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Abstract

Objective—To examine the effects of apoB100 structure, specifically a mutation in the LDLr 

binding region, on the production of LDL and development of atherosclerosis in vivo.

Methods and Results—Ldlr−/− Apobec1−/− mice lacking the LDLR and apoB editing enzyme 

accumulated LDL in plasma and developed severe atherosclerosis when they had wild-type 

apoB100. In marked contrast, in Ldlr−/− Apobec1−/− mice carrying the Apob100-β mutation, in 

the 2 putative LDLR-binding domains of apoB prevented both LDL accumulation and 

atherosclerosis. Intestinal absorption of lipids and triglyceride secretion from the liver were not 

affected. However, the VLDL particles with apoB100-β were larger in volume by about 70%, and 

carried approximately four times as much apoE per particle. ApoB100-β synthesis rate in the 

primary hepatocytes was normal, but its intracellular degradation was enhanced. Additionally, 

mutant apoB100 VLDL cleared from the circulation more quickly in vivo through apoE-LRP–

mediated mechanism than VLDL with wild-type apoB100. In contrast, uptake of the 2 VLDL by 

macrophages were not different.

Conclusion—While conformational change to apoB100 during conversion of VLDL to LDL 

exposes LDLR binding domains and facilitates LDLR-mediated lipoprotein clearance, it may also 

inhibit LRP-mediated VLDL uptake and contribute to LDL accumulation in familial 

hypercholesterolemia.
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Apolipoprotein (apo) B is an essential component of VLDL, LDL, and chylomicrons. ApoB 

normally exists in 2 forms, apoB100 and apoB48; both are the products of the same gene. 
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ApoB100 comprises 4536 amino acids, synthesized in the liver, and secreted into the 

circulation as a structural component of VLDL. ApoB48 is 48% of full-length apoB, and is 

formed as a result of posttranslational editing of ApoB mRNA by the apoB editing complex 

(apo-BEC), which changes Gln at codon 2153 to a stop codon.1 ApoB48 is synthesized in 

the small intestine and is required for the packaging of lipids into chylomicrons. Whereas 

human liver makes exclusively apoB100, a large proportion of message in the mouse liver is 

edited and consequently mice produce both apoB48 and apoB100 from the liver.2

In addition to maintaining the structural integrity of li-poprotein particles, apoB100 also 

functions as a ligand for the LDLR and is therefore a primary determinant of circulating 

LDL cholesterol levels. The LDLR-binding domain of apoB100 has not been fully defined; 

however, biochemical, immunochemical, and genetic evidence suggests that it is a region of 

net positive change located in the carboxyl-terminal portion of apoB100. Two sequences, 

residues 3147 to 3157 and 3359 to 3367, are enriched in basic amino acid residues and have 

been proposed as putative LDLR-binding domains in both species.3 The sequence at 3359 to 

3367 is highly conserved among mammalian species and is also similar to the LDLR-

binding site of apoE. Also, Boren et al showed that the removal of positive charges from 

residues 3359 to 3367 by site-directed mutagenesis renders the LDL containing the modified 

apoB defective in LDLR binding.3

To define the regions of apoB that bind the LDLR, we previously introduced mutations into 

the mouse Apob gene.4 The apoB100-β protein is the same length as apoB100 but contains 

2 peptide sequences for human β-globin in place of the residues 3147 to 3157 and 3359 to 

3367. The modification also drastically reduced the net positive charges and amphipathic 

helicies of the 2 domains. We expected that the mice producing apoB100-β would model 

defective apolipoprotein B100 in humans by accumulating binding-defective LDL in 

plasma.5 However, we found that the apoB100-β/B100-β mice have slightly, but not 

significantly lower than normal, total plasma cholesterol and HDL cholesterol, and the 

amount of plasma LDL was not different from that in wild-type mice.4 One explanation is 

that these 2 regions are not essential for apoB100 binding to the LDLR in vivo. The 

interpretation, however, is complicated because mice normally have very little apoB100-

containing LDL particles in circulation. In addition, the production of apoB48 from the liver 

and the efficient clearance of apoB48-containing remnants mediated by apoE make the 

metabolism of apoB100 difficult to study in vivo in mice.

