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Abstract

Objective—Autosomal recessive hypercholesterolemia (ARH) is a rare inherited disorder

characterized by extremely high total and low-density lipoprotein cholesterol levels that has been

previously linked to mutations in LDLRAP1. We identified a family with ARH not explained by

mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim

of this study was to identify the molecular etiology of ARH in this family.

Approach and Results—We used exome sequencing to assess all protein coding regions of the

genome in three family members and identified a homozygous exon 8 splice junction mutation (c.

894G>A, also known as E8SJM) in LIPA that segregated with the diagnosis of

hypercholesterolemia. Since homozygosity for mutations in LIPA is known to cause cholesterol

ester storage disease (CESD), we performed directed follow-up phenotyping by non-invasively

measuring hepatic cholesterol content. We observed abnormal hepatic accumulation of cholesterol

in the homozygote individuals, supporting the diagnosis of CESD. Given previous suggestions of

cardiovascular disease risk in heterozygous LIPA mutation carriers, we genotyped E8SJM in

>27,000 individuals and found no association with plasma lipid levels or risk of myocardial

infarction, confirming a true recessive mode of inheritance.

Conclusions—By integrating observations from Mendelian and population genetics along with

directed clinical phenotyping, we diagnosed clinically unapparent CESD in the affected

Stitziel et al. Page 2

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2014 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



individuals from this kindred and addressed an outstanding question regarding risk of

cardiovascular disease in LIPA E8SJM heterozygous carriers.
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Introduction

Monogenic hypercholesterolemia is a disorder of lipid metabolism in which extremely

elevated levels of total and low-density lipoprotein cholesterol (LDL-C) are caused by a

single gene mutation. Mutations in LDLR1, APOB2, and PCSK93 cause autosomal dominant

hypercholesterolemia, a disease affecting at least 1 in 500 individuals. Autosomal recessive

hypercholesterolemia (ARH) occurs much less frequently – estimated to occur in

1:1,000,000 live births – and has been linked to mutations in LDLRAP14. In some families

with apparent monogenic hypercholesterolemia, an underlying molecular defect cannot be

identified in any of these known genes.

We identified a family with apparent Mendelian inheritance of high LDL-C levels that was

not caused by mutations in any of the above genes known to affect LDL-C. The small size

of the family pedigree precluded use of traditional linkage mapping. Next-generation

sequencing (NGS), a rapid and low-cost method to perform large-scale DNA sequencing5,

has emerged as an important tool for uncovering the cause of inherited diseases6. In this

study, we used exome sequencing, a technique in which NGS is used to assess all protein-

coding regions of the genome, in three individuals from this family to search for a rare

genetic variant that co-segregated with high LDL-C levels.

Materials and Methods

Materials and Methods are available in the online-only Supplement.

Results

Subject recruitment

The proband (Figure 1; individual II-2) presented to the Lipid Clinic at the Academic

Medical Center, University of Amsterdam, the Netherlands at the age of 23. Her LDL-C

level exceeded the 99th percentile when adjusted for age and gender. She had two siblings

(one of which was a monozygotic twin), both of whom shared LDL-C levels exceeding the

99th percentile. Her father and mother, a non-consanguineous union, had LDL-C levels at

the 25th and 78th percentile, respectively, when adjusted for age and gender (Figure 1). The

proband and both siblings lacked hepatosplenomegaly on abdominal examination. Based on

the pedigree, an autosomal recessive mode of inheritance appeared to be the most likely

explanation for the family’s phenotype.
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Exome Sequencing

To identify the molecular basis of hypercholesterolemia in this family, exome sequencing

was performed in the proband, the proband’s father, and the proband’s brother (Figure 1;

individuals II-2, I-1, and II-1, respectively). A total of 32,950,014 bases across the exome

were targeted and each sample was sequenced with an average of 126-fold coverage across

the target. Across the exome, 82% of targeted bases were covered with >30-fold coverage.

This yielded a mean of 36,986 single nucleotide variants per individual. The average ratio of

heterozygous to homozygous alleles (1.6) and ratio of transitions to transversions (2.7) per

individual were expected and similar to contemporary large-scale population sequencing

projects7.

