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Abstract

Objective—Rupture of abdominal aortic aneurysms (AAAs) causes a high morbidity and 

mortality in the elderly population. Platelet-rich thrombi form on the surface of aneurysms and 

may contribute to disease progression. In this study, we used a pharmacologic approach to 
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examine a role of platelets in established aneurysms induced by angiotensin II (AngII) infusion 

into hypercholesterolemic mice.

Approach and Results—Administration of the platelet inhibitors aspirin (ASA) or clopidogrel 

bisulfate to established AAAs dramatically reduced rupture. The mechanism of protection appears 

to be a reduction in abdominal aortic platelet and macrophage recruitment resulting in decreased 

active matrix metalloproteinases (MMPs) 2 and 9. Platelet inhibitors also resulted in reduced 

plasma concentrations of platelet factor 4, cytokines, and components of plasminogen activation 

system in mice. To determine the validity of these findings in human subjects, eligible aneurysm 

patients were retrospectively analyzed using developed and validated algorithms in the electronic 

medical record database at Vanderbilt University. Similar to mice, administration of ASA or 

P2Y12 inhibitors was associated with reduced death amongst AAA patients.

Conclusions—These results suggest that platelets contribute to AAA progression and rupture.
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Introduction

Abdominal aortic aneurysms (AAA) affect 5-10% of the male and 1% of the female 

population over the age of 65 and is the 13th leading cause of death (estimated from 15,000 

to 30,000 people, both primary and contributing) in the United States (1, 2). AAA is defined 

as a permanent localized dilation in the arterial wall with a diameter greater than 50% of 

normal (3). It is an inflammatory disease that is often associated with formation of an 

intramural clot. Rupture of AAA frequently causes death (4). In spite of a high incidence 

and catastrophic consequences, there is limited information regarding the sequence of events 

that lead to initiation, progression, and the eventual rupture of AAAs. Currently, the only 

treatment for AAA is surgical intervention after the aneurysm has reached a diameter of 

>5.5 cm (5, 6). Since AAA is categorized as a peripheral artery disease, it is currently 

recommended that patients with AAA start a regiment of low-dose aspirin (ASA) therapy (7, 

8).

Infusion of AngII into hypercholesterolemic mice induces formation of AAA localized to 

the suprarenal aorta (9, 10). This model is highly reproducible and has been used to define 

mechanisms of vascular pathology associated with AAA (11-13). AngII infusion promotes 

elastin fiber destruction, proteolytic destruction of medial connective tissue, inflammation, 

atherosclerosis within the aneurysm, and rupture, which are all features that occur in human 

AAA (4, 14). Other mouse models of chemically-induced AAA have been developed that 

include exposure of the aorta to elastase (15) or calcium chloride (16). In addition, there is a 

xenograft rat model of AAA, which results in aortic dilatation and the presence of a mural 

thrombus in ~20% of rats (17). However, AngII infusion is the only consistent mouse model 

of aortic dilatation and rupture (3, 4, 18).

Platelets are required for hemostasis but also contribute to thrombosis and inflammation 

(19). Primary hemostasis results from platelet adherence to selected adhesive glycoproteins 
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in sub-endothelial matrix. Platelet activation, spreading, degranulation, and aggregation 

leads to formation of a platelet-rich hemostatic plug (reviewed in detail in (20)). Platelet 

activation occurs through stimulation of a variety of G protein-coupled receptors with 

soluble agonists, such as thrombin, adenosine diphosphate (ADP), and thromboxane A2 

(TXA2) (21). Activation of coagulation and production of thrombin activates platelets by 

cleavage of protease-activated receptors (Pars). Activated platelets release ADP and TXA2 

that are required for sustained platelet activation and accumulation in a thrombus (21). ADP 

stimulates the ADP receptors P2Y1 and P2Y12 whereas TXA2 activates the thromboxane 

receptor (TP) (21). The uncontrolled growth of a platelet-rich thrombus can occlude the 

blood vessel and result in myocardial infarction and stroke. Patients at risk for thrombosis 

are treated with platelet inhibitors, such as ASA, which blocks TXA generation, and/or 

clopidogrel bisulfate, which inhibits P2Y12 activation. In addition, the Par1 inhibitor, 

Vorapaxar, has recently been approved for treatment of patients with cardiovascular disease 

(22, 23).