The present study examined the effect of apoB100-β-containing LDL by introducing the 

mutation onto a background of Ldlr−/− Apobec1−/− double mutants; a model of human 

familial hypercholesterolemia with severe atherosclerosis. Apobec1−/− mice that lack the 

mRNA editing enzyme produce only apoB100,7 whereas Ldlr−/− mice that lack LDLR 

accumulate LDL cholesterol in plasma.6,7 Surprisingly, when these mice also carry the 

apoB100-β mutation, they are completely protected from hypercholesterolemia and 

atherosclerosis that normally occurs in Ldlr−/− Apobec1−/− mice.
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Methods

Please see supplemental methods (available online at http://atvb.ahajournals.org) for details 

on plasma lipid, lipoprotein, tissue weight, triglyceride secretion, lipolysis, uptake of DiI 

and 125I-labeled lipoproteins, LRP inhibition by adenoRAP, gene expression, and apoB 

synthesis, secretion, and degradation.

Animals and Diets

The apoB100-β allele codes for “VHLTPVEKSAVT” and “KEFT-PPVQAAYQ” instead of 

“LSVKAQYKKNSD” and “GTSRLM-RKRGLK” of the wild-type apoB100 allele at 

residues 3143 to 3154 and 3356 to 3366, respectively.4 Ldlr−/− mice (B6;129S7-Ldlrtm1Her/J) 

were obtained from the Jackson Laboratory. Apobec1−/− mice were obtained from Dr Eddy 

Rubin at the Lawrence Berkeley National Laboratory.7 Three strains of mutants were 

crossed to generate mice that are heterozygous for the Apob locus and doubly homozygous 

for the Apobec1 and the Ldlr loci. These mice were then crossbred, and Ldlr−/− Apobec1−/− 

mice with Apob genotypes of 100/100 (wild type), 100/100-β (heterozygous), and100-β/

100-β (homozygous) were generated for experiments. Their genetic backgrounds were 

complex mixes between C57BL/6J, 129/SvEv, and129/Ola. Animals were maintained on 

normal chow (NC; 4.5% fat, 0.022% cholesterol; Prolab Isopro 3000; Agway Inc), or were 

fed a high-fat Western-type diet (HFW; 21% fat, 0.2% cholesterol; TD 88137; Harlan 

Teklad). Mice in all experiments were age-matched within 3 weeks. All procedures for the 

handling of mice were approved by the Institutional Animal Care and Use Committee of the 

University of North Carolina at Chapel Hill.

Biochemical Analyses and Atherosclerosis Evaluation

Mice were fasted 4 hours before analysis. Liver and fecal lipids were extracted with 

chloroform/methanol.8 Plasma lipids, lipoprotein distribution, and triglyceride secretion rate, 

were determined as described.9 Lipoprotein particle diameters were determined by dynamic 

light scattering analysis using a Microtrac 250.10 Peritoneal macrophages and hepatocytes 

were isolated as described.11,12 The VLDL (d <1.006 g/mL) and LDL (d=1.06 to 1.10 g/mL) 

fraction was isolated from pooled plasma by ultracentrifugation and labeled with 1,1′-

dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI C18; Molecular Probes 

Inc)13 or with 125I (Iodine-125 Radionuclide, Perkin Elmer)14 for clearance assays. 

Fibroblasts were kindly provided by Dr J. Herz at the University of Texas Southwestern 

Medical Center. Cellular lipids were extracted with isopropanol and measured with a 

microscope fluorometer.13 Gene expression in the liver was analyzed by real-time 

polymerase chain reaction (PCR), and quantification of atherosclerosis was carried out as 

described.11

Data Analysis

Values are reported as mean±SEM unless otherwise stated. Data were analyzed by ANOVA 

using JMP software (SAS Inc).
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Results

ApoB100-β Causes Marked Reduction of LDL in Ldlr−/− Apobec1−/− Mice

Ldlr−/− Apobec1−/− mice with wild-type apoB100 had high levels of plasma cholesterol and 

triglycerides on NC, and further increased plasma lipids on a HFW diet (Table). In contrast, 

both plasma cholesterol levels in the Ldlr−/− Apobec1−/− mice that are heterozygous and 

homozygous for the apoB100-β mutation were reduced in an allele dose-dependent manner. 

The protective effect of the apoB100-β mutation compared to controls was retained when 

mice were fed a HFW diet, although plasma cholesterol levels increased about 3-fold in all 

mice. Plasma levels of triglyceride, free cholesterol, and phospholipids in mice with 

apoB100-β were also significantly lower than those with apoB100 mice.

