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Abstract
Objective—Common genetic variants in a 58-kilobase region of chr 9p21, near the CDKN2A/
CDKN2B tumor suppressor locus, are strongly associated with coronary artery disease. However,
the underlying mechanism of action remains unknown.

Methods and Results—We previously reported a congenic mouse model harboring an
atherosclerosis susceptibility locus and the region of homology with the human 9p21 locus.
Microarray and transcript-specific expression analyses showed markedly decreased Cdkn2a
expression, including both p16INK4a and p19ARF, but not Cdkn2b (p15INK4b), in macrophages
derived from congenic mice compared to controls. Atherosclerosis studies in subcongenic strains
revealed genetic complexity and narrowed one locus to a small interval including Cdkn2a/b. Bone
marrow (BM) transplantation studies implicated myeloid lineage cells as the culprit cell type
rather than resident vascular cells. To directly test the role of BM-derived Cdkn2a transcripts in
atherogenesis and inflammatory cell proliferation, we performed a transplantation study utilizing
Cdkn2a+/− cells in the Ldlr−/− mouse model. Cdkn2a-deficient BM recipients exhibited
accelerated atherosclerosis, increased Ly6Chi pro-inflammatory monocytes and increased
monocyte/macrophage proliferation compared to controls.

Conclusions—These data provide a plausible mechanism for accelerated atherogenesis in
susceptible congenic mice, involving decreased expression of Cdkn2a and increased proliferation
of monocyte/macrophages, with possible relevance to the 9p21 human locus.
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Atherosclerotic vascular disease (ASVD) is the leading cause of death in Western societies.
Complications of the disease are usually caused by rupture or erosion of an unstable
atherosclerotic plaque, resulting in thrombus formation and arterial occlusion.1 The complex
etiology involves both genetic and environmental factors. While genetic factors underlying
traditional risk factors are well known,2 new data emerging from genome-wide association
studies (GWASs) are revealing novel loci mediating disease susceptibility independent of
traditional factors.3 In particular, a risk locus on chromosome (chr) 9p21.3 is strongly
associated with ASVD (including myocardial infarction, stroke and aortic aneurysm) but
independent of plasma cholesterol levels and hypertension.4–6 While the association with
ASVD is robust and has been widely-replicated in different ethnic groups, the underlying
pathogenic mechanism remains unknown.

The association at 9p21 appears to be the most robust common (minor allele frequency >
10%) genetic determinant for ASVD in the human genome. The SNPs most strongly
associated with disease risk map to a 58-kb region containing a long, non-coding RNA
(ANRIL) and lying ~100 kb centromeric to the CDKN2A/B locus encoding inhibitors of
cellular proliferation. Multiple ANRIL splice variants exist, complicating genetic association
studies.7 Decreased expression of the tumor suppressors p16INK4a, p19ARF, and p15INK4b

has been observed among carriers of the ASVD risk allele in some studies8, 9 but not
others.10–12 Targeted deletion of the homologous region in mice resulted in markedly
decreased expression of Cdkn2a/b transcripts and increased proliferation of vascular smooth
muscle cells (vSMCs) in vitro. However, no effect on atherosclerosis was observed in the
Western diet-fed wild-type background, a highly athero-resistant model.13 Thus, the
potential role of these transcripts and the pathogenic mechanism leading to increased
atherosclerotic risk at the 9p21 locus remains unclear.

We have used a murine genetic approach to map atherosclerosis susceptibility loci,
including a locus on mouse chr 4 that was confirmed in a congenic strain.14, 15 The effect on
disease susceptibility was independent of plasma cholesterol levels, body weight and plasma
glucose levels.15 We now report refined genetic mapping indicating that the introgressed
interval contains at least two loci, one overlapping the Athsq1 QTL and one covering the
region of homology with the human 9p21 ASVD locus. Gene expression studies revealed
decreased mRNA levels of p16INK4a and p19ARF, but not p15INKb4, in macrophages derived
from susceptible congenic mice. Mechanistically, we investigated the hypothesis that
increased proliferation of macrophages (or mixed populations of monocyte/macrophages),
due to reduced expression of Cdkn2a cell proliferation inhibitor transcripts in myeloid
lineage cells, might be responsible, at least in part, for the accelerated atherosclerosis
phenotype.