Studies in a rat model showed that platelet inhibitors reduced abdominal diameter 

(dilatation) and incidence of experimental aneurysm, suggesting that platelets may enhance 

AAA (24, 25). Furthermore, patients with AAAs have an activated coagulation system and 

levels of thrombin generation correlate with the maximum diameter of the aorta in the 

patients (26-31). Importantly, platelets and platelet-specific secretions (soluble P-selectin, 

soluble CD40L, soluble glycoprotein V, and platelet-derived microparticles) are present in 

plasma of AAA patients and are specifically released from the luminal thrombus of an 

aneurysm (25). Despite these results, several meta-analyses and retrospective clinical trials 

reported no significant benefit of platelet inhibitors on aneurysm growth and incidence of 

rupture (32-34).

In this study, we investigated the effects of pharmacologic inhibition of platelet activation 

on aneurysms that were established by infusion of AngII. In addition, we evaluated the 

progression and rupture of AAA in patients with or without ASA or platelet inhibitors.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement

Study approvals

All mouse studies were performed with the approval of the University of North Carolina at 

Chapel Hill Institutional Animal Care and Use Committee (IACUC number 13-062.0). All 

analysis of human data was approved by the Institutional Review Board of Vanderbilt 

University Medical Center (IRB number 121802). All Clinical data was de-identified and 

obtained from patients at Vanderbilt University Medical Center Hospital in Nashville, TN.

Results

Effect of platelet inhibition on established AAAs

Most patients are treated with ASA after being diagnosed with an AAA (7, 8). To determine 

the effect of platelet inhibition on established AAAs, we generated AAAs in mice and then 
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administered ASA or clopidogrel bisulfate. Ldlr−/− mice were fed a HFD for 1 week prior 

to, and throughout AngII infusion for 28 days. Abdominal aortic diameters were measured 

by in vivo ultrasound and then mice were implanted with an additional 42 day AngII pump 

(Figure 1 A and D). Mice were divided into 4 groups: placebo versus ASA, and placebo 

versus clopidogrel bisulfate. ASA significantly reduced aracadonic acid-mediated integrin 

activation (data not shown) and completely suppressed plasma TxB2 (Supplemental Figure 1 

A). Clopidogrel bisulfate administration resulted in attenuation of ADP-mediated integrin 

activation (Supplemental Figure 1 B). All mice had similar body weights, cholesterol, lipid 

fractions, and systolic blood pressures (Supplemental Table 1). We observed a decrease in 

abdominal aortic diameters with clopidogrel bisulfate or ASA versus placebo controls, but 

this was not significant (Figure 1 A and B, D and E). Similarly, mice treated with ASA or 

clopidogrel bisulfate had a non-significant reduction in aortic arch area and diameter of the 

thoracic aorta (data not shown). Importantly, both platelet inhibitors protected mice with 

established AAA from rupture-induced death versus placebo controls (Figure 1 C and F; 

ASA 0% versus placebo 50%; clopidogrel bisulfate 0% versus placebo 47%, P < 0.01). 

Further, all deaths were due to rupture of the suprarenal abdominal region of the aorta. 

Interestingly, both platelet inhibitors also reduced the visible thrombi in mice with aortic 

arch or thoracic aneurysms (data not shown; P < 0.048).