When plasma lipoproteins from male mice on normal chow diet were analyzed by fast 

protein liquid (FPLC), more than 60% of the plasma cholesterol was in the LDL fraction in 

Ldlr−/− Apobec1−/− mice with wild-type apoB100. In contrast, a striking absence of LDL-

cholesterol was noted in the plasma of Ldlr−/− Apobec1−/− mice homozygous for apoB100-β 
(Figure 1A). Mice with one copy of apoB100-β had approximately half the amount of LDL 

as those with wild-type apoB100. All mice had very low levels of VLDL cholesterol, and 

there was no difference in the amount of HDL. The possession of apoB100-β resulted in a 

similar reduction of triglycerides in the LDL fraction (Figure 1B). SDS gel electrophoresis 

of lipoprotein fractions from plasma of mice fed a HFW diet showed that the distribution of 

apoB100-β among various classes of lipoproteins was similar to that of normal apoB100 

with the highest concentration in the LDL range (1.02 g/mL>d >1.04 g/mL, Figure 1C). 

However, total apoB100-β in these mice was much less than wild-type apoB100, because 

samples of 3 times of apoB100-β plasma volume was loaded compared to apoB100 plasma. 

Total plasma apoE was also less in mice with apoB100-β than in mice with apoB100, but the 

ratio of apoE/apoB on the lipoprotein particles in the apoB100-β mice was about 4 times 

higher than in apoB100 mice.

Although there was no difference in adipose tissue weight, the liver weight per body weight 

was slightly but significantly smaller in mice with apoB100-β (P<0.005, Figure 1D). 

Hepatic intracellular cholesterol pools in the 2 groups of mice were not significantly 

different after 2 months on HFW diet. In contrast, the liver triglyceride content of Ldlr−/− 

Apo-bec1−/− males with apoB100-β was significantly lower than in mice with wild-type 

apoB100 (P<0.001, Figure 1E). Fecal cholesterol and triglyceride levels of mice after 2 

months on HFW diet were not significantly different (Figure 1F). These data suggest that the 

apoB100-β mice are also protected from liver steatosis. Under light microscopy, however, 

liver sections from mice on HFW contained similar degrees of fatty droplets and no 

remarkable difference was observed between the Apob genotypes (data not shown).

Ldlr−/− Apobec1−/− Mice With apoB100-β Secrete Larger VLDL

A possible source of the disparity in plasma LDL levels is a difference in hepatic VLDL 

production rates. To estimate the secretion rate of triglyceride-rich lipoprotein (TRL) 

particles from the liver, we injected Triton WR1339 (Tyloxapol) intravenously into mice to 

inhibit lipolysis and uptake of TRLs, and measured plasma triglycerides (Figure 2A). 
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Although the basal triglyceride levels differ in the 2 groups of mice, triglyceride secretion 

rates were nearly identical at 280 to 300 μg/mL/h regardless of whether they have apoB100 

or apoB100-β.

We next analyzed VLDL particle size at 2 hours post-Tyloxapol injection. The size of 

particles in the <1.006 g/mL density fraction was significantly different between the 2 

groups of Ldlr−/− Apobec1−/− mice; the mean±SD diameter of apoB100-β VLDL particles 

were larger (55.0±15 nm) than those with wild-type apoB100 (45.6±14 nm). Based on the 

difference in the diameter, we estimate that the average apoB100-β VLDL has 

approximately 46% more surface area and 76% greater volume than that of the normal 

apoB100 VLDL. Assuming that the triglyceride content of a particle is relative to its 

volume, this implies that the number of VLDL particles secreted from the Ldlr−/− 

Apobec1−/− liver with apoB100-β is approximately 60% that from the liver with wild-type 

apoB100.

To examine the production and degradation of apoB100 proteins, we conducted a pulse-

chase experiment with radio-labeled methionine in the primary hepatocytes isolated from the 

Ldlr−/− Apobec1−/− mice with apoB100 and with apoB100-β (Figure 2B). 

Immunoprecipitable apoB protein in the apoB100-β cells after the 30-minute pulse was not 

significantly different from that in apoB100 cells, suggesting that the initial synthesis rates 

are not different. After 4-hour chase in the medium with excess of cold methionine, 

however, the immunoprecipitable apoB protein both in the medium and associated with cells 

was significantly less in the apoB100-β hepatocytes. Thus, the mutated apoB protein is 

degraded more quickly, leading to the reduced number of VLDL particles secreted from the 

Ldlr−/− Apobec1−/− liver with apoB100-β.