Methods
An expanded Methods section is available in the Online Supplemental Methods. B6.MOLF-
Athsq1 congenic mice were bred as described.15 Cdkn2a−/− mice16 backcrossed into B617

were kindly provided by Dr. Sean Morrison (University of Michigan). Gene expression
profiling or real-time PCR was carried out using peritoneal or splenic monocyte/
macrophages. Raw profiling data are available in the NCBI GEO database (GSE 24342).
Atherosclerotic lesions were quantified using morphometric analysis as described.14, 15 BM
transplantation experiments were performed as described.18 Monocyte subsets were
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analyzed by standard flow cytometry analysis.19 Two-factor ANOVA and t tests were
performed using STATVIEW 5.0 (Abacus Concepts, Inc). The threshold for significance
was p = 0.05. Data shown are mean ± SEM.

Results
Genetic complexity of an atherosclerosis susceptibility locus containing Athsq1 as well as
a 5.4-9 Mb interval containing Cdkn2a/b

A series of subcongenic strains was generated to narrow a previously-reported15 54-Mb
interval on chr 4 harboring an atherosclerosis susceptibility gene(s). Mice were bred to
homozygosity, fed 9-wk WTD and analyzed for atherosclerotic lesion development. Mice
carrying a 17- or 11-Mb proximal subinterval, but not the 4-Mb proximal tip, exhibited
approximately 2-fold greater mean lesion area than non-congenic controls (p<0.0001)
(Figure 1A–B). The effect was observed in both males and females. The negative lesion
phenotype of the 4-Mb subcongenic was confirmed in a second cohort (Supplemental Figure
I). These data narrow the proximal interval to a 5.4-9 Mb region containing 8–21 known
protein coding genes including Cdkn2a/b (Figure 1C). Of note, this locus did not segregate
with versican accumulation (data not shown), a phenotype originally observed in the full
congenic strain.15 An additional distal locus was identified in a subcongenic strain carrying
a non-overlapping donor interval (Supplemental Figure IB–C). The distal locus overlaps the
linkage peak from the original Athsq1 mapping cross, but detailed mapping and phenotypic
assessment have not been carried out. Together, the data indicate genetic complexity of the
full 54-Mb interval, with refined mapping of the proximal locus leading to identification of a
critical region containing 8–21 genes.

Having previously demonstrated a role for BM-derived cells in determining the pro-
atherosclerotic phenotype of Athsq1 congenics,15 we now performed a reverse BM
transplantation to determine whether vSMCs or endothelial cells contributed to the
phenotype as well. B6-Ldlr−/− BM was injected into lethally-irradiated 17-Mb subcongenics
and non-congenic controls. Following repopulation of the BM, mice were fed 11-wk WTD
and analyzed for atherosclerotic lesion development. No difference in mean lesion area was
observed between the groups (Supplemental Figure II). Similar results were obtained for
males and females. Importantly, these data indicate that resident cells of the vessel wall are
not involved in the accelerated atherosclerosis phenotype associated with the proximal 17-
Mb locus. Thus, we focused further mechanistic studies of this strain in BM-derived
monocyte/macrophages.

Microarray and transcript-specific gene expression analyses reveal decreased
macrophage expression of p16INK4a and p19ARF, but not p15INK4b, in Athsq1 congenic
mice