Platelet inhibitors decreased platelet and macrophage accumulation and MMP-2 and 9 
activity in abdominal aortas

MMP-2 and 9 have been shown to contribute to the initiation and progression of AAAs (15, 

16, 35). Macrophages are a primary source of MMP-9 and platelets contain both MMP-2 

and 9 (36-38). Notably, we found that platelet and macrophage accumulation was decreased 

significantly in mice treated with platelet inhibitors versus placebo controls (Figure 2 A and 

C). Therefore, we examined whether platelet inhibitors reduced levels of MMP activity in 

the aorta. Importantly, MMP activity in the aorta was significantly decreased with platelet 

inhibitors (Figure 2 B and C).

To further characterize the effect of platelet inhibitors on MMP activity in the aorta, 

abdominal aortas were removed and levels of pro and active MMP2 and 9 were quantified 

by ELISA and visualized with gelatin zymography. Platelet inhibitors significantly 

decreased levels of active MMP-2 and 9 versus placebo controls (Figure 3 A-D). 

Interestingly, platelet inhibitors also decreased abdominal aortic tissue concentrations of 

total MMP2, with a non-significant decrease in total MMP9, as measured by ELISA (Figure 

3 A-B). Importantly, the decrease in both MMP2 and MMP9 were significantly correlated 

with decreased macrophage (r2 = 0.835) and platelet (r2 = 0.913) counts in the AAAs of 

ASA or clopidogrel-treated mice (data not shown; P < 0.001 for all correlations).

Platelet inhibition decreased plasminogen activators and plasma cytokines in AngII 
infused mice

Plasmin generation by the plasminogen activators, uPA and tPA, is associated with 

increased levels of MMP-2 and 9 (39). We determined that total and active uPA and tPA in 

both plasma and abdominal aorta were significantly decreased by platelet inhibitors (Figure 
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4 C-F). Further, the endogenous inhibitor of uPA and tPA, PAI-1, was significantly 

increased by platelet inhibitors (Figure 4 A and B).

Platelets contain and secrete a variety of inflammatory and thrombotic molecules upon 

activation (40). We ascertained if anti-platelet therapy decreased secretion and circulation of 

these molecules. Circulating and abdominal aortic PF4 was significantly decreased by anti-

platelet therapy (Figure 5 A). In addition, anti-platelet therapy significantly attenuated 

several platelet-derived cytokines, such as granulocyte colony stimulating factor (G-CSF), 

interferon gamma (IFN-γ), regulated on activation normal T cell expressed and secreted 

(RANTES), interleukin-1α and β (IL-1α, β; Figure 5 B-F). Several other plasma 

inflammatory cytokines were also significantly decreased by anti-platelet therapy, including: 

IL-4, IL-5, IL-6, IL-7, IL-12(p70), IL-13, IL-17, KC, MCP-1, MIP-1α and β, MIP-2, and 

TNF-α (data not shown). Importantly, the decreased level of abdominal aortic chemokines, 

cytokines, and plasminogen activators were all significantly correlated with decreased 

macrophage and platelet counts in the AAAs of ASA or clopidogrel-treated mice (data not 

shown; P < 0.05).

Treatment with P2Y12 inhibitors and ASA significantly reduce rupture and dissection in 
aneurysm patients

A total of 1,578 eligible participants (non-missing data for all covariates) with aortic 

aneurysms (AAs; defined as either thoracic, abdominal, or thoracoabdominal) were 

identified totaling 5,592 years of person time with an average follow-up of 2.28 years per 

individual. In total, 351 AA dissections (227) or ruptures (124) were recorded. Summaries 

of drug categories, demographic, and vital characteristics are presented in Table 1.

Following a diagnosis of AAs, P2Y12 inhibitors (HR = 0.49, 95% CI: 0.32, 0.74, p-value = 

0.001) were significantly associated with decreased dissection or rupture after adjustment 

for vital (blood pressure, BMI), demographic (age, sex, race), and comorbid factors 

(diabetes, atrial fibrillation, heart failure, CKD; Table 1). This effect appears to be modified 

by whether the location of the aneurysm is thoracic versus abdominal, and the effect 

estimate in thoracic aneurysms is less protective and not statistically significant. ASA also 

protected against dissection or rupture (HR = 0.50, 95% CI: 0.35, 0.72, p-value = 1×10−4) in 

adjusted analyses in both the thoracic and abdominal aorta Table 2. Kaplan-Meier plots of 

survival for each drug exposure are presented in Figure 6 A and B. Participants with at least 

30 days of follow-up underwent sensitivity analyses, which did not substantively change 

event ratios (data not shown).