B100-β VLDL Is Efficiently Cleared From the Circulation

The lack of LDL accumulation in the Ldlr−/− Apobec1−/− mice with apoB100-β is not 

proportional to the amount of VLDL particles secreted in these mice compared to that in 

mice with wild-type apoB. To test a hypothesis that apoB100-β VLDLs are cleared more 

efficiently than apoB100 VLDL, we isolated VLDL from Ldlr−/− Apobec1−/− mice with 

either apoB100 or apoB100β, labeled them with 125I, and injected them into Ldlr−/− mice 

via the tail vein. Monitoring plasma clearance of 125I labeled VLDL over a 2-hour period 

showed that 125I VLDL with apoB100-β are cleared faster than VLDL with wild-type 

apoB100 (Figure 3A). To determine the specific tissue loci of the cleared VLDL, we 

repeated the 125I-VLDL turnover, this time measuring radioactivity in various tissues after 

20 minutes. Of 125I-VLDL cleared, the majority was found in the liver. The distribution 

of 125I-VLDL with apoB100β did not differ from that of 125I-VLDL with apoB100 in the 

five organs measured (Figure 3B).

To assess the conversion of VLDL to smaller particles in vivo, plasma samples were isolated 

from mice 2 hours after 125I-VLDL injection, pooled, and separated into VLDL, IDL, and 

LDL fractions using ultracentrifugation. Proportions of counts in the density fractions 

containing each class of lipoproteins were similar between mice received 125I-VLDL with 

apoB100 and those with apoB100-β (Figure 3C). Furthermore, the apoB100-β VLDL 

particles incubated with postheparin plasma released FFA at rates of 12±1 nmol FFA/min 
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compared to apoB100 VLDL at 11±1 nmol FFA/ min (Figure 3D), suggesting that the lack 

of putative LDLR binding domain sequences of apoB does not affect the lipolysis of VLDL 

in Ldlr−/− Apobec1−/− apoB100-β mice.

Taken together, these experiments suggest that the absence of hyperlipidemia in LDLR-

deficient mice having apoB100 without the putative receptor-binding sequences is likely 

because their VLDL particles are quickly cleared from the circulation before they become 

small, cholesterol-enriched LDL particles.

Role of ApoE-LRP–Mediated Clearance

To examine the specific roles of the LRP on apoB100-β particle uptake, we measured uptake 

of DiI labeled VLDL and LDL in mouse fibroblasts deficient in either LDLR (LDLR−/− 

LRP+/+), in LRP (LDLR+/+LRP−/−), or in both LDLR and LRP (LDLR−/− LRP−/−, negative 

control cells). Two hours after DiI-labeled apoB100-LDL was added to the medium, the 

uptake into LDLR+/+LRP−/− cells was significantly higher than in LDLR−/− LRP−/− negative 

control cells (Figure 4A). The uptake of apoB100-LDL by the LDLR−/− LRP+/+ cells was 

also higher than in negative control cells. Uptake of apoB100-β LDL was not increased by 

the expression of either LDLR or LRP. The opposite pattern of uptake was observed in 

studies with VLDL. In 30 minutes, DiI-labeled apoB100-β-VLDL was efficiently taken up 

by cells expressing LDLR, and particularly LRP, whereas no such increase over the uptake 

by negative control cells was found in cells given DiI-labeled-apoB100 VLDL (Figure 4B).

We next blocked hepatic LRP function using Ad-RAP to determine the role of the LRP in 

the clearance of apoB100-β VLDL in vivo. While basal cholesterol and triglyceride levels in 

plasma are significantly lower in Ldlr−/− Apobec1−/− mice with apoB100-β than those with 

normal apoB100, the levels 5 days after Ad-RAP injection were not different between the 2 

groups of mice. FPLC analyses showed a similar accumulation of cholesterol in the VLDL 

fraction after 5 days in both groups (supplemental Figure I). These data imply that apoB100-

β VLDL is removed by receptors inhibited by RAP, such as LRP. We also examined the 

contribution of HSPG binding by incubating LDLR−/− LRP−/− cells at 4°C with DiI-VLDL. 

The amount of VLDL released from the surface by heparinase after 2 hours was not 

significantly different (supplemental Figure II), suggesting that apoB100-β does not affect 

the binding ability of VLDL to proteoglycans.

