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Abstract

Atherosclerosis is a complex, multifactorial disease with both genetic and environmental 

determinants. Experimental investigation of the effects of these determinants on the development 

and progression of atherosclerosis has been greatly facilitated by the use of targeted mouse models 

of the disease, particularly those resulting from the absence of functional genes for apolipoprotein 

E or the low density lipoprotein receptor (LDLR). This review focuses on the influence on 

atherosclerosis of combining apoE or LDLR deficiencies with factors affecting atherogenesis, 

including (1) inflammatory processes, (2) glucose metabolism, (3) blood pressure, and (4) 

coagulation and fibrinolysis. We also discuss the general problem of using the mouse to test the 

effects on atherogenesis of human polymorphic variations and future ways of enhancing the 

usefulness of these mouse models.
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The Mouse as a Model System for Studying Atherosclerosis

Ten years ago, no strains of mice were available that spontaneously developed complex 

atherosclerotic lesions, although small lesions of the fatty streak type could be induced in 

strain C57BL/6 mice by feeding them high-fat/high-cholesterol diets (see References 1 

through 3). The advent of gene targeting4–6 to modify genes in a predetermined manner 

changed the situation dramatically by allowing the generation of mice having targeted 

inactivation of the apolipoprotein E (Apoe) gene in 19927–9 and of the LDL receptor (Ldlr) 

gene in 1993.10 Both of these animals, under appropriate conditions, develop complex 

atherosclerotic lesions and provide practical atherosclerotic mouse models.11–13

ApoE is an amphipathic protein that plays a pivotal role in lipoprotein trafficking. ApoE is a 

constituent of chylomicrons, VLDL, and HDL and acts as a ligand for the receptor-mediated 

clearance of these particles.14 Mice lacking apoE have plasma cholesterol levels that are 4 

to 5 times normal and develop atherosclerotic lesions spontaneously, even when fed a 

normal chow diet, which is low in fat and cholesterol. The lesions resemble human lesions 
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and progress over time from an initial fatty streak to a complex lesion with a fibrous cap,

15,16 and lesion development can be accelerated by a high-fat, high-cholesterol diet.17 

Mice lacking the LDLR have less overt disease, with a modest 2 times normal plasma 

cholesterol level when maintained on a normal chow diet, and they develop atherosclerosis 

only slowly.18 However, in response to a high-fat, high-cholesterol diet, LDLR-deficient 

mice exhibit massive elevations in plasma cholesterol and rapidly develop atherosclerotic 

lesions throughout the aorta.19 There is much less published data on the kinetics of lesion 

development in LDLR-deficient mice than in apoE-deficient mice. Nevertheless, the lesions 

that develop in Apoe- and Ldlr-deficient mice are generally the same, with the plaques 

developing in a time-dependent manner, starting from the proximal aorta and spreading 

toward the distal aorta, and particularly involving locations where blood flow is disturbed. 

Although the merits of each model and of different methods of assessing the extent of 

atherosclerosis are still debated, results with the 2 models are generally comparable and 

largely independent of whether the quantification is based on the lipid content of the aorta, 

the surface area of lesions in the aortic tree, cross-sectional plaque size in the proximal aorta, 

or cellular composition of plaque materials. The predictable development of plaques in these 

mutants, along with other more general advantages of mice, such as their small size, short 

generation time, and relative ease of care, have quickly made the mouse a very effective and 

practical model for the study of atherosclerosis. However, the most important advantage is 

the availability of genetically defined inbred and mutant strains and the well-established 

means of using these strains to manipulate the mouse genome.

In humans, current evidence suggests that susceptibility to atherosclerosis is most likely due 

to unfavorable combinations of mutations affecting genes in several pathways, but our 

knowledge about which genes are involved is limited.20 Genetic analysis in mice provides a 

powerful approach toward identifying the genes and pathways involved. For example, 

crosses between inbred strains of mice have led to the identification of several 

atherosclerotic quantitative trait loci (QTL) controlling strain-specific differences in diet-

induced atherosclerosis susceptibility.3,21 Likewise, valuable information about 

atherosclerotic modifiers has been obtained by studying crosses of Apoe–/– or Ldlr–/– mice 

with mice carrying other mutations.

