (1998); Ibrahim et al. (2001a); and Chen et al. (2004)), Deviance Information Criterion
(DIC) (Spiegelhalter et al. (2002)), and marginal likelihood (Bayes factor).

The CPO, L measure, and DIC are criterion based methods which can be attractive in the sense
that they are well defined under improper priors as long as the posterior distribution is proper,
and thus have an advantage over the marginal likelihood or Bayes factor approach in this sense.
Because of this reason, these three criterion based methods can be directly compared to AIC
(Akaike (1973)) and BIC (Schwarz (1978)). On the other hand, the marginal likelihood or the
Bayes factor is well calibrated and relatively easy to interpret, but generally sensitive to vague
proper priors. In the context of variable selection, it is not clear how these methods perform
under the conjugate prior given in (3) for the GLM.

Under model m, for the ith observation, we define the CPO statistic as follows:
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where D(−i) is D with the ith observation deleted, and π(β|D(−i),m) is the posterior distribution
based on the data D(−i). Due to the construction of the conjugate prior (3), it is more natural to
define

After some messy algebra, we can show that CPOi takes the following form:

(5)

where  is the density function given in (2). Also, we notice that the CPO defined
in (5) is slightly different from the usual CPO (Geisser (1993) and Gelfand et al. (1992)), which
is of the form

However, these two forms will be identical as a0 → 0. As suggested in Ibrahim et al.
(2001b), a natural summary statistic of the CPOi’s is the logarithm of the Pseudo-marginal
likelihood (LPML) defined as

We will use LPMLm as a criterion-based measure for variable selection.

The L measure criterion is another useful tool for model comparison and variable selection.
The L measure is constructed from the posterior predictive distribution of the data. For the
entire class of GLM’s in (2), under model m, the L measure is defined as:

(6)

where b′(.) and b″(.) are the mean and variance functions of the GLM in (2), and all expectations
and variances are taken with respect to the posterior distribution π(β(m)|D, m) in (4). We note
that for the GLM in (1), we need to modify Lm(ν) in (6) accordingly, and in this case, the L
measure takes the form
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(7)

The DIC criterion, proposed by Spiegelhalter et al. (2002), is given by

(8)

where

β ̄(m) = E[β(m)|D, m], and . For the GLM in (2), under model m,

(9)

Similar to (6), under the GLM in (1), D(β(m)) needs to be modified accordingly.

In the spirit of marginal likelihoods, after ignoring the constants shared by all variable subset
models in model space ℳ for the GLM in (2), for the purpose of variable subset selection it
suffices to compute the posterior normalizing constant

(10)

and the prior normalizing constant

(11)

Similar to the modification of (6) yielding (7), under the GLM in (1), D(β(m)) in (9), Cm(D) in
(10), and C0m(y0) in (11) need to be modified accordingly. In the context of variable selection,
we select a variable subset model which yields the largest LPMLm under the CPO, the smallest
Lm(ν) under the L measure, the smallest DICm under the DIC, and the largest Cm(D)/C0m(y0)
or log[Cm(D)/C0m(y0)] under the marginal likelihood.

3 Analytic Connections Between Variable Selection Criteria For the Normal
Linear Regression Model

In this section, we consider the normal linear regression models given by
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(12)

Let , which is the design matrix for the normal linear regression under
model m. Assume Xm is of full rank km throughout. We focus only on the τ known case as
analytical connections are more difficult to establish when τ is unknown. For the model in (12)
with a known τ, the conjugate prior for β(m) in (3) reduces to

(13)

and the posterior distribution for β(m) is given by

For (12), AIC and BIC under model m are given by

(14)

where β ̂(m) is the maximum likelihood estimate of β(m) and

is the usual sum of squared errors, and

(15)

After some algebra, we can show that after putting back all normalizing constants, the logarithm
of the marginal likelihood under model m is given by

(16)

When y0 = 0, the conjugate prior in (13) reduces to Zellner’s g-prior (Zellner (1986)). For this
special case, (16) becomes
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(17)

Thus, we have

(18)