To gain further insight into the apparent enhancement of lipoprotein clearance in Ldlr−/− 

Apobec−/− mice with apoB100-β, we analyzed the expression of the Apob, Apoe, and Lrp1 
genes in the liver by real-time PCR. Although there was no Apob genotype effect on the 

mRNA levels for Apob and Lrp1, liver expression of Apoe was approximately twice as high 

in mice with apoB100-β as in mice with wild-type apoB100 (supplemental Figure III). 

These data, combined with the higher apoE:apoB protein ratio, suggest that the increased 

production of apoE protein may be contributing to the accelerated clearance of apoB100-β 
containing VLDL-remnants and the resistance to hyperlipidemia in the apoB100-β mice 

even in the absence of LDLR.
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Ldlr−/− Apobec1−/− Mice With ApoB100-β Are Protected From Development of 
Atherosclerosis

High levels of LDL are a well-documented risk factor for atherosclerosis. Ldlr−/− Apobec−/− 

female mice with apoB100 had a significant size of lesions (34±6×103μm2), even when they 

were on NC diet and were as young as 4 to 5 months old (Figure 5A). In marked contrast, 

the apoB100-β mutation demonstrated a significant atheroprotective effect. Although 3 of 5 

Ldlr−/− Apobec−/− mice heterozygous for apoB100-β had visible plaques (16±7×103μm2), 

there were absolutely no plaques seen in mice homozygous for the apoB100-β mutation. 

The overall effect of the Apob genotype on plaque development was P<0.002 by ANOVA. 

Feeding a HFW diet for 2 months accelerated the plaque development in the Ldlr−/− 

Apobec−/− mice with apoB100 (mean lesions size 54±8 x103μm2; n=5). In contrast, there 

were virtually no lesions present in apoB100-β mice but only very small foam cell 

aggregations (1.7±0.8×103μm2, P<0.002).

To examine whether direct VLDL scavenging by macrophages rather than LDL 

accumulation is responsible for the dramatic differences in atherosclerosis, we isolated 

peritoneal macrophages from Ldlr−/− mice and incubated with equal amounts of DiI-labeled 

VLDL in the medium. Uptake of the DiI-VLDL with apoB100 by the macrophages was a 

little more enhanced compared to that with apoB100-β, but the differences were not 

statistically significant (Figure 5B). A similar result was obtained in the macrophages 

isolated from wild-type mice (data not shown), indicating that the scavenging by 

macrophages of the VLDL is not affected by the apoB100-β mutation.

Taken together our data demonstrate that, even in the absence of LDLR, a mutation in the 

putative receptor binding domains of apoB prevents LDL accumulation, and dramatically 

reduces atherosclerosis.

Discussion

LDL is generated in the circulation from VLDL produced by the liver after lipolysis and 

exchange of surface apolipoproteins. During this conversion, conformational changes occur 

in its structural protein, apoB100, allowing for the exposure of domain(s) that interact with 

LDLR.15–17 Exposure of the receptor-binding domain and subsequent binding of apoB100 

to the LDLR is the major pathway for the clearance of LDL cholesterol by the liver, as 

illustrated by the marked accumulation of LDL in plasma of patients and in animals lacking 

LDLR.18 –21 Particles that lack full-length apoB, such as apoB48-containing chylomicron 

remnants, can acquire apoE which mediates efficient clearance of these particles by the 

LDLR, LRP, and other receptors which may act in concert with proteoglycans.22

To investigate the mechanisms for the uptake of apoB48-and apoB100-containing 

lipoproteins by the LDLR and by the LRP, Veniant et al previously characterized plasma 

lipoproteins in the Ldlr−/− mice homozygous for an “apoB48-only” allele or homozygous for 

an “apoB100-only” allele.24 The authors concluded that the LDLR plays a significant role in 

the clearance of both apoB100- and apoB48-containing lipoproteins, and that the LRP is 

important for apoB48-containing lipoproteins but has little if any capacity to remove 

apoB100-containing lipoproteins from the plasma. The “apoB100-only” Ldlr−/− mice are 
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phenotypically identical to the Ldlr−/− Apobec1−/− mice with wild-type apoB100 we used in 

the current study. Interestingly, the plasma lipids and lipoprotein distribution in Ldlr−/− 