Exome Sequencing Analysis

To exclude genetic variation unlikely to be responsible for this family’s

hypercholesterolemia, we relied on three main assumptions: (1) the causal variant(s) alters

the gene’s corresponding protein product; (2) the causal variant(s) is inherited in an

autosomal recessive fashion; and (3) the causal variant(s) exhibits complete penetrance. For

the first assumption, we only included single nucleotide substitutions and short insertions or

deletions that were predicted to alter the protein sequence.

We next included either 1) compound heterozygous changes (a heterozygous variant in both

affected siblings and the father located in a gene that also contained a separate heterozygous

variant in both affected siblings not found in the father) or 2) variants that were homozygous

in both affected siblings and heterozygous in the unaffected father. Finally, we excluded

variants from further consideration if they were present in the general population at a

frequency of greater than 1%, or if they were present in either heterozygous or homozygous

form in the exome sequences of 235 individuals with very low LDL-C levels.

After applying this analysis, the number of variants shared among the three family members

was reduced from 54,301 to two candidate single nucleotide substitutions. One was a

synonymous variant predicted to alter the splice donor site of the eighth exon in the gene

lipase A, lysosomal acid, cholesterol esterase (LIPA) (c.894G>A, in the last nucleotide of

exon 8) and the other was a missense change predicted to result in the substitution of

Alanine for Proline at residue 384 in the gene ATP/GTP binding protein-like 2 (AGBL2).

Since previous reports showed a link between the c.894G>A mutation – also known as the

Exon 8 Splice Junction Mutation (E8SJM) – in LIPA and cholesterol ester storage disease

(CESD)8, a disorder with mixed hyperlipidemia as part of the phenotypic presentation, we

focused on a potential diagnosis of CESD as the most likely cause for this family’s apparent

autosomal recessive hypercholesterolemia.

Functional assessment of E8SJM

Sanger sequencing was performed and confirmed the presence of the E8SJM allele in the

homozygous state in affected individuals and in the heterozygous state in both unaffected

parents. Haplotype analysis revealed that both maternal and paternal E8SJM alleles were on

the same haplotype as previously reported for this mutation (“Haplotype 1” from Fasano et

Stitziel et al. Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2014 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



al.9). This does not appear to be a result of consanguinity as the proband was found to share

53% and 49% of her exome identical-by-descent with her brother and father, respectively,

eliminating cryptic consanguinity. The skipping of exon 8 was confirmed in all individuals

carrying the mutated allele (Figure 2).

Although the affected individuals did not present with clinically apparent hepatic disease,

given the previous reports linking mutations in LIPA with CESD, we reassessed the affected

individuals for the level of hepatic cholesterol ester using magnetic resonance spectroscopy

(MRS), a technique shown to correlate well with histologic lipid distribution10. In

individuals II-1, II-2 and II-3, MRS demonstrated a distinct cholesterol peak separate from

the larger and expected triglyceride peak at 1.25 ppm. The ratios between triglyceride at

1.25 ppm and cholesterol at 0.9 ppm were 0.57, 0.34 and 0.40 for individuals II-1, II-2 and

II-3 respectively, indicating the presence of an excess of hepatic cholesterol deposition

(Figure 3). The elevated cholesterol peak at 0.9 ppm was not identified in individual I-1.

Individuals II-1, II-2, and II-3 had normal hepatic size as measured on the magnetic

resonance imaging portion of the study.

Population impact of E8SJM

Given previous reports suggesting that serum lipids levels are increased in heterozygous

E8SJM carriers11, we genotyped the E8SJM variant in 13,194 individuals of European

ancestry. Triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and LDL-C

levels were available in 13,194, 13,144, and 12,805 individuals, respectively. In these

individuals, the E8SJM was present with an allele frequency of 0.16% and no association

was observed with any of these three lipid fractions (Table 1).

Furthermore, to also assess the impact of partial loss of LIPA function on risk for myocardial

infarction (MI) or coronary artery disease (CAD) in the population, we genotyped the

E8SJM variant in 27,472 individuals of European ancestry (12,747 cases with MI/CAD,

14,725 controls free of MI and CAD). In these individuals, the E8SJM was present with an

allele frequency of 0.11% and there was no association of E8SJM with risk for MI or CAD

(odds ratio for MI or CAD in carriers = 0.85; p-value = 0.6).