For purposes of variable selection, it suffices to compare ℳm(a0) and we then choose a model
with the smallest ℳm(a0). From (18), we can see that

(19)

For (12), we use (7) to compute Lm(ν). In particular, we have ai(τ) = 1/τ,

,

and . Thus, we obtain

(20)

When y0 = 0, (20) reduces to

(21)

Write
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(22)

Using (21) and (22), we obtain

and hence

Note that in the context of variable selection, a model with the smallest Lm(ν) is the same model
that has the smallest L ̃m(ν, a0). Thus, in this sense, the L measure can be equivalent to AIC or
BIC by appropriately tuning (ν, a0). It is interesting to mention that in order to achieve L ̃m(ν,
a0) = AICm or L ̃m(ν, a0) = BICm, ν must be small, and hence when ν = 1, the L measure always
has a smaller dimensional penalty than both AIC and BIC. Unlike the marginal likelihood,
a0 plays a minimum role in controlling dimensional penalty in the L measure.

When y0 = 0, the posterior mean of β(m) is given by . Thus, we have
,

(23)

and

(24)

Combining (23) and (24) gives

(25)
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Thus, the DICm for (12) is given by

(26)

Write

We have

(27)

Therefore, when a0 = 0, , and when a0 > 0, , which implies that
 has a smaller dimensional penalty than both AIC and BIC.

Similarly to DIC, we consider only y0 = 0. From (5), we have

(28)

where  and

for i = 1, 2, …, n. After some messy algebra, we obtain

and
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Let , and . Plugging CPO1i and
CPO2i into (28) yields

(29)

Using Taylor expansion and after some algebra, LPMLm in (29) can be rewritten as

(30)

where

Write

(31)

Using (30) and (31), we obtain

where . We choose a model with the smallest . Note that the remainder

term Rm is small when all ’s are small. From (14), (15), and (27), we see that when Rm is
small and does not vary much in the model space ℳ, LPML has a smaller dimensional penalty
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than DIC, AIC and BIC. In addition, when a0 = 0, LPMLm in (30) is consistent with the one
derived by Gelfand and Dey (1994) based on the asymptotic approximation.

Finally, we note that the quantities defined in (18), (22), (27) and (31) are linear transformations
of those defined by (17), (21), (26) and (30), respectively. In these linear transformations, the
relevant coefficients are independent of m. Thus, for the purposes of variable subset selection,
these linearly transformed quantities act exactly like those original forms. With (18), (22), (27)
and (31), we can much more clearly see the analytical connections to AIC and BIC. We also
note that George and Foster (2000) provided some similar connections between model selection
probabilities and various model selection criteria for this setup.

4 Computational Development: Theory and Implementation
For the purpose of variable selection, we need to compute LPMLm, Lm(ν), DICm, Cm(D) and
C0m(y0) for the Bayesian variable selection criteria described in the previous section for m =
1, 2, …, . Due to the complexity and generality of the GLM in (2), the analytical evaluation
of these measures does not appear possible. Thus, a Monte Carlo (MC) based method is required
for each of those measures under consideration. However, the MC methods currently available
in the Bayesian computational literature require a Markov chain Monte Carlo (MCMC) sample
from the posterior distribution π(β(m)|D, m) in (4) under each variable subset model m. When
the number of the models in ℳ is large, sampling from the posterior distribution under each
variable subset model can be expensive. Thus, the computation of these four measures for all
submodels becomes a difficult and challenging task. Therefore, the development of an efficient
Monte Carlo method for variable selection for the GLM is very essential.

After examining (5), (6), and (8), we observe that there is a common feature in computing
LPMLm, Lm(ν), and DICm, i.e., all of these three measures require to compute

for various functions g, where the expectation is taken with respect to the joint posterior
distribution in (4) under model m. Specifically, the functions required in these calculations
include

i.  and

 for LPMLm;

ii.
, and  for Lm(ν);

iii. g(β(m)) = β(m) and g(β(m)) = D(β(m)) for DICm.