Apobec1−/− mice with mutant apoB100-β are very similar to “apoB48-only” Ldlr−/− mice, 

despite that apoB100-β retains the full length of the apoB protein. Both strains of mice have 

no substantial accumulation of LDL particles, suggesting that apoB100-β remnants, like 

apoB48-only remnants, are cleared via LRP in the absence of LDLR and that the length of 

apoB protein does not influence this process. However, whereas Veniant et al showed that 

LRP inhibition with RAP of “apoB48-only” Ldlr−/− mice leads to higher VLDL levels than 

in “apo-B100-only” Ldlr−/− mice,23 VLDL accumulation in the Ldlr−/− Apobec1−/− mice 

with apoB100 and those with apoB100-β were similar after LRP inhibition, suggesting that 

additional mechanisms may present in the protective effects noted in the apoB100-β–

producing mice.

The Ldlr−/− Apobec1−/− mice with apoB100-β do not accumulate substantial LDL particles 

in plasma even when fed a HFW diet. This lack of LDL accumulation occurs despite the 

inability of apoB100-β-containing LDL to be cleared in vitro. Importantly, the livers of 

Ldlr−/− Apobec1−/− mice with apoB100-β appear to produce a smaller number of larger 

VLDL particles than the livers of the Ldlr−/− Apobec1−/− mice with apoB100, despite equal 

expression of the Apob gene and protein synthesis. However, the reduction of LDL 

cholesterol in the Ldlr−/− Apobec1−/− mice with apoB100-β is more than the reduction of 

apoB secreted. This is in contrast to the report by Crooke et al that Ldlr−/− mice treated with 

an apoB antisense oligonucleotides had a reduction of apoB mRNA by 74% but still had 

48% levels of LDL-cholesterol compared to the pretreatment levels.24 It has long been 

recognized that the larger VLDL particles are removed faster and less likely converted to 

LDL than smaller VLDL, and a larger surface area of apoB100-β VLDL may allow more 

apoE to associate with the particle and facilitate LRP mediated uptake.25,26 The Ldlr−/− 

Apobec1−/− mice with apoB100-β have plasma lipoproteins containing 4-fold higher apoE 

protein per particle, and 2-fold higher Apoe gene expression in the liver than mice with 

apoB100. All together, these changes favor the enhanced clearance of apoB100-β containing 

particles via the LRP.

We also observed an enhanced degradation of apoB100-β in primary hepatocytes from the 

Ldlr−/− Apobec1−/− mice with apoB-100β in culture. Whether the accelerated degradation of 

apoB100-β results from its abnormal protein folding or is the consequence of enhanced 

turnover has yet to be determined. Although a limited apoB protein available for lipoprotein 

assembly could account for the larger size of VLDL, a question remains as to whether 

apoB100-β fails to form subsets of VLDL particles that are predestined to form LDL 

particles. Studies have demonstrated that a substantial amount of newly synthesized apoB 

protein is degraded rather than secreted, and that its interaction with LDLR channels apoB 

toward presecretory degradation.27–30 Reuptake of newly synthesized lipoproteins by LDLR 

can also attenuate VLDL secretion, and both apoE and apoB are important for this 

process.31,32 Loss of these regulations results in an increased secretion of apoB proteins and 

smaller, underlipidated VLDL particles in humans and mice that lack functional LDLR.33

The metabolism of lipoproteins with apoB100-β mutation is consistent with other 

observations. For example, truncations of apoB on the C-terminal side of amino acid 3500 
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result in more efficient clearance of VLDL.34 Individuals heterozygous for a R3480P 

mutation in apoB exhibit hypo-betalipoproteinemia because of a reduced conversion of 

VLDL to LDL, despite that this mutation caused reduced binding of LDL to the LDLR.35 

Similarly, milder than expected hyperlipidemia in individuals with familial defective 

apolipoprotein B-100 attributable to mutations at R3500 has been attributed to an enhanced 

removal of apoE-containing VLDL and decreased production of LDL.36,37 The apoB100-β 
mutation may also affect a process of structural/ conformational change of apoB100 that is 

important for the in vivo generation of LDL particles as well as for LDLR binding, although 

interpretation is complex because amino acid changes disrupting amphipathic helices 

represented by sites A and B likely cause additional conformational changes of apoB on 

LDL and VLDL. Systematic replacements of the basic LDLR binding sequences with acidic 

or neutral residues would provide a potentially less disruptive and comprehensive approach. 