The use of Apoe–/– and Ldlr–/– mice to develop an understanding of the genetic factors that 

modify atherogenesis provides the theme for this review. Other atherogenic mouse models 

and the effects of modifying genes related to lipid metabolism are well studied and have 

recently been reviewed.11–13,22 Consequently, in the present review, we consider how 

atherosclerosis is modified by 4 other variables: inflammation, disturbances in glucose 

metabolism, hypertension (HTN), and coagulation/fibrinolysis. These conditions are a 

source of continuous injurious stimuli that can trigger the early stages of atherosclerosis. We 

include several examples showing how the mouse has been used to test human 

polymorphisms as potential atherosclerotic modifiers based on prior epidemiological 

studies. Finally, we discuss some of the current limitations of mouse models of 

atherosclerosis and suggest where future improvements might be made.
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Atherosclerosis and Inflammation

One approach to identifying modifiers of atherogenesis related to inflammation is to start 

from the knowledge that a product already implicated in inflammation occurs in a notable 

way in atherosclerotic plaques. For example, finding a specific cytokine in atherosclerotic 

plaques but not in normal vessels is circumstantial evidence that the cytokine may be 

involved in the pathogenesis of atherosclerosis, although this association does not reveal 

whether the molecule (1) reduces the atherogenic process, (2) accelerates it, or (3) is merely 

secondary to atherosclerosis. However, by using genetic or other manipulations to alter the 

level of the potentially important product, some discrimination among these alternatives is 

possible.

In 1993, Ross20 suggested in his landmark review that atherosclerosis can largely be viewed 

as a self-perpetuating inflammatory disease. Accordingly, we begin by considering the genes 

listed in Table 1 that are known to affect inflammation and that have been tested for 

involvement in atherogenesis by using Apoe–/– and/or Ldlr–/– mice. As Ross elaborated in 

his review, the atherosclerotic inflammatory response progresses in discrete stages, which 

are so characteristic that the presence of certain inflammatory cell types can be used to 

define the progression of atherosclerotic lesions.

In the early stages, the lesions are fatty streaks composed of lipid-rich macrophages. At this 

stage, molecules involved in leukocyte (and particularly, monocyte/macrophage) function, 

recruitment, rolling, adherence, transendothelial migration, and activation are likely to play 

key roles. The importance of monocytes/macrophages in the pathogenesis of atherosclerosis 

has been confirmed by experiments affecting molecules in these pathways. For example, 

osteopetrotic (op) mice have a mutation in the gene for macrophage colony stimulating 

factor (MCSF) that causes a severe decrease in the number of monocytes/macrophages in 

the mutant animals. ApoE-deficient mice crossed with op mice produce offspring that 

develop much smaller lesions than do control apoE-deficient mice.23 In fact, the absence of 

MCSF causes the single, largest decrease in lesion size of all of the genes that have been 

tested to date (Table 1, line 14). Importantly, there is a gene-dosage effect, as MCSF 

heterozygotes also have reduced lesions. Likewise, administration of an antibody against the 

receptor for MCSF reduces lesion size in apoE-deficient mice.24 Cell adhesion molecules 

that facilitate monocyte rolling and adherence also influence atherogenesis (see lines 10 to 

13 of Table 1),25–28 as do cytokines that affect monocyte recruitment and activation 

(reviewed in Reference 29). Monocyte chemoattractant protein-1 (MCP-1) is a cytokine that 

acts through its receptor, CC chemokine receptor 2 (CCR2), on monocytes, macrophages, 

and T lymphocytes. The absence of MCP-1 dramatically decreases lesion size in LDLR-

deficient mice30 (see line 1, Table 1). Similarly, the absence or decrease of CCR2 causes a 

reduction in lesion size in apoE-deficient mice31,32 (see lines 2 and 3, Table 1). In the 

opposite direction, irradiated Apoe–/– mice, in which the bone marrow has been replaced 

with cells that overexpress MCP-1, have an increased atherosclerotic lesion size33 (see line 

4, Table 1).