Write

under model m and let L(β|D) = L(β( )|D, ), C(D) = C

(D), and C0(y0) = C0  (y0) under the full model. Here, we abuse the notation a little bit as L
(β(m)|D, m) is not a likelihood function in the usual sense. Then, for a given function g,
mathematically, we have
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where Cm(D) is defined in (10). Now, we present a useful identity for gm, which is formally
stated in the following theorem.

Theorem 5
For any given function g, such that E[|g(β(m))| |D, m] < ∞, we have

(32)

where the expectation is taken with respect to the joint posterior distribution in (4) under the
full model. Here, w(β(−m)| β(m)) is a completely known conditional density, whose support is
contained in, or equal to, the support of the conditional density of β(− m) given β(m) with respect
to the joint posterior distribution in (4) under the full model.

Observing that when g ≡ 1, we have

which leads to

(33)

and

(34)

It is interesting to mention that the identity (33) is a by-product of this derivation and this
identity can be used to compute the posterior normalizing constant under model m. The
identities (33) and (34) play an important role in developing a novel Monte Carlo method for
computing LPMLm, Lm(ν), DICm, and Cm(D) simultaneously using a single MCMC sample
from the joint posterior distribution under the full model. Towards this goal, we let {βs =
(β(m)′s, β(−m)′s), s = 1, 2, …, S} denote a MCMC sample from the joint posterior distribution
(4) under the full model, where S is the MCMC sample size. Then, an estimate of gm is given
by
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(35)

Under certain regularity conditions, such as ergodicity, we have

which indicates that ĝm is consistent.

Letting

(36)

and

(37)

we have

(38)

and

(39)

From (38) and (39), we obtain

(40)

Using (36)–(40), we have
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(41)

In (41),  and

(42)

In addition, we have

We are then led to the following theorem.

Theorem 6
Let {βs, s = 1, 2, …, S} be a random sample. Assume A ≠ 0,

(43)

and

(44)

where the expectation is taken with respect to the joint posterior distribution in (4) under the
full model. Then we have

(45)

where Vw(gm) is defined by (43) and
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The proof of Theorem 6 directly follows from the proof of Theorem 3.1 of Chen and Shao

(1997). Thus, the detail is omitted for brevity. From (45), we notice that  is the relative
mean-square error and Theorem 6 implies that when S is large,

Remark 4.1—As discussed in Chen et al. (2000), the simulation standard error of ĝm can be
approximated by

where Â = AS.

Remark 4.2—From (34), it is quite natural that one may think a more efficient way to obtain
a MC estimate of gm is by generating two MC samples from the posterior distribution so that
one sample is used for computing  while the second sample is used
for computing . In this remark, we show that the use of two MC samples
in obtaining the MC estimate of gm may not necessarily be more efficient than the use of just
one MC sample. In addition, generating two MC samples requires more computing time.
Specifically, suppose that {β1;s, s = 1, 2, …, S1} and {β2;s, s = 1, 2, …, S2} are two independent
random samples from the joint posterior distribution (4) under the full model. Then gm can be
estimated by

(46)

By the δ-Method, we have

where the expectation and variance are taken with respect to the joint posterior distribution (4)
under the full model.
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Assuming that S1 = S2 = S, we have

(47)

Thus, if

(48)

we have

It is easy to see that when g(β(m)) ≥ 0 or g(β(m)) ≤ 0, (48) automatically holds. Therefore, for
many cases, it is unnecessary to use two MC samples instead of one MC sample in obtaining
the MC estimate of gm.

Note that the estimate ĝm depends on w(β(−m)|β(m)). It is reasonable to argue that the best choice
of w should yield the smallest asymptotic variance of the estimate ĝm among all possible w’s.
The following theorem precisely addresses this optimality issue.

Theorem 7
Let

(49)

be the conditional posterior density of β(−m) given β(m) under the full model, then we have

(50)

for all w’s, where Vw(gm) is defined by (43).

Remark 4.3—Note that (50) holds for any function g that satisfies the condition given in (44).
Thus, for various functions g involved in LPMLm, Lm(ν) and DICm, the best choice of w is the
same wopt given in (49).