As an independent approach to narrow the list of candidate genes (>600 genes in the full 54-
Mb congenic interval and ~160 genes in the 17-Mb interval), we performed gene expression
analysis using microarrays. Elicited peritoneal macrophages derived from full (54-Mb)
congenics and non-congenic controls were collected after 6-wk WTD feeding.
Differentially-expressed genes were defined as exhibiting ≥20% difference in expression
level with a significance threshold corrected for multiple testing.20 Three to six of the
differentially expressed transcripts reside within the narrowed 5.4-9-Mb proximal interval
and could be considered as causal candidate genes (Table 1). Strikingly, the most significant
difference was a ~6-fold decrease in Cdkn2a levels in congenic compared to control
macrophages. Cdkn2a encodes two transcripts involved in cell proliferation regulation:
p16INK4a and p19ARF. 21 The transcripts utilize different promoters and alternative reading
frames resulting in proteins with no amino acid homology.22 Because of the Cdkn2a exonic
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stucture, the microarray could not discern p16INK4a vs p19ARF transcripts. Transcript-
specific rtPCR confirmed the results in the 17-Mb subcongenic strain and showed reduced
expression of both p16INK4a and p19ARF, but not the adjacent p15INK4b transcript, in
macrophages from the atherosclerosis-prone 54- and 17-Mb congenics compared to non-
congenic controls (Figure 2A). Similar results were observed for both transcripts in resident
peritoneal macrophages, and for p16INK4a in splenic monocyte/macrophages, from 54- and
17-Mb congenic mice compared to controls (Figure 2B–C). Of note, gene expression in
peripheral blood monocytes was low (with Ct values >38) and we could not reliably detect a
difference between congenics and controls. Thus, an atherosclerosis-prone murine strain
exhibits decreased expression of the p16INK4a and p19ARF tumor suppressor genes in
macrophages and mixed monocyte/macrophage populations.

BM-specific Cdkn2a-deficiency results in accelerated atherosclerosis, increased Ly6Chi

monocytes, and increased BrdU incorporation into monocytes and macrophages
To directly test the hypothesis that decreased Cdkn2a expression in BM-derived cells is pro-
atherogenic, we performed a BM transplantation study using a previously described
Cdkn2a-deficient mouse. The targeted mutation replaces exons 2/3 with a neo cassette,
knocking out both p16INK4a and p19ARF expression16, and has been crossed into a uniform
B6 background.17 In an effort to simulate the modest reduction of p16INK4a and p19ARF

expression observed in congenics compared to controls, we used donor B6-Ldlr+/−mice
heterozygous for the Cdkn2a null allele. B6-Ldlr−/− recipients were injected with B6-Ldlr+/−

or B6-Ldlr+/−, Cdkn2a+/− BM and fed 10-wk WTD following repopulation of the BM. No
differences were observed in body weight, plasma total cholesterol, HDL or triglycerides
(Supplemental Table I). Resident peritoneal macrophages exhibited a 2.5-fold decrease in
expression of p16INK4a but not p19ARF or p18INK4c (another INK4-class gene encoded by a
distant region of mouse chr 4) in B6-Ldlr+/−, Cdkn2a+/− recipients compared to controls
(Figure 3A). Similarly, splenic CD11b+ monocyte/macrophages exhibited ~4-fold decreases
in both p16INK4a and p19ARF but not p18INK4c (Figure 3B). Importantly, mean
atherosclerotic lesion area was increased in B6-Ldlr+/−, Cdkn2a+/− recipients compared to
controls (p=0.04, two-factor ANOVA) (Figure 3C), with non-significant single-sex
increases of 34% and 17% for males and females, respectively. Thus, heterozygous BM-
specific deficiency of Cdkn2a is sufficient to confer a modestly accelerated atherosclerosis
phenotype in mice.

To test potential atherogenic mechanisms consistent with decreased p16INK4a and/or p19ARF

expression in monocyte/macrophages, we assessed apoptosis and measures of monocytosis
in the BM transplanted mice. TUNEL staining of atherosclerotic lesions revealed few
positive cells and no difference between B6-Ldlr+/−, Cdkn2a+/− recipients compared to
controls (data not shown). No differences were observed in circulating white blood cell
counts or total monocytes in blood derived from B6-Ldlr+/−, Cdkn2a+/− recipients compared
to controls (data not shown). However, flow cytometry analysis of blood monocytes
revealed increased Ly6Chi monocytes after chow (0-wk timepoint) and WTD feeding
(Figure 4A–B). Increased percentages of Ly6Chi and decreased percentages of Ly6Clo