Although these alterations in the MCSF and MCP-1 pathways have marked effects on the 

progression of atherosclerosis, they do not completely eliminate macrophage-derived foam 
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cell development and fatty streak formation. Furthermore, the plaques in these mice still 

progress with time to more complex lesions. Additionally, although most of the evidence 

implicates macrophages as proatherosclerotic mediators, there is some evidence that they 

have some atheroprotective effects.34

The fatty streak progresses to intermediate lesions that contain monoclonal expansions of 

smooth muscle cells as well as increased numbers of macrophages and T cells. The potential 

role of T and B lymphocytes has been extensively evaluated, revealing a complex picture. 

Mice deficient in either recombinase-activating gene 1 or 2 (RAG1 or RAG2) do not 

produce functional T or B cells owing to a defect in V(D)J recombination. Experiments with 

Apoe–/– mice on a high-fat diet showed that the total absence of T and B cells caused by the 

absence of RAG1 or RAG2 did not affect lesion development.35,36 However, on a normal 

chow diet, Apoe–/– mice deficient in RAG1 have a modest decrease in lesion size compared 

with Apoe–/– controls (see Table 1, lines 15 and 16).35 The role of T cells in atherogenesis 

has been investigated by studying genetic alterations of the CD40-CD154 interaction37 or 

by the administration of antibodies against CD154.38 CD40, a cell surface receptor found on 

many immune cells, shares homology with tumor necrosis factor receptors. CD154, the 

ligand for CD40, is thought to be restricted to CD4+ T lymphocytes. When Ldlr–/– mice are 

fed a high-fat diet, treatment with antibodies to CD154 reduces expression of adhesion 

molecules and lesion size.37 Consistent with this observation, Apoe–/– mice that are also 

deficient in CD154 have a dramatic 5-fold decrease in lesion size, and the plaques in these 

mice also have a more stable, collagen-rich plaque phenotype with a reduced T cell/

macrophage content (see line 5, Table 1). Similar plaque phenotypes have been seen in mice 

lacking the interferon-g receptor (IFN-γR)39 (line 6, Table 1).

The small-molecule mediators of acute inflammation, such as histamine, prostaglandins, 

leukotrienes, and thromboxanes, have not been extensively studied as atherosclerotic 

modifiers despite the observation that some anti-inflammatory agents such as aspirin clearly 

reduce the risk of atherosclerotically mediated cardiac events.40,41 Two experiments are, 

however, relevant: disruption of the 12/15-lipoxygenase gene in Apoe–/– mice decreases 

atherosclerotic lesions,42 and transgenically overexpressing group IIa phospholipase A2 

(sPLA2) in C57BL/6 mice fed a high-fat diet increases lesion size.43 Thus, arachidonic acid 

metabolites have demonstrable effects on lesion development.

Although macrophages and T cells are important in atherogenesis, neutrophils appear to be 

less important. Neutrophils are not notable in atherosclerotic lesions, even in CCR2-

deficient, Apoe–/– mice, which have persistent neutrophilia in other tissues after 

inflammatory stimulation.44 The C-X-C chemokine receptor 2 (CXCR2) is the receptor for 

interleukin-8 and growth-regulated oncogene (GROα) and is predominantly, though not 

exclusively, expressed in neutrophils. Irradiated Ldlr–/– mice, whose bone marrow is 

replaced with cells lacking the mouse homolog to CXCR2, develop smaller lesions45 (see 

line 7, Table 1), indicating that this pathway is important in atherogenesis. However, as the 

authors suggest, the CXCR2 pathway may be enhancing atherogenesis by promoting 

monocyte adhesion, recruitment, and activation rather than through neutrophil actions.29,45
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Hyperglycemia and Atherosclerosis

In humans, hyperglycemia is a strong risk factor for atherosclerotic cardiovascular disease.