Discussion

Traditional Mendelian genetic analyses have relied on positional cloning and sequencing the

genetic regions under linked peaks to identify causal defects responsible for monogenic

disorders. These techniques are unfortunately of limited utility in small families such as the

one presented in the current study. NGS, however, now allows for the potential

identification of candidate genes underlying Mendelian disorders in families regardless of

the pedigree size. In this study, we performed NGS across the exome in three individuals

from a family with suspected ARH and identified homozygous E8SJM alleles in LIPA that

co-segregated with the clinical diagnosis of hypercholesterolemia.

Lysosomal acid lipase (LAL), encoded by the gene LIPA, is responsible for hydrolyzing

cholesterol esters and triglycerides that are delivered to lysosomes. Mutations in LIPA that

completely inactivate LAL have previously been identified as the molecular cause of
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Wolman disease, a rapidly lethal disease of infancy, characterized by hepatosplenomegaly,

abdominal distension, adrenal calcification, and steatorrhea with extensive storage of

cholesterol esters and triglycerides in the liver, spleen, and other organs in the first weeks of

life12, 13.

A related disorder, cholesterol ester storage disease (CESD), is associated with a less severe

phenotype14, 15. Characterized by massive hepatic accumulation of cholesterol esters,

hepatomegaly, steatosis, and mixed hyperlipidemia, CESD is caused by mutations in LIPA

that result in near complete loss of LAL activity with enough residual enzymatic activity to

hydrolyze triglycerides but not cholesterol esters.

The identification of homozygous E8SJM alleles in LIPA was surprising in this family, as it

has been previously identified as a cause of CESD16. E8SJM has been shown to cause sub-

total loss of gene function resulting in only 2–4% normally spliced LIPA mRNA transcripts

and LAL activity16. Homozygosity for E8SJM has previously been reported in individuals

with hepatic disease and mixed hyperlipidemia, characterized by elevated levels of LDL-C

and TG with decreased HDL-C levels (Table 2).

The homozygous individuals in the current study presented with a very different phenotype

and would not have been clinically diagnosed with CESD. Their lipid profile is

characterized by extremely elevated LDL-C with normal to high HDL-C and normal TG

levels while previously described E8SJM homozygotes have been noted to have increased

LDL-C with low HDL-C and elevated TG levels (Table 2). In addition, the hepatic

phenotype in the homozygous individuals from the current study appears to consist of only a

subtle elevation in ALT (Table 2) without the typical hepatosplenomegaly (hepatomegaly

and splenomegaly are present in >99% and 74% of patients with CESD, respectively17).

Given the previous associations between LIPA E8SJM and CESD (for homozygous carriers)

and polygenic hypercholesterolemia and potentially increased risk of MI/CAD (for

heterozygote carriers)11, we performed directed phenotypic and genetic follow-up analyses

to address two questions: 1) Do the homozygous carriers within this pedigree have hepatic

hallmarks of CESD?; and 2) Are the heterozygote parents at increased risk for MI/CAD?

Using non-invasive hepatic MRS, we demonstrated the presence of abnormal quantities of

hepatic cholesterol in the homozygous E8SJM carriers of this family. This finding is entirely

consistent with previously reported hepatic MRS findings in patients with LAL deficiency

(previously reported MRS ratios 0.24–0.5)18 and confirms the diagnosis of CESD in the

three offspring. A liver biopsy was not thought to be clinically indicated given the absence

of increased transaminase levels combined with previous reports surrounding the causal role

of LIPA E8SJM in CESD and the confirmatory MRS findings. While a seemingly subtle

distinction, this diagnosis is clinically important as the offspring should be followed for the

progression of hepatic disease and may be potential candidates in the future for enzyme

replacement therapy that is currently in development19. In addition, this finding illustrates

that CESD may have a more variable phenotypic presentation than previously appreciated.