subsets (Figure 4B) resulted in a significant increase in the ratio of Ly6Chi:Ly6Clo

monocytes in the circulation of B6-Ldlr+/−, Cdkn2a+/− recipients compared to controls
(Supplemental Figure 3A). Note that the 0- and 2-wk timepoints are pre-lesional indicating
that increased Ly6Chi monocytes are not secondary to accelerated atherosclerosis.15 Similar
results were observed for the 17-Mb congenic strain compared to non-congenic controls
(Supplemental Figure IIIB). Moreover, an increased ratio of Ly6Chi:Ly6Clo monocytes was
observed in splenic monocytes derived from B6-Ldlr−/−, Cdkn2a+/− mice compared to B6-
Ldlr−/− controls (p=0.003) (Supplemental Figure IVA–B).
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To test for a direct effect of heterozygous Cdkn2a deficiency on monocyte proliferation, we
injected mice with BrdU before sacrifice at the 10-wk timepoint. B6-Ldlr+/−, Cdkn2a+/−

recipients exhibited an increased percentage of BrdU+ monocytes compared to controls,
indicating increased monocyte proliferation (Figure 4C–D). Moreover, the increase in BrdU
incorporation occurs mainly in the Ly6Chi subset (Figure 4C, left panel).

To test for an effect of BM-derived Cdkn2a deficiency on tissue macrophage proliferation,
we assayed elicited peritoneal macrophages by flow cytometry following intraperitoneal
BrdU injection. While there was no difference in the total number of CD45+CD115+F4/80+

macrophages (Figure 5A), there was a significant increase in the percentage of BrdU+

macrophages from B6-Ldlr−/−, Cdkn2a+/− mice compared to B6-Ldlr−/− controls (p<0.04)
(Figure 5B–C). We also tested for increased BrdU incorporation within lesions of a small
cohort of B6-Ldlr−/−, Cdkn2a+/− mice compared to controls using immunohistochemistry.
While ample numbers of cells (mean=42–47 cells) stained positively following a 7-day
pulse, the within-group variation was high and power calculations indicated that we would
need to study 50 mice/group to have an 80% chance of detecting a significant difference
(p<0.05) comparable in magnitude to the difference in lesion area (i.e. ~30%).

Together, these data provide direct evidence for a suppressive effect of BM-derived
p16INK4a and/or p19ARF expression on inflammatory monocyte/macrophage proliferation.

Discussion
Prior to the identification of 9p21 as a risk locus for human ASVD, we used a murine
genetic approach to identify the homologous region of mouse chr 4 as a modifier of
atherosclerosis susceptibility. In the current study, we provide refined genetic mapping and
transcriptional evidence that Cdkn2a mediates at least some of the altered atherosclerosis
susceptibility of this region through altered expression in macrophages. In support of this
model, heterozygous deficiency of Cdkn2a transcripts in BM-derived cells was found to be
sufficient to confer accelerated atherogenesis in the B6-Ldlr−/− background. The moderate
(~2–4-fold) reduction in p16INK4a and p19ARF expression associated with increased
atherosclerosis in these murine models is consistent with the reduction of p16INK4a and
p19ARF expression in T cells of carriers of the 9p21 risk allele.8 Moreover, our study shows
for the first time that the underlying pathogenic mechanism may involve increased
proliferation/expansion of the Ly6Chi inflammatory monocyte population in the circulation
as well as increased proliferation of tissue macrophages. This provides a plausible
mechanism to account, in part, for accelerated atherogenesis in the chr 4 congenic mouse,
with possible relevance to the mechanism of increased atherogenesis in humans bearing the
9p21 risk allele.