Discussion

A better understanding of the underlying pathophysiology in aneurysm disease is essential to 

develop non-surgical therapeutics to reduce the burden of this condition in our aging 

population. A prominent feature of human AAAs is the accumulation of a laminated mural 

platelet-rich thrombus that develops along the luminal surface (41, 42). Interestingly, a 

thrombus is a dynamic biological entity that is balanced between luminal renewal and 

abluminal fibrinolysis (24, 25, 30, 43). Importantly, clinical studies suggest that thrombus 

volume or blood displacement caused by presence of mural thrombus may be a predictor of 
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both AAA expansion and rupture (42, 44). Therefore, it is surprising that the role of platelets 

in the formation of mural thrombi and their potential contribution to both the progression of 

AAAs has not been investigated systematically in a mouse model. We found that inhibition 

of platelets reduced rupture of established AAAs. Furthermore, we found ASA or P2Y12 

inhibitors administration may protect human AAA patients from rupture. In summary, our 

results suggest that inhibiting platelet activation slows AAA progression and reduces AAA 

rupture, which may support the clinical use of ASA and P2Y12 inhibitors in AAA patients.

ASA therapy is recommended for patients with AAA from the time of diagnosis until the 

perioperative period (7, 8). It is currently hypothesized that the benefit of ASA in reducing 

cardiovascular morbidity and mortality and potentially AAA progression outweigh the risks 

of bleeding and AAA rupture (7, 8). However, clinical studies examining the effects of 

platelet inhibitors (clopidogrel bisulfate and/or ASA) on non-genetically categorized AAA 

ruptures are extremely limited. Among a large meta-analysis of 6 studies, only one reported 

data with regard to AAA rupture (33). The UKSAT study reported that ‘anti-platelet’ 

administration resulted in a rupture rate hazard ratio of 0.83, which was not significant (33, 

45). The mechanism by which ASA reduces aneurysm expansion is hypothesized to be via a 

decrease in thrombus formation, a reduction in aortic wall inflammation, and stabilization of 

the aortic wall (46). A small retrospective study reported patients with medium-sized AAAs 

had significantly reduced AAA expansion and time to aneurysm repair on low-dose ASA 

(46). Other studies have demonstrated a reduction in progression of small AAAs, though a 

definitive association between platelet inhibitors and aneurysm reduction was not 

established (34). However, a large meta-analysis demonstrated that ‘anti-platelet’ therapy 

resulted in a non-significant decrease in AAA growth compared to untreated aneurysm 

patients (P = 0.241) after adjusting for confounding variables (33). In our study, we 

observed protective associations between platelet inhibitors and AA rupture or dissection in 

351 patients. We also found an inverse relationship between adverse AA events and non-

ASA platelet inhibitor use, as well as an independent effect of ASA use. This finding 

indicates that addition of ASA or P2Y12 inhibitors to standard therapy may be beneficial to 

AAA patients in addition to effects on other presumed cardiovascular diseases. In support of 

our findings, a phase 2 clinical trial is examining the efficacy of ticagrelor on patients with 

small AAAs (Government clinical trial identifier: NCT02070653).