46 Patients with diabetes have a greater incidence of myocardial infarction (MI) and stroke,

47 and only part of the increased risk can be explained by their other risk factors such as 

HTN or hyperlipidemia.48 The mechanism behind these interacting effects is poorly 

understood and may be due to any number of factors, including mitogenic effects of 

hyperinsulinemia or endothelial cell dysfunction caused by hyperglycemia.49 Recent work 

with streptozocin-treated mouse models of atherosclerosis is shedding light on a possible 

mechanism of hyperglycemic vascular injury and particularly, on the role of advanced 

glycation end products (AGEs). AGEs are a by-product of hyperglycemia that result from 

the nonenzymatic glycation of proteins, followed by oxidation-mediated irreversible 

rearrangements.50 Interaction of AGEs with the receptor for AGEs (RAGE)51 induces 

several inflammatory markers52 that could increase atherosclerosis. Moderate 

hyperglycemia, achieved by giving supplemental insulin to streptozocintreated, cholesterol-

fed Ldlr–/– mice of mixed genetic background, did not increase atherosclerotic lesion size53 

(see Table 2, line 4). However, more fulminant hyperglycemia in streptozocin-treated, back-

crossed apoE-deficient mice resulted in large increases in plasma glucose and atherosclerotic 

lesion size54,55 (see Table 2, lines 1 and 2). The experiments of Park et al55 support the 

importance of AGEs by demonstrating that this increase in lesions could be suppressed in a 

dose-dependent manner by daily injections of the soluble receptor for advanced glycation 

end products (sRAGE), which acts as a molecular “sink” for AGEs (see Table 2, line 3). 

Whether all of the enhancement of atherosclerosis in diabetes can be explained by the AGEs 

will have to wait for further experiments. Efforts to understand the link between 

hyperglycemia and atherosclerosis will be greatly enhanced by the development of animal 

models with both sustained hyperglycemia and atherosclerosis solely due to genetic factors.

53,56

In humans and mice, diabetes is clearly a polygenic disorder,57–59 and although some 

chromosomal regions have been linked to diabetes, identification of the genes involved has 

proven difficult. New diabetic mouse models promise to change this situation. The insulin 

receptor (IR) is a receptor tyrosine kinase, and binding of insulin to the IR stimulates 

phosphorylation of insulin receptor substrates 1 and 2 (IRS-1 and IRS-2), which then 

activate other signaling molecules in the insulin signaling cascade. Mice homozygously 

deficient in either IR or IRS-2 die prematurely,60,61 whereas mice deficient in IRS-1 have 

severe growth retardation.62,63 In contrast, compound heterozygotes, which are 

heterozygous for a normal copy and a disrupted copy of IR, IRS-1, and/or IRS-2, survive 

and develop insulin-resistant diabetes.64,65 The insulin-responsive glucose transporter, 

GLUT4, is important in postprandial glucose metabolism as a facilitative transporter in 

skeletal muscle and adipose tissue. Mice heterozygous for disruption of GLUT4 develop 

hyperinsulinemia and hyperglycemia as they age.66 The phenotypes in these mice are 

complex, because both the IRS-1–deficient and GLUT4 heterozygous animals also have 

markedly elevated blood pressure.66,67 Nevertheless, exciting and informative results 

relating diabetes and atherosclerosis are likely to follow when these new diabetic models are 

combined with apoE or LDLR deficiencies.
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Interaction Between HTN and Atherosclerosis

HTN (defined as a blood pressure >140/90 mm Hg) and atherosclerosis are leading causes 

of morbidity and mortality in the developed world,68 and a considerable body of evidence 

suggests that HTN contributes to the development and progression of atherosclerosis. For 

instance, atherosclerosis occurs in high-pressure arteries but not in low-pressure veins, and 

lesions tend to be localized at areas of high wall stress.69 People with HTN are 3 times more 

likely to develop atherosclerosis than normotensive people,70 and antihypertensive 

treatment reduces the risk of death from atherosclerotically mediated cardiovascular events.