Remark 4.4—When we use  in (46), we can also show that wopt = π(β(−m) | β(m), D) yields
the smallest asymptotic relative mean-square error of , for example, the one given by (47).
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Remark 4.5—For computing CPOi in (5) under model m, we do not need to compute  in
(32). In fact, it is easy to see that

where  and

. Thus, given a MCMC sample
{ , s = 1, 2, …, S} from the joint posterior distribution (4), a MC estimate of
CPOi is given as follows:

Following the proof of Theorem 7, we can easily show that the optimal choice of w for

 is still the same wopt given in (49).

Remark 4.6—To compute LPML

, L

(ν) and DIC

under the full model, we can simply take β( ) = β and w(β(− ) |β( )) = 1. Then, for various
functions g, given a MCMC sample {βs, s = 1, 2, …, S} (35) reduces to

where {βs, s = 1, 2, …, S} is a MCMC sample from the posterior distribution (4) under the full
model.

Remark 4.7—As shown in Theorem 7, the optimal choice of w is wopt = π(β(−m) | β(m), D).
However, for the GLM in (2), wopt is not available in closed form. Fortunately, for the GLM,
a good w(β(−m)|β(m)), which is close to the optimal choice, can be constructed based on the
asymptotic approximation to the joint posterior proposed by Chen (1985). Let β ̂ denote the
posterior mode of β under the full model, i.e.,
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Also let

Then, the joint posterior π(β|D) under the full model can be approximated by

(51)

Using (51), we simply take w(β(−m) | β(m)) = π̂(β(−m) | β(m), β ̂, D), which is the conditional
distribution of β(−m) given β(m) with respect to the (k + 1)-dimensional multivariate normal
distribution in (51).

Remark 4.8—As a by-product, Cm(D)/C(D) is ready to compute via the identity (33). It can
also be shown that

(52)

where  and the expectation is taken with respect to
the prior distribution in (3) under the full model. After examining the construction of the
conjugate prior and the form of the GLM in (2), we can also show that

(53)

where π(β(−m) = 0|D) and π(β(−m) = 0|y0, a0) are the marginal posterior density and the marginal
prior density of β(−m) evaluated at β(−m) = 0 under the full model. Furthermore, Bm in (53) is
the Bayes factor for comparing model m to the full model. Thus, to compute Bm, we need to
generate two MCMC samples, one from the posterior distribution and another one from the
prior distribution of β under the full model, and then use (33) and (52).

Finally, we note that we derive wopt under the independence assumption. We expect that this
optimal choice will work well even when a dependent MCMC sample is used. Some related
empirical studies have been reported and discussed in Meng and Wong (1996), Diciccio et al.
(1997) and Meng and Schilling (2002). They suggested that the optimal or near-optimal
procedures constructed under the independence assumption can work remarkably well in
general, providing orders of magnitude improvement over other methods with similar
computational effort. Alternatively, suppose we systematically take a 1-in-b subsample of size
S from the Markov chain that is generated from the joint posterior distribution in (4). Then,
following from Guha et al. (2004), we can show that (45) holds under some mild regularity
conditions such as geometrical ergodicity and a sufficiently large b. Thus, if we take a MCMC
sample in such a way, this MCMC sample can be treated as “a random sample.”
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5 A Simulation Study
In Section 3, we have established theoretical connections among AIC, BIC and the four
Bayesian criteria in the normal linear regression setting. However, it does not appear possible
that there are any analytic connections between AIC or BIC and the four Bayesian criteria for
Poisson regression. For this reason, we present a simulation study for Poisson regression to
empirically examine whether there exist any connections among these criteria and to examine
the performance of conjugate priors in the context of variable selection. Suppose yi|θi are
independent Poisson observations with mean , where  is a 1 × p vector, i = 1, 2, …, n. The
conjugate prior takes the form

(54)

where y0i is the ith component of y0. In the simulation, we assume that xi0 = 1, xij ~ N (0, 1)
independently for j = 1, 2, 3 and i = 1, 2, …, n. In (54), we take y0i = 1 for i = 1, 2, …, n, which
yields a prior mode of β to be 0, as shown in Chen and Ibrahim (2003). Further we use β =
(−0.3, 0.3, 0, 0)′, β = (−0.3, 0.3, 0.2, 0)′, and β= (−0.3, 0.3, 0.2, −0.15)′ which correspond to
the true models (x1), (x1, x2), and (x1, x2, x3) (full model), respectively. We also use the sample
size of n = 500.