To better mimic this clinical situation, we administered platelet inhibitors to mice with 

established AAAs. We found that prolonged AngII infusion increased rate of aortic rupture, 

which was significantly reduced with clopidogrel bisulfate or ASA. These inhibitors also 

had no effect on abdominal aortic diameter (clopidogrel bisulfate, P = 0.19 and ASA, P = 

0.08). Other studies have shown that a GPIIa/IIIb platelet inhibitor (abciximab) and a P2Y12 

receptor antagonist, (AZD6140) prevented aneurysm growth in the rat xenograft model of 

aneurysm (17, 24, 25). While this model does not exhibit rupture, it does exhibit an 

intraluminal thrombus similar to human aneurysms in a certain percentage of rats (17). We 

speculate that our results may be different because of the large amount of ruptures in our 

placebo groups, resulting in a lack of subsequent measurements of aortic diameters. 

Alternatively, a previous publication demonstrated a distinct difference between the 

incidence or maximal diameter of AngII-induced AAAs and increased mortality due to 

rupture (47).
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The continued accumulation of platelets and macrophages may result in proteolytic 

destruction of the aortic architecture via release of MMPs. Platelets (36, 37) and 

macrophages (38) are a robust source of MMPs. Further, platelet-derived chemokines can 

regulate the expression of MMPs from VSMCs and macrophages (48, 49). In addition, 

plasmin production by uPA or tPA is a critical step in fibrinolysis and MMP activation (39). 

Here, we demonstrate clopidogrel bisulfate and ASA intervention reduce platelet and 

macrophage infiltration into the vessel wall, circulating platelet-derived cytokines, 

plasminogen activators, and ultimately the amount of active MMP-2 and MMP-9 in the 

abdominal aortas. Importantly, MMP-2 and MMP-9 are correlated with increased 

aneurysmal disease and rupture (16, 50). Further, several of the attenuated cytokines and 

chemokines play a significant role in AAA progression (51-54). Additionally, there is a role 

for the uPA, uPAR, tPA, and PAI-1 plasminogen axis in both the progression and rupture of 

experimental aneurysm (47, 55-57). While it is uncertain whether these MMPs, cytokines, 

and plasminogen activators/inhibitors are primarily derived from platelets or macrophages, 

there are significant correlations between platelets or macrophages amongst all of these 

inflammatory mediators. However, there are several contradictions in the literature 

regarding the role of Th1/Th2 chemokines and cytokines and MMPs with regard to the 

outcome of AAA pathogenesis (58, 59). Indeed, the differences in cytokine and MMP 

profile only reflect a single stage of AAA development/degeneration thus complicating a 

proper analyses and interpretation of these correlations.

In conclusion, we show that platelet accumulation and activation is detrimental in a mouse 

model of established AAAs. The pathological role appears to involve macrophage 

recruitment and the production of MMPs resulting in vessel instability and rupture. We 

further show a positive association with platelet inhibitors and ASA in the prevention of 

human AA rupture or dissection. The results indicate that platelet inhibitors are beneficial in 

pre-existing aneurysms. Future studies will be directed at dissecting the role of platelet 

signaling in AAAs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

AA aortic aneurysm

AAA abdominal aortic aneurysm

ADP adenosine diphosphate

AngII angiotensin II

ASA acetylsalicylic acid (aspirin)

BMI body mass index

CKD chronic kidney disease

G-CSF granulocyte colony stimulating factor

IFN interferon

IL interleukin

Ldlr low-density lipoprotein receptor

MMP matrix metalloproteinase

PAI-1 plasminogen activator inhibitor 1

Par protease-activated receptor

PF4 platelet factor 4

RANTES regulated on activation, normal T cell expressed and secreted

tPA tissue plasminogen activator

TP thromboxane receptor

TxA2 thromboxane A2

uPA urokinase plasminogen activator
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Significance