71,72 Complex genetics and confounding variables make the study of HTN plus 

atherosclerosis difficult in humans. In addition, proving a direct causal role for HTN in the 

pathogenesis of atherosclerosis is complicated by the powerful homeostatic mechanisms that 

control blood pressure. Thus, alterations in blood pressure invariably cause compensatory 

changes in various vasoactive mediators, and changes in these circulating vasoactive 

mediators not only affect blood pressure but also act locally to affect atherosclerosis. This 

makes it difficult to separate the mechanical effects of blood pressure in atherogenesis from 

the local effects of vasoactive mediators.

Many of the animal model studies of HTN plus atherosclerosis have been made by using 

surgical treatments to induce chronic coarctation of the abdominal aorta. Aortic constriction 

increases both the pressure and the lesions proximal to the constriction in 

hypercholesterolemic rabbits.73,74 Surgical constriction of the renal artery also increases 

atherosclerosis in rabbits.75 To date, these surgical approaches have not been applied to 

study HTN and atherogenesis in the mouse. Another approach has utilized drugs to raise or 

lower blood pressure.76 For instance, infusion of agents that increase blood pressure, like 

angiotensin II or NG-nitro-L-arginine methyl ester, increases atherosclerosis in some models,

77–79 whereas treatment of HTN with various antihypertensive drugs decreases 

atherosclerosis in several animal models (reviewed in Reference 76). Antihypertensive drug 

treatment studies in atherogenic mouse models have yielded conflicting data. Some studies 

have shown atheroprotective effects of antihypertension therapy without demonstrably 

lowering the blood pressure.80–82 However, in 1 of the most interesting studies, Makaritsis 

et al83 showed that neither a-adrenergic nor angiotensin receptor blockade alone lowered 

blood pressure or decreased lesions in Apoe–/– mice, but simultaneous blockade decreased 

both blood pressure and lesion size. Furthermore, we observed that chronic treatment with 

the angiotensin-converting enzyme (ACE) inhibitor enalapril did not significantly reduce 

atherosclerosis or lower the blood pressure of apoE-deficient mice, which are inherently 

normotensive.84

Currently, there are only a few genetic models with combined atherosclerosis and HTN. In 

one study, mice that express both a human renin transgene and a human angiotensinogen 

transgene were generated on a C57BL/6 genetic background. When fed a high-cholesterol 

diet, these mice have an elevated blood pressure (by 20 mm Hg) and develop larger lesions 

than equivalent nontransgenic mice.85 Recently, we have developed a genetic model in 

which HTN is combined with atherosclerosis by crossing apoE-deficient mice with 

endothelial nitric oxide synthase (eNOS–/–)–deficient mice.84 Similar results were obtained 

in eNOS–/–, Apoe–/– mice maintained on a high-fat diet.86 eNOS serves important basal 
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regulatory functions in the vasculature. In response to stimuli such as shear stress or 

acetylcholine, eNOS catalyzes the production of NO, which diffuses across the endothelial 

cell membrane into smooth muscle cells, inducing vasodilation. It also acts locally to 

prevent platelet and leukocyte adhesion.87 In comparison with the Apoe–/– controls, doubly 

deficient eNOS–/–, Apoe–/– mice are hypertensive (by 20 mm Hg), have atherosclerotic 

lesions twice the size, and also develop kidney damage (see Table 3, lines 1 and 2). These 

deleterious effects of eNOS deficiency were reduced by chronic treatment with enalapril at 

the same dose that was ineffective in Apoe–/– mice that were eNOS+/+ and had a normal 

blood pressure.84 These experiments are also notable because they demonstrate that in mice, 

the atheroprotective effects of enalapril are independent of NO production through eNOS 

and that a measurable component of increased atherosclerosis is due to an increase in blood 

pressure.

The distribution of atherosclerotic plaques appears to be different in eNOS–/– Apoe–/– mice 

than in Apoe–/– mice, potentially shedding light on one mechanism that may determine the 

localization of atheromas. Plaques develop in the descending and abdominal aortas of the 

double-knockout mice even by 4 months of age. In contrast, in apoE-deficient mice, lesions 

do not become prominent in these regions until 8 months of age. As previously mentioned, 

atherosclerotic plaques tend to develop in areas where blood flow is turbulent and where 

flow-induced shear stress is low but where pressure-induced vascular wall strain is high.