Under the simulation design, we independently generated N = 500 datasets. For each simulated
dataset, we fit 23 = 8 models. To compute the posterior model probabilities based on the
conjugate priors, we implemented the Monte Carlo algorithm proposed in Section 4 with a
Monte Carlo sample size of S = 20, 000. For all of these 8 models, we computed BF, DIC, L
measure, LPML, AIC, and BIC.

Tables 1 and 2 show results for the various methods. Our model performance evaluation
criterion is a 0-1 loss function, the loss being 0 if the true model is selected and 1 otherwise.
In Table 1, we see that BIC performs better than AIC in the number of times the true model is
selected as best when the true model is a smaller model. For example, when (x1) is the true
model, AIC correctly identifies this model as best 361 times out of 500 and BIC correctly
identifies this model as best 490 times. Table 2 compares the performance of the four other
criteria under several values of a0 from the conjugate prior as well as several values of ν for
the L measure. We see from the table that, in general, for small values of a0, which imply a
noninformative prior, the Bayes factor results are quite consistent with DIC, the L measure,
and LPML for small models being the true models, whereas when the full model is the true
model, the Bayes factor tends to do worse for small a0 compared to large a0. In general, as
a0 increases, the performance of DIC, LPML, and the Bayes factor becomes worse, whereas
for the L measure, it is fairly robust over several values of a0. The L measure seems to perform
best under moderate values of ν, such as ν = 0.5.

6 A Real Data Example
Due to lack of analytic connections between AIC or BIC and the four Bayesian criteria for
logistic regression, we consider the Chapman data from Los Angeles Heart Study of men (n =
200) presented in Dixon and Massey (1983) to empirically examine whether there exist any
connections among these criteria.

In our analysis, we consider a coronary incident as a binary response variable (y), which takes
the values 0 and 1, where a 1 denotes that an incident had occurred in the previous ten years
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and a 0 indicates otherwise. We consider five prognostic factors: age (Ag), systolic blood
pressure in millimeters of mercury (S), diastolic blood pressure in millimeters of mercury (D),
Cholesterol in milligrams per DL (Ch), and BMI = (703.07Weight)/(Height2).

Let x1, x2, x3, x4, and x5 denote Ag, S, D, Ch, and BMIH. For the Chapman data, we fit a logistic
regression model

(55)

The conjugate prior in (3) corresponding to the model (55) takes the form

(56)

where yi0 = 0.5, i = 1, 2, …, n, to ensure the prior mode of β to be 0. We wish to compare the
following 32 models: Intercept only, (x1), …, (x5), (x1, x2), …, (x1, x2, x3, x4, x5). We note that
the notation (x1, x2, x3, x4, x5), for example, implies that

 in (55). Thus, “Intercept only” is the model with
zero predictors while (x1, x2, x3, x4, x5) is the full model with the largest model dimension. We
also note that an intercept is included in every model. Further we denote that M1 = (Int), M2 =
(Int, Ag), M3 = (Int, S), M4 = (Int, D), M5 = (Int, Ch), M6 =(Int, BMI), M7 = (Int, Ag, S), M8
=(Int, Ag, D), M9 =(Int, Ag, Ch), M10 =(Int, Ag, BMI), M11 =(Int, S, D), M12 =(Int, S, Ch),
M13 =(Int, S, BMI), M14 =(Int, D, Ch), M15 =(Int, D, BMI), M16 =(Int, Ch, BMI), M17 =(Int,
Ag, S, D), M18 =(Int, Ag, S, Ch), M19 =(Int, Ag, S, BMI), M20 =(Int, Ag, D, Ch), M21 =(Int,
Ag, D, BMI), M22 =(Int, Ag, Ch, BMI), M23 =(Int, S, D, Ch), M24 =(Int, S, D, BMI), M25 =
(Int, S, Ch, BMI), M26 = (Int, D, Ch, BMI), M27 =(Int, Ag, S, D, Ch), M28 =(Int, Ag, S, D,
BMI), M29 = (Int, Ag, S, Ch, BMI), M30 =(Int, Ag, D, Ch, BMI), M31 = (Int, S, D, Ch, BMI),
and M32 = (Int, Ag, S, D, Ch, BMI).