Chatterton et al hypothesized that the apoB100 “bow”, where a segment of apoB100 crosses 

over itself between amino acid residues 3000 and 3500, inhibits interaction of apoB100 

protein with LDLR, hence inhibiting clearance.38 Because the apoB100-β mutation at amino 

acids 3147 to 3157 and 3359 to 3367 are within the proposed bow crossing structure, a 

mutation in these sequences may physically block or otherwise disrupt “bow” structure 

formation.

There is little doubt that the exposure of the positively charged domains of apoB100 to the 

lipoprotein surface after conformational changes is required for the effective clearance of 

LDL through LDLR. Considering the overall consequences of the mutations in the second 

half of the apoB100, however, it is tempting to speculate that the exposure of the positively 

charged domains of apoB100 may also inhibit the accumulation of apoE on the particles 

required for their apoE-mediated uptake via LDLR or LRP. This is consistent with the 

hypothesis raised by Veniant et al that the presence of the carboxyl half of apoB100 (amino 

acids 2153 to 4536) on the surface of the lipoprotein prevents the lipoprotein particle from 

binding a “sufficient dose of supplemental apoE” that is necessary for the lipoprotein 

particle to escape circulation via uptake by the LRP.23 Lack of the putative LDLR binding 

domains in apoB100-β may also prevent the secretion of newly packaged but underlipidated 

particles by enhancing the degradation of apoB through enhanced interactions between apoE 

and LDLR/LRP.

In conclusion, we have demonstrated that the mutation in the LDLR binding domains of 

apoB100 dramatically protects mice from both hypercholesterolemia and atherosclerosis that 

develop in the absence of LDLR. Our observations raise an intriguing possibility that an 

interference of the exposure of the putative LDLR-binding domains to the lipoprotein 

surface may indeed enhance remnant clearance through apoE-mediated mechanisms. This 

may be applicable as a potential therapeutic approach for preventing LDL accumulation in 

patients with familial hypercholesterolemia.
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Figure 1. 
Plasma lipoprotein distribution by FPLC (A) cholesterol, (B) triglycerides. C, SDS-PAGE of 

apoB100, apoB-100β, and apoE in VLDL to LDL (1.006 to 1.06 g/mL) density fractions. 

Samples equivalent to 5 μL of apoB100 plasma and 15 μL of apoB100-β plasma were 

loaded. M, weight markers. D, Tissue weight normalized to body weight, (E) liver lipid 

contents, and (F) fecal lipids. Number of animals is in each bar. Error represents SEM. 

*P<0.005, **P<0.001.
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Figure 2. 
A, Hepatic triglyceride secretion rates. Female mice (5- to 8-month-old fed a HFW, n=11) 

were injected via tail-vein with Triton WR-1339, and plasma triglyceride levels were 

measured postinjection. B, 35S Pulse-chase analysis in primary he-patocytes. ApoB100 

bands in the Gel were quantified using Image J software. Error represents SEM. *P<0.005, 

**P<0.001.
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Figure 3. 
A, Clearance of 125I labeled apoB100 or B100-β VLDL in Ldlr−/− Apobec1−/− mice. n>3 for 

each group. B, Organ uptake expressed as the percentage of total 125I-VLDL in all organs 

measured. n=3 for each group. C, Conversion of injected 125I-VLDL after 2 hours, 

expressed as a percentage of injected VLDL. D, FFA release in heparin treated plasma from 

Ldlr−/− Apobec1−/− mice with apoB100 or apoB100-β measured over 1 hour.
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Figure 4. 
Uptake by fibroblasts of DiI-labeled lipoproteins with apoB100 or apoB100-β. A, Cells were 

incubated with DiI-labeled LDL 37°C for 2 hours or (B) VLDL for 30 minutes. Error 

represents SEM. *P<0.05, **P<0.005 against uptake in LDLR-LRP cells. #, P<0.05 between 

genotypes within the same cell system.
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Figure 5. 
A, Atherosclerotic plaque sizes at the aortic roots of 4-month-old female Ldlr−/− Apobec1−/− 

mice. Number of animals is in parentheses. B, Macrophage VLDL uptake. Ldlr−/− 

Apobec1−/− macrophages were incubated with DiI-labeled VLDL with apoB100 or with 

apoB100-β. Cellular florescence is expressed as Arbitrary Units (AU) per cell gram of cell 

protein.
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