Abdominal aortic aneurysm (AAA) is a progressive expansion of the aorta which may 

result in catastrophic rupture and death. This cardiovascular disease is estimated to affect 

almost 10% of people over the age of 50 with an estimated 1 out of every 250 people 

affected. Despite decades of research, there are no clinically approved drug regimens for 

this disease with surgical intervention as the only approved therapy. Here, we 

demonstrate commonly used antiplatelet drugs prevents rupture of advanced AAAs in a 

mouse model. Antiplatelet therapy dramatically reduces the amount of destructive 

enzymes and tissue/circulating inflammatory proteins. Lastly, we verify this effect in a 

retrospective analysis of human aneurysm patients. These results identify platelets as a 

critical component of aneurysm rupture and suggests utilizing antiplatelet therapy may be 

beneficial in patients with AAA.
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Figure 1. Platelet inhibition was protective against rupture of established AAAs in mice
Ldlr−/− mice were fed a HFD and infused with AngII for 28 days. Mice were then stratified 

based on in vivo suprarenal abdominal aortic diamters into 4 equal-sized groups and then 

placed on placebo (n = 14) or ASA (n = 16) and placebo (n = 15) or clopidogrel bisulfate (n 

= 15) and infused for an additional 42 days. Ultrasonically measured maximal luminal 

diameters of in vivo suprarenal aortas were measured at days 0, 28, 49, and 70 (A, D luminal 

diameters over time; B, E luminal diameters at day 70). Survival curves were also 

determined in these groups between days 28 and 70 (C, F). Circles represent group means ± 

SEM (A, D). Circles represent individual mice, diamonds represent means ± SEM (B, E). *P 

< 0.001 treatment groups versus controls. Data was analyzed with a Repeated Measures 

ANOVA, a Mann-Whitney Rank Sum with Dunn's post hoc, or a Kaplan Meier estimator.
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Figure 2. Platelet inhibition decreased platelet and macrophage accumulation and MMP activity 
in mouse abdominal aortas
Ldlr−/− mice underwent interventional therapy with placebo or ASA and placebo or 

clopidogrel bisulfate. Platelets (5 days before sacrifice) and macrophages (24 hours before 

sacrifice) were labelled with anti-GPIX conjugated 700nm fluorophore (red) or MMP 680-

sense fluorophore (red) and dextran-coated nanoparticles conjugated to DyLight 800 

fluorophore (green), respectively (treatments), or IgG placebo controls (controls). (A) 

Representative platelet, macrophage, merged, and grayscale images, (B) representative 

MMP, macrophage, merged, and grayscale images, and (C) subsequent quantification. 

Histobars represent means ± SEM of 4-8 mice. The abdominal aorta within the dotted 

yellow lines were analyzed for total fluorescent signal in panel C. *P < 0.001 placebo versus 

treatment groups. Data were analyzed with a One Way ANOVA on Ranks with Dunn's post 

hoc.
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Figure 3. Active MMP-2 and MMP-9 was decreased in the abdominal aorta of mice receiving 
platelet inhibitors
Protein was harvested from pooled aortas obtained from the intervention study (3 aortas 

pooled for n =1; total different pools analyzed n = 4). Pooled lysates (1 μg total protein/well) 

were analyzed by MMP-2 (A) and 9 (B) Biotrak Activity Assay ELISAs. Protein (20 μg/

lane) from clopidogrel bisulfate (C) and ASA (D) administered mice was also examined 

using gelatin zymography. Histobars represent means ± SEM of n = 4 pooled aortas. *P < 

0.001 clopidogrel bisulfate and ASA total MMP-2, active MMP-2, and active MMP-9 

versus placebo controls. Data were analyzed with a One Way ANOVA with a Holm-Sidak 

Post Hoc.
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Figure 4. The plasminogen activation system was decreased in plasma and abdominal aorta of 
mice receiving platelet inhibitors
Protein was harvested from pooled aortas obtained from the intervention study (3 aortas 

pooled for n =1; total n = 4). Plasma (n = 14-16 each treatment group) was analyzed on total 

or active (A) PAI-1, (C) tPA, or (E) uPA ELISA plates. Protein (1 μg protein/well) was run 

on total or active (B) PAI-1, (D) tPA, or (F) uPA ELISA plates. Histobars represent means ± 

SEM of n = 14-16 plasma samples (A, C, and E) or n = 4 pooled aortas (n = B, D, or F). *P 

< 0.001 clopidogrel and ASA total and active PAI-1, uPA, and tPA versus placebo controls. 