To compute the posterior model probability (PMP), DIC, LPML, and L measure under various
conjugate priors, we implemented the Monte Carlo algorithm proposed in Section 4 with a
Monte Carlo sample size of S = 20, 000. We see from Table 3 that M22 is selected as the best
model by AIC and the fourth model by BIC, whereas M10 is selected as the second best model
by both criteria. Table 4 shows the results of the L measure, posterior model probability (PMP),
LPML, and DIC for several values of a0, as well as several values of ν for the L measure. Table
3 reveals a similar story as the simulation study. Model M22 is selected as either the top model
or second best model for most values of a0 for DIC and PMP, as well as for the L measure
under small values of ν. Under larger values of ν the L measure as well a LPML appear to favor
model M32. Finally, for small values of a0, LPML and PMP appear to favor a smaller model,
namely M2. Thus, from these analyses, models {M2, M22, M32} appear to be the most promising
based on all of these model selection criteria. Table 5 shows the top five models selected for
each of the four variable selection criteria (PMP, DIC, L measure, LPML). Again we see a
remarkable consistency between the four criteria, in which the ordering of the top models is
similar for the four criteria for small, moderate, and large values of a0, and for a wide range
of ν values for the L measure.

Table 6 shows the posterior means (Estimates), the posterior standard errors (SEs), and 95%
HPD intervals for the βj‘s under model M22 (Ag, Ch, BMI) and model M32 (Ag, S, D, Ch, BMI)
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when a0 = 0.01. Table 6 also shows the corresponding maximum likelihood estimates (MLEs),
the standard errors, and p-values. We see from Table 6 that the posterior estimates are very
close to the MLEs, which is intuitively appealing, as a fairly noninformative (a0 = 0.01) is
used. We also see from this table that under these two “best” models, age and BMI are only
two prognostic factors for the coronary incident, which are significant at the 5% significance
level.

To examine performance of the proposed Monte Carlo method in Section 4, we first computed
various model selection criteria under a sub-model using a MCMC sample from the full model.
We then computed the same quantities using a MCMC sample directly from the posterior
distribution under the same sub-model. For illustrative purposes, we considered a single
variable sub-model M2 = (Int, Ag) using the conjugate prior (56) with a0 = 0.01. Using a MCMC
sample size of S = 20, 000, the Monte Carlo estimates (simulation standard errors) of DIC,
LPML, L(ν = 0.1), L(ν = 0.5), and L(ν = 0.9) under model M2 are 146.68 (0.08), −73.30 (0.04),
23.91 (0.05), 32.44 (0.06), and 40.96 (0.06), respectively, using the proposed Monte Carlo
method via (35). With the same MC sample size, these quantities are 146.67 (0.02), −73.29
(0.01), 23.90 (0.02), 32.42 (0.02), and 40.95 (0.02), respectively, using the MC sample directly
from the posterior distribution under model M2. All simulation standard errors were computed
using the overlapping batch statistics (OBS) method of Schmeiser et al. (1990). As expected,
the simulation standard errors using the MC sample from the full model are slightly larger than
those computed using the MC sample directly from model M2. However, these two sets of the
MC estimates are very close. This empirically demonstrates that the proposed MC method
works quite well. Finally, we compared the computational times between the proposed Monte
Carlo method and the exhaustive alternative. With 2,000 “burn-in” iterations and S = 20, 000,
the computational times of the proposed Monte Carlo method for 32 DIC’s, LPML’s, and L
(ν)’s are 71.28, 100.11, and 76.36 seconds, respectively, on a Dell WS Xeon dual 2.4GHZ CPU
Linux workstation. Using the same number of “burn-in” iterations, the same MC sample size,
and the same computer, the computational times of the exhaustive alternative Monte Carlo
method for 32 DIC’s, LPML’s, and L(ν)’s are 324.05, 357.97, and 322.13 seconds,
respectively. Thus, it becomes apparent that the proposed Monte Carlo method leads to a
substantial computational saving over the exhaustive alternative.