To assess the potential of increased cardiovascular disease risk in the heterozygous parents,

we genotyped LIPA E8SJM in the population. The population frequency of LIPA E8SJM
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has previously been estimated to be between 0.21% and 0.25% in individuals of European

descent20,21, and has been associated with a polygenic hypercholesterolemia phenotype11,

prompting the hypothesis that it may be associated with increased risk of MI/CAD. We now

firmly establish that this variant is rarer than previously estimated (allele frequency =

0.11%). We consider our estimate of the carrier frequency for European individuals to be

more accurate than previous reports given the larger numbers of individuals assessed

(27,472 in the current study compared with 4,112 in a previous report21).

In this large genetic study, we observed no association of heterozygosity with plasma lipid

levels or risk for MI/CAD. Although we cannot definitively exclude a weak association with

MI/CAD or serum lipid levels, we had 93% power to detect a 2-fold increased risk of

MI/CAD at an alpha of 0.05 and 94% power to detect a variant explaining 0.1% of the

phenotypic variance in LDL-C at an alpha of 0.05. These findings suggest that the E8SJM

acts in a truly recessive fashion and that heterozygous loss of function does not result in a

distinct lipid or MI phenotype.

It is uncertain why the presentation of CESD in this family differed from those described in

previous reports. The E8SJM in this family occurs on the same haplotype as previously

reported for this mutation, supporting a common founder ancestor for this mutation and

suggesting that the milder-than-expected phenotype is not explained by a simple difference

of local genetic background in LIPA. In addition to the E8SJM in LIPA, we identified rare

homozygous alleles in AGBL2 carried by all three affected offspring. At this time it is

unclear what, if any, phenotypic effect this confers. There may be a genetic factor (in

AGBL2 or elsewhere) conferring a protective hepatic effect; however, given the lack of

family members with hepatic disease as a comparator, we are underpowered to discover

such a variant.

In summary, we report homozygosity for E8SJM in LIPA as a cause of clinically unapparent

CESD presenting as autosomal recessive hypercholesterolemia. The discovery of E8SJM in

LIPA in this family highlights both the blessing and the curse of using NGS in genetic

discovery studies; along with the potential unbiased discovery of the causal variant comes

tens of thousands of additional variants unrelated to the phenotype of interest and the

possibility of unexpected findings. We suggest integrating Mendelian and population

genetics with directed clinical testing as a powerful way to discern signal from noise in the

next generation of genetic discovery studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Autosomal recessive hypercholesterolemia is a rare inherited disorder previously linked

to mutations in LDLRAP1. In this report, we use exome sequencing and clinical

phenotyping to diagnose cholesterol ester storage disease (CESD) in a small family with

apparent autosomal recessive hypercholesterolemia. CESD is caused by mutations in

LIPA and typically presents with hepatic disease and mixed hyperlipidemia. This study

reveals a broader phenotypic presentation for loss of function mutations in LIPA than

previously appreciated and suggests that LIPA mutations may be considered in the

clinical evaluation of autosomal recessive hypercholesterolemia.
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Figure 1.
Pedigree of the family demonstrating autosomal recessive hypercholesterolemia. Laboratory values are shown below each

individual (TC = total cholesterol; LDL = low density lipoprotein cholesterol; HDL = high density lipoprotein cholesterol; TG =

triglycerides; ALT = alanine aminotransferase). Individuals II-2 and II-3 are identical twins.
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Figure 2.
RT-PCR of LIPA demonstrating skipping of exon 8 as a result of E8SJM. The upper and lower bands correspond to the expected

products either containing (301 bp) or lacking (229 bp) exon 8, respectively. Control cDNA from individuals not carrying

E8SJM demonstrates the expected product containing exon 8. Heterozygous carriers of E8SJM (Individuals I-1 and I-2)

demonstrate the presence of one wild-type transcript and one transcript lacking exon 8, whereas homozygous E8SJM carriers

(Individuals II-2 and II-3) demonstrate complete skipping of exon 8. M = molecular weight marker.

Stitziel et al. Page 12

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2014 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Water suppressed MRS spectra demonstrating hepatic cholesterol deposition in homozygous carriers of LIPA E8SJM. R = ratio

between peaks at 1.25 ppm and 0.9 ppm. Panel a: Individual I-1, the unaffected father of the proband, demonstrates a normal

ratio. Panel b-d: Individuals II-2, II-3, and II-1, respectively demonstrate elevated ratios.
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