Data were analyzed with a Two Way ANOVA with a Holm-Sidak Post Hoc.
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Figure 5. Platelet inhibition reduced plasma and tissue cytokines in established AAAs in mice
Protein was harvested from pooled aortas obtained from the intervention study (3 aortas 

pooled for n =1; total n = 4). Plasma (n = 14-16 each treatment group) or protein (1μg 

protein/well) was run on a PF4 ELISA (A). Plasma samples (n = 10 each treatment group) 

were analyzed on a chemokine/cytokine luminex array and (B) G-CSF, (C) IFN-γ, (D) 

RANTES, (E) IL-1α, or (F) IL-1β were quantitated. Histobars represent means ± SEM of n 

= 10 plasma samples (A-F) or n = 4 pooled aortas (A). *P < 0.001 clopidogrel and ASA 
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versus placebo controls. Data were analyzed with a One Way ANOVA on Ranks with 

Dunn's Post Hoc (B-F) or Two Way ANOVA with a Holm-Sidak Post Hoc (A).
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Figure 6. The effects of ASA and P2Y12 inhibitors on AA rupture in a human cohort
Kaplan-Meier plot of adverse event-free rates stratified by (A) ASA and (B) platelet 

inhibitors and adjusted for age, sex, race, BMI, smoking, diabetes, CKD, dialysis, heart 

failure, and atrial fibrillation. *P < 0.001 drug therapy versus control. Data was evaluated 

with the proportional hazards test (PHtest) within the parameters of a kaplan-meier estimator 

in STATA and were found to be satisfied. All statistical tests assumed two-tailed 

distributions.
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Table 1

Demographic, vital, and medication characteristics for AA individuals stratified by outcome

Characteristic Events n = 351 Non-Events n = 1524 p-value*

European ancestry (%) 82.1 75.5 0.009

Female (%) 68.7 69.9 0.635

Age (mean [SD]) 66.5(11.1) 67.6(10.9) 0.125

BMI (mean [SD]) 28.0(5.81) 27.9(5.8) 0.667

Type II diabetes (%) 2.85 4.72 0.121

Smoking (%) 89.8 85.5 0.045

Atrial Fibrillation (%) 10.5 15.8 0.012

Heart Failure (%) 12.3 21.0 <0.001

Chronic Kidney Disease 8.83 13.5 0.017

Dialysis 3.42 2.10 0.141

AA Dissection (%) 64.6 NA NA

AA Rupture (%) 35.4 NA NA

Abdominal AA (%) 22.7 NA NA

Thoracic AA (%) 17.7 NA NA

Thoracoabdominal AA (%) 59.5 NA NA

Anti-platelet drugs (%)

    P2Y12 Inhibitors 11.7 25.9 <0.001

    ASA 49.9 74.9 <0.001

*
Categorical variables assessed with exact tests, continuous variables with student's t-test
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Table 2

Cox proportional hazards regression analysis of drugs by class.

Term HR All 95% CI HR Abd. 95% CI HR Thor. 95% CI

P2Y12 Inhibitors (crude) 0.36 (0.24-0.53) 0.21 (0.10-0.42) 0.42 (0.15-1.15)

ASA (crude) 0.35 (0.26-0.45) 0.28 (0.18-0.43) 0.27 (0.17-0.45)

P2Y12 Inhibitors (adjusted) 0.49 (0.32-0.74) 0.24 (0.12-0.51) 0.81 (0.27-2.41)

ASA (adjusted) 0.50 (0.35-0.72) 0.47 (0.22-1.00) 0.30 (0.15-0.60)

Adjusted models are fit with terms for age, sex, race, BMI, smoking, diabetes, heart failure, atrial fibrillation, chronic kidney disease, and dialysis.

Abd.— Abdominal; Thor.— Thoracic; HR — Hazard Ratio; CI — Confidence Interval
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