Consistent with our BM transplantation study, whole-body deletion of p19ARF was recently
shown to be pro-atherosclerotic in the B6-Apoe−/− background.23 The mechanism of action
suggested in the Apoe−/− model was decreased apoptosis, although the culprit cell type was
not identified. We did not observe differences in plaque apoptosis in either the Athsq1
congenic model or mice carrying BM-deficiency of Cdkn2a compared to respective
controls. The discrepancy between the two studies could be due to different experimental
designs (BM vs whole body deficiency), different targeted alleles (p16INK4a/p19ARF vs
p19ARF alone), different mouse models (Ldlr−/− vs Apoe−/−), or a non-target effect of a
carrier gene in one of the mutant models. However, while decreased apoptosis may
accelerate early lesion formation, increased apoptosis likely contributes to lesion progression
to advanced plaques with clinically significant consequences24 such as MI associated with
9p21.
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Chr 4 mouse deletion mutants with decreased expression of all three Cdkn2a/b transcripts
exhibited increased proliferation of vSMCs 25. However, vSMC proliferation does not
readily explain the human athero-thrombotic phenotype since this generally leads to cap
thickening and plaque stabilization.26 The results of a reverse BM transplantation
experiment reported herein were inconsistent with a role for vSMCs in the atherosclerosis
phenotype of Athsq1 17-Mb subcongenic mice (Supplementary Figure 2). In line with this,
Folkersen et al27 failed to demonstrate an association between vascular gene expression of
CDKN2A/B and 9p21 risk genotype.

Evidence for an association between elevated WBC counts and ASVD risk has been
documented in more than a dozen prospective epidemiological studies.28 There is also
substantial evidence in animal models for a causal relationship between monocytosis and
atherogenesis.29–32 In mouse models of diet-induced atherosclerosis, the subset of Ly6Chi

expressing monocytes expands with hypercholesterolemia and selectively enters sites of
inflammation including atherosclerotic lesions, compared to the Ly6Clo subset.33, 34 In
addition, single gene mutations resulting in reduced blood monocytes also reduced
atherosclerosis independent of plasma cholesterol levels.35–38 While the relationship
between monocytosis and atherosclerosis has been well-documented, detailed mechanisms
responsible for monocytosis are lacking. Consistent with a recent finding,19 our study
suggests that the control of myeloid cell proliferation during hypercholesterolemia is an
important factor determining magnitude of leukocytosis and the atherogenic response.

A variety of mechanisms for CDKN2A/B and/or ANRIL involvement in the 9p21 ASVD
locus have been proposed. Regulation of CDKN2A/B gene expression has been suggested to
occur via cis or trans mechansim(s) involving either the structurally overlapping
ANRIL,9, 39 or other regulatory motifs residing within the 58-kb risk locus.11, 40 It is also
possible that ANRIL may mediate effects at 9p21 without involvement of CDKN2A/B,
through regulation of gene expression at an unlinked locus.41 The mouse genome does not
contain a contiguous sequence with homology to ANRIL. However, markedly decreased
expression of Cdkn2a/b transcripts in the 70-kb deletion mutant suggests the existence of a
cis-acting enhancer.13 In our Athsq1 congenic mouse, there is a loss of coordinate regulation
with decreased expression of Cdkn2a (p16INK4a and p19ARF) transcripts but not Cdkn2b
(p15INK4b). Thus, in our model, the causal variant is likely to be cis-acting and specific to
the Cdkn2a locus.

The 9p21 locus has been associated with multiple vascular phenotypes. These include
myocardial infarction,5 abdominal aortic and intracranial aneurysms,42 ischemic stroke,43, 44