7 Concluding Remarks
We have examined and established theoretical and computational relationships between six
commonly used methods for variable subset selection. These connections were facilitated from
the class of conjugate priors of Chen and Ibrahim (2003). We saw that under this class of priors
the four Bayesian criteria were quite similar in terms of model choice especially under small
values of a0, and the results were fairly robust under a wide choice of a0 values. Further work
remains to be done. In particular, it is of interest to obtain analytic connections between these
criteria for specific GLM’s, such as the logistic and Poisson regression models, as well as
theoretically examine the small sample and large sample behavior of these methods. In Section
4, the theory and algorithm are developed for computing the four Bayesian criteria which are
defined for the GLM in (2). With some straightforward modification, these theory and
algorithm can be applied for computing the four Bayesian criteria that are defined for the
general GLM in (1).

We note some philosophical issues about model selection that are worth noting. In this paper,
we have evaluated the performance of all criteria based on how well they can pick up the true
sampling model. However, there are other ways of defining the “Bayesian model.” Many
advocate that a Bayesian model is specified by the sampling density and the prior, not only by
the sampling density. When one only evaluates the success of a criterion based on how well it
picks up the sampling model, then a comparison between AIC (or BIC) and DIC is not
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meaningful when DIC is computed using an informative prior. Since AIC is equivalent to DIC
based on a noninformative prior, a comparison of AIC (or BIC) to DIC is simply not meaningful
when using informative priors. In general, one should avoid such comparisons, and only
comparable criteria should be compared. For example, it is meaningful to compare AIC, BIC,
DIC, LPML, the L-measure, and the Bayes factor based on noninformative priors. It is
meaningful to compare DIC, the L-measure, LPML, and the Bayes factor based on informative
priors. Finally, we note that most criteria for model assessment, especially the information
criteria, are based on a well-defined utility function. If a utility function is chosen, a comparison
to a criterion based on a different utility function is not justified. For example, the Bayes factor
and BIC are prior predictive criteria aiming at the explanation of the data given the prior,
whereas DIC (AIC as a special case) and LPML are posterior predictive criteria aiming at the
explanation of replicate (unseen) data given the posterior. Thus, one must use caution in
comparing these criteria in terms in picking up the true sampling model.
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Appendix: Proofs of Theorems

Proof of Theorem 5
Since ∫ w(β(−m)|β(m))dβ(−m) = 1 and β = (β(m)′ β(−m)′)′, we have

which completes the proof.

Proof of Theorem 7
From (43), we have

(A.1)

Plugging wopt into (A.1), we have
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(A.2)

where π(β(m) | D) denotes the marginal posterior distribution of β(m) under the full model. Thus,
it suffices to show

(A.3)

By the Cauchy-Schwarz inequality, we have

(A.4)

Using (A.4), the left-hand side of (A.3) becomes

which exactly matches the right-hand side of (A.3).
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Table 1
Frequencies for Ranking the True Model as Best Using AIC and BIC Based on n = 500 and N = 500 Datasets

True Model AIC BIC

(x1) 361 490

(x1, x2) 425 446

(x1, x2, x3) 474 316
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Table 3
The Top Model Based on AIC and BIC for Chapman Data

AIC BIC

Mk Values Mk Values

M22 142.75 M2 153.34

M10 143.73 M10 153.63

M29 144.69 M9 155.83

M30 144.75 M22 155.94

M19 145.57 M16 155.99
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