69,88,89 It is possible that normal eNOS function prevents the development of plaques in 

areas of high shear stress, so that an absence of eNOS leads to plaque development in these 

areas. Cross-breeding Apoe–/– or Ldlr–/– mice with other genetic models of HTN is 

desirable, because analysis with various antihypertensive treatments may clarify the 

causative link between increased blood pressure and enhanced atherosclerosis and perhaps 

identify better treatment strategies.

A powerful approach to confirm genes that modify the severity of atherosclerosis is to 

design experiments in mice to test whether gene polymorphisms identified in human 

epidemiological association studies actually affect atherosclerosis. There are many 

challenges in studying complex diseases such as atherosclerosis in humans. Not only are the 

environmental and genetic backgrounds of individuals diverse, but also there is a high 

likelihood that differences will occur in other unsuspected genes tightly linked to a candidate 

gene. Effects due to linked differences can therefore easily be misinterpreted as due to 

differences in the candidate gene. Well-designed experiments in mice can eliminate these 

complications, although only a few such tests have yet been done.

The human ACE gene provides an example. This gene has 2 common alleles, I and D, which 

differ by the presence (I)or absence (D) of an Alu sequence in intron 16. Individuals 

homozygous for the I allele have an ≈35% lower ACE activity than do individuals 

homozygous for the D allele.90 Several large studies have examined the frequencies of these 

ACE gene variants in case-control subjects for atherosclerosis or MI. Association of the ACE 

genotype with disease was found in some studies but not in others.91–93 We have therefore 

examined the effect of plasma ACE levels on diet-induced atherosclerosis by using Apoe-

heterozygous mice combined with 1 (±) or 2(+/+) copies of the Ace gene. The 2-copy 

animals have normal plasma ACE levels, whereas the 1-copy animals have half-normal 
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levels (the genetic equivalent of 50% inhibition by a converting-enzyme inhibitor). The mice 

were all from an F1 generation between C57BL/6 and 129 mice, so that their genetic 

backgrounds were completely identical except for their Ace gene status. The results showed 

that plasma ACE activity differences similar to those seen in humans did not lead to 

differences in blood pressure or in atherosclerotic lesion size. These results suggest that 

variation in the ACE gene in humans is unlikely to affect the development of atherosclerosis 

or HTN in humans (see Table 3, line 3).94,95

Coagulation, Fibrinolysis, and Atherosclerosis

In humans, blood clots and thromboses play a major role in the morbidity and mortality 

associated with cardiovascular disease.68 Most ischemic cardiovascular events are due to 

thrombotic occlusion, and the risk of MI and stroke is decreased by anticoagulant and 

fibrinolytic therapy. However, evidence that hemostatic pathways affect the development 

and progression of atherosclerosis is circumstantial. For example, elevated fibrinogen levels 

in plasma are a risk factor for cardiovascular disease,96 but it is not clear whether the 

elevated plasma fibrinogen enhances atherosclerosis or is a response to a chronic 

inflammatory condition, as fibrinogen is an acute-phase protein. To test whether reduced 

plasma fibrinogen levels alter the development of atherosclerosis, Xiao et al97 crossed 

fibrinogen-deficient mice to Apoe–/– mice on a 129/B6 mixed genetic background. In these 

mice, fibrinogen deficiency did not alter lesion size (see Table 3, line 4). In contrast, in mice 

that were more mildly atherosclerotic as a consequence of expressing an apo (a) transgene, 

fibrinogen deficiency decreased both atherosclerotic lesions and apo (a) accumulation in the 

vessel wall.98 The authors suggested that the high plasma cholesterol in Apoe–/– mice may 

have masked the smaller effect of fibrinogen deficiency.