and peripheral artery disease.45 Interestingly, monocyte/macrophage recruitment is an
important process in cerebral aneurysm formation and Ccl2 deficiency has been shown to
inhibit macrophage accumulation in aneurysmal walls and significantly decrease aneurysm
formation in an experimentally induced mouse model.46 In another study, increased
immunostaining of CD68 antigen was observed in intracranial aneurysms compared to
control tissue.47 In ischemic stroke, macrophage accumulation has been associated with
severity of brain injury.48 Thus, alterations in monocyte/macrophage proliferation could
potentially provide a common underlying mechanism for vascular phenotypes associated
with the 9p21 locus.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Refined mapping of an atherosclerosis susceptibility locus to a 5.4-9-Mb region
including the region of homology with a human ASVD risk interval on 9p21
A, Physical map of mouse chr 4 and MOLF donor intervals (white boxes) carried by
congenic strains in the B6-Ldlr−/− background. Mb, megabase; b/b, homozygosity for B6
alleles; m/m, homozygosity for MOLF alleles. The rectangle indicates the narrowed interval
defined by data in (b). B, Mean lesion areas in control (b/b) and congenic strains fed 9-wk
WTD. Two-factor ANOVA performed with square root transformation. Horizontal bars
indicate group means for males (circles) and females (triangles). NS, not significant. C,
Microsatellite markers delineating proximal (D4Mit349/D4Mit27) and distal (D4Mit350/
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D4Mit154) recombination breakpoints of the refined risk interval. The interval includes the
region of homology with a human risk interval on 9p21.
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Figure 2. Decreased expression of p16INK4a and p19ARF, but not p15INK4b, cell proliferation
inhibitor transcripts in BM-derived cells from chr 4 congenic mice compared to controls
rtPCR results in cells derived from B6-Ldlr−/− (b/b) and congenic (54- or 17-Mb) mice. A,
concanavalin A-elicited peritoneal macrophages, 6-wk WTD, n=10 mice/group; B, resident
peritoneal macrophages, 9-wk WTD, n=8–12 mice/group; C, splenic CD11b+ monocyte/
macrophages, 15-wk WTD. n=7–9 mice/group. ANOVA (A) or t-test (B, C) performed with
log transformation. *p≤0.05, **p≤0.005, †p≤0.0005 compared to b/b controls.
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Figure 3. BM-specific Cdkn2a deficiency is sufficient to promote atherosclerosis in B6-Ldlr−/−

mice
A–B, Transcript-specific rtPCR results for Cdkn2a (p16INK4a and p19ARF) and p18INK4c

(another INK4-class gene encoded by a distant region of mouse chr 4). N=7 mice/group.
Unpaired t-test performed with log transformation. C, Mean lesion areas from B6-Ldlr−/−

mice transplanted with B6-Ldr+/− or B6-Ldr+/−, Cdkn2a+/− BM and fed 10-wk WTD. Two-
factor ANOVA performed with square root transformation. Horizontal bars indicate group
means for males (circles) and females (triangles). *p≤0.05.
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Figure 4. Increased inflammatory Ly6Chi monocytes, mediated by increased cell proliferation, in
the circulation of B6-Ldlr−/− mice transplanted with Ldlr+/−, Cdkn2a+/− BM compared to
controls
A, Flow cytometry analysis of blood monocytes from Ldlr+/− or Ldlr+/−, Cdkn2a+/− BM
recipients fed chow or WTD. Monocytes were gated as CD45+CD115+ Ly6Chi or
CD45+CD115+Ly6Clo. B, Quantification of Ly6Chi/ Ly6Clo cells among total
CD45+CD115+ cells. C, Analysis of proliferating CD45+CD115+ monocytes at the 10-wk
timepoint. Cells were gated as Ly6Chi BrdU+. D, Quantification of BrdU+ cells among total
CD45+CD115+ monocytes. N=11 mice/group. *p≤0.05, **p≤0.005, †p≤0.0005.
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Figure 5. Increased proliferation of tissue macrophages derived from B6-Ldlr−/− mice
transplanted with Ldlr+/−, Cdkn2a+/− BM compared to controls
A, Flow cytometry analysis of concanavalin A-elicited peritoneal macrophages from B6-
Ldlr−/−or B6-Ldlr−/−, Cdkn2a+/− mice fed 4–5 wks WTD. Macrophages were gated as
CD45+CD115+F4/80+. B, Analysis of proliferating CD45+CD115+F4/80+ macrophages at
the 4–5 wk timepoint. Cells were gated as BrdU+. C, Quantification of BrdU+ cells among
total CD45+CD115+F4/80+ macrophages. N=6–7 mice/group. *p≤0.05.
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