Plasminogen activator inhibitor-1 (PAI-1) is another member of the fibrin/fibrinolytic 

pathway whose association with coronary heart disease has been extensively tested in 

humans, with mixed results.99–101 PAI-1 is the primary inhibitor of the conversion of 

plasminogen to plasmin. Plasminogen is a proenzyme that is converted to its active form, 

plasmin, by physiological activators such as tissue plasminogen activator and urokinase 

plasminogen activator. Plasmin-mediated proteolysis is critical to the dissolution of fibrin 

matrixes in arterial and venous thrombi. The balance between plasminogen activation/

inactivation may be critical in the development of atherosclerosis. A common polymorphism 

in the promoter region of the PAI-1 gene, which causes varied expression of the gene, is 

consequently a candidate for affecting atherosclerosis. Experiments by Sjoland et al102 in 

both Apoe- and Ldlr-deficient mice on a C57BL/6 background have shown that neither the 

absence of PAI-1 nor its overexpression by a transgene affects lesion development, 

suggesting that the levels of PAI-1 do not affect the development of atherosclerosis (see 

Table 3, lines 6 and 7). Nevertheless, the absence of plasminogen greatly increases 

atherosclerotic lesion size in Apoe–/– mice of a hybrid C57BL/6/NIH Black Swiss/129 

background103 (see Table 3, line 5). To reconcile these experiments, the authors proposed 

that alternative inhibitors of plasminogen activators may exist in mice, so that the effects of 

manipulating the PAI-1 locus are masked, or that the increased infectious complications that 

are present in plasminogen-null mice may affect the development of atherosclerosis.102
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Other Considerations

A general caveat is required in determining causative links between gene mutations and 

atherosclerosis. Current evaluations of atherosclerosis in mice focus on the development of 

plaques and their progression to complex lesions. Plaque rupture and subsequent thrombosis, 

which precipitate clinical events like MI, are very rare in these mouse models and are only 

seen in extreme circumstances (eg, Apoe–/–-Ldlr–/– doubly mutant mice on a high-fat diet).

104 Consequently, although the ACE or PAI-1 polymorphisms do not affect plaque 

development in mice, as described above, their involvement in later stages of vascular 

disease cannot be excluded.

In evaluating causative links between gene mutations and atherosclerosis, the choice 

between Apoe–/– or Ldlr–/– mice is not of crucial importance, as there is no compelling 

evidence that either of these models is inherently better than the other. We have not found 

any examples in the literature in which the same gene, either overexpressed or knocked out 

in both Apoe-deficient and Ldlr-deficient mice, gives different results (see Table 1, lines 1 to 

3 and 10 and Table 3, lines 6 and 7). However, it is important that analyses of these mouse 

models be well controlled to ensure that the genetic backgrounds of the parental strains, in 

most cases C57BL/6 as opposed to 129, does not bias the results. Presently, this 

complication is avoided through repeated back-crossing to the C57BL/6 genetic background. 

Less rigorous studies use littermates to control for genetic variability, on the assumption that 

genetic differences not linked to the locus of interest will be randomly distributed among the 

offspring. However, if only a small number of littermates are used, nonrandom segregation 

of any nonlinked differences may bias the results. The effects of genes linked to the 

mutation are more difficult to eliminate unless other strict breeding strategies are employed 

(reviewed in References 11 and 105). Thus, special caution is necessary when multiple 

genetic alterations (often available only on a 129 genetic background) are combined and 

bred with an atherosclerotic model (often on a C57BL/6 genetic background). The situation 

is particularly difficult when the combined mutations cause decreased lesions, because every 

altered locus generated in 129 embryonic stem cells carries with it linked DNA from the 129 

strain, which is an atherosclerosis-resistant strain when compared with C57BL/6. A spurious 

decrease in lesion size is consequently more likely than a spurious increase in lesion size.

Atherosclerotic modifiers differ between mouse strains. Thus, plaque development caused 

by the absence of apoE is different on an FBV or a C3H genetic background compared with 

the C57BL/6 background.106,107 Also, a naturally occurring apoE deficiency in Mus 

musculus molossinius, with severe xanthomas and a shortened life span, was recently 

identified, but these mice have relatively small aortic plaques when compared with Apoe–/– 

mice on a C57BL/6 background.108 Identification of the loci that contribute to strain 

differences in atherosclerotic susceptibility will likely yield new candidates for human 

susceptibility, and Apoe–/– or Ldlr–/– mutations should accelerate their identification. 

Nevertheless, testing each gene effect on multiple genetic backgrounds by breeding is of 

borderline practicality. Regenerating interesting mutations such as Apoe–/– or Ldlr–/– by 

using embryonic stem cells from inbred strains other than 129 (such as atherosclerosis-

susceptible C57BL/6 mice or the less-susceptible strains DBA/1 or BALB/c) may prove 
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easier than the time-consuming, costly, and labor-intensive task of backcrossing to 

congenicity.

Further uses of gene targeting and transgenic mice assure that additional models of 

atherosclerosis will be developed. The development of mouse models in which plaque 

rupture occurs is particularly important, as discussed above. Also, the application of Cre-lox 

technology to develop tissue-specific and/or time-dependent knockouts109 will prove 

valuable for dissecting the mechanism of atherosclerosis, although such animals do not 

strictly represent inherited genetic variations, which are of course lifelong and affect 

multiple organ systems.

Finally, we emphasize that mouse knockout experiments are the genetic equivalent of 

recessively inherited conditions in humans due to the loss of gene function. This type of 

condition makes only a small contribution to the total human burden of atherosclerosis. The 

pattern of inheritance of atherosclerosis in humans is more compatible with susceptibility 

being due to combinations of small, quantitative changes in gene function, analogous to the 

situation that occurs in mice that are heterozygous for a gene modification. Thus, it is 

extremely important not only to study whether a complete absence of gene function affects 

atherosclerosis but also to determine whether quantitative changes in the expression of 

genes affect the condition. Genes that affect atherosclerosis in mice in the heterozygous state 

are probably the best candidate genes for being related to atherosclerosis susceptibility in 

humans. Thus, the study of heterozygotes is extremely important (for more on the 

importance of quantitative changes, see Reference 95).

Conclusions: “Mice to Humans” and “Humans to Mice”

Genes implicated in processes such as inflammation, hyperglycemia, HTN, or coagulation/

fibrinolysis that have also been shown to affect the development of atherosclerosis in mice 

need to be studied in human populations to look for alleles that may account for 

susceptibility. Experiments to identify such modifiers benefit greatly by being carried out in 

parallel in mice and humans. For example, a recent epidemiological study has shown that a 

polymorphism in the eNOS gene is a risk factor for coronary artery disease and MI,110 a 

finding that is supported by the relationship that we have found between eNOS deficiency 

and atherogenesis.84

Human polymorphisms shown to be associated with atherosclerosis should be tested for 

causation in mice. One way to carry out such tests is to “humanize” the mouse by generating 

animals that have the same allelic differences, such as single-nucleotide polymorphisms 

(SNPs), that occur in human populations. For example, the effects of a pair of SNP 

differences in the human APOE gene were evaluated in mice. The 3 common APOE alleles 

in the human population, APOE*2, APOE*3, and APOE*4, differ only in 2 coding 

nucleotides resulting in amino acid changes. Various population-based studies have 

suggested that these small differences influence lipid metabolism in humans.111 Recently, 

our laboratory used mice with a targeted replacement of the endogenous mouse allele with 

the different human alleles to show that protein structures coded by these alleles are 

responsible for plasma retention of lipoproteins and atherosclerosis susceptibility.112,113
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The effect of any single SNP is likely to be small. However, eventually it will be possible to 

combine many of these small variations in a single mouse. Comparing various 

“combinations” should yield important information about which combinations are 

particularly deleterious and which are protective. It is certainly not easy to breed these 

“compound” mutants. However, once “prototype” animals have been obtained, cloning via 

nuclear transfer is a potential future way to facilitate the generation of sufficient numbers of 

these animals to carry out meaningful studies.114,115

The ability to go back and forth between humans and mice, made possible by targeted 

mouse models, has and will continue to play an integral part in the study of atherosclerosis. 

The pathogenesis of atherosclerosis is complex, polygenic, and multifactorial. Knowledge of 

the genetic determinants of atherosclerosis, aided by mouse studies, will allow us to identify 

disease-prone persons and design specific preventive measures for them and treatments 

tailored for those for whom prevention is no longer an option.
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