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Abstract
Over the past three decades the protein folding field has undergone monumental changes. Originally
a purely academic question, how a protein folds has now become vital in understanding diseases and
our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review
and contrast past and recent developments in the protein folding field. Specifically, we discuss the
progress in our understanding of protein folding thermodynamics and kinetics, the properties of
evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein
folding lead to protein aggregation and human diseases.

I. Introduction
Protein folding refers to the process by which a protein assumes its characteristic structure,
known as the native state. The most fundamental question of how an amino acid sequence
specifies both a native structure and the pathway to attain that state has defined the protein
folding field. Over more than four decades the protein folding field has evolved (Fig. 1), as
have the questions pertaining to it. This evolution can be divided into two predominant phases.
During the first phase, research was focused on understanding the mechanisms of protein
folding and uncovering the fundamental principles that govern the folding transition. While
the first phase provided general answers to the protein folding question, new and no less
ambitious questions arose: what are the mechanisms of protein folding in a context, such as
under the influence of other biological molecules in the cellular environment? This next set of
questions defined the second phase in protein folding field evolution.

The first phase is akin to a romantic stage of research, where the final goal of studies may not
be directly applicable to a broader understanding, or exploitable in a relevant science. The final
goal is to determine the basic principles that relate protein sequence and structure. The second
phase is a more pragmatic stage of research, where the applications drive research in the field
and the rational manipulation of derived knowledge allows engineering of tools for
advancement of a relevant science. For example, understanding the functional intermediates
that accompany the transition of a protein en route to its native state may allow rational
manipulation of protein structure via protein design. This example not only relates protein
sequence, structure and function, but also demonstrates the engineering aspect of the modern
protein folding field.
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Next, we survey the questions of the modern protein folding field. We attempt to describe a
number of directions where understanding protein folding offers insights into more complex
questions in molecular and cellular biology as well as medicine. We also describe new
approaches and tools to address complexities associated with these new areas of research. We
review studies of protein stability, folding kinetics, intermediate and unfolded states, and
protein self-association and aggregation.

II. Studying protein folding
The protein folding field has witnessed significant changes and progress since the original work
of Anfinsen showing that proteins can fold spontaneously [1,2]. Early in vitro studies showed
that the folding process typically occurs on a milliseconds-to-seconds time scale, much faster
than the rate estimated assuming that folding proceeds by a random search of all possible
conformations. Based upon this observation, Levinthal then proposed that a random
conformation search does not occur in folding and that proteins fold by specific ‘folding
pathways’ [3]. On these pathways, the protein molecule passes through well-defined partially-
structured intermediate states. Based on this view, numerous experiments and simulations were
conducted to test the existence of transient folding intermediates [4,5]. It was expected that the
determination of the structures and population of folding intermediates could help elucidate
protein folding mechanisms. Earlier experimental studies on protein folding kinetics monitored
the structural changes through relaxation of the protein’s spectroscopic properties after
exposing the protein to folding or unfolding conditions. The data obtained from such
experiments exhibit single- or multiple-exponential time-decay: a single-exponential decay is
interpreted as a signature of two-state kinetics between the native state and the denatured state,
whereas models involving more than two states are required to explain multiple-exponential
decay data. These experiments generally probe only the average behavior of proteins, and they
are not able to provide information about the folding/unfolding process in atomic details.

The discovery of a class of simple, single-domain proteins which fold via two-state kinetics
without any detectable intermediates in the early 1990s [6,7], the development of experimental
techniques with improved spatial/temporal resolution[8-13], and the application of computer
simulations using simplified lattice and off-lattice models[14,15] greatly enhanced our
understanding of various aspects of the protein folding problem. Based on the nucleation theory
[16-18], one of the early proposed mechanisms for protein folding, the nucleation-condensation
model was formulated[19-21]. In this scenario, a small number of residues (folding nucleus)
need to form their native contacts in order for the folding reaction to proceed fast into the native
state. The cooperativity of the protein folding process is analogous to that exhibited in first-
order phase transitions, which proceed via a nucleation and growth mechanism [22]. Because
of these similarities, terminology used in studies of phase transitions, such as energy landscapes
and nucleation, was introduced into the discussion of protein folding. The concepts of the
nucleation and the free energy landscape have promoted much of the recent progress in
understanding the process of protein folding. Proteins are generally thought to have evolved
to exhibit globally funneled energy landscapes [23-25] which allow proteins to fold to their
native states through a stochastic process in which the free energy decreases spontaneously.
The unfolded state, transition state, native state and possible intermediates correspond to local
minima or saddle points in the free-energy landscape.

Advances in experimental techniques such as protein engineering, nuclear magnetic resonance
(NMR), mass spectrometry, hydrogen exchange, fluorescence resonance energy transfer
(FRET), atomic force microscopy (AFM), have made it possible to obtain detailed information
about the different conformations occurring in the folding process[26,27]. At the same time,
computational methods have been developed to better interpret experimental data by using
simulations to obtain structural information about the states which are populated during the
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folding process. In Table 1, we list several advances in experimental and computational
methodologies used for investigating the folding of model proteins.

All-atom protein models with explicit or implicit solvents were developed to study the folding
thermodynamics and the unfolding dynamics of specific proteins. Technological advances in
computation allowed folding simulations of small proteins and peptides at atomic detail
[28-30]. However, due to the complexity and vast dimensionality of protein conformational
space, all-atom MD simulations have severe limitations on the time and length scales that can
be studied. Novel simulation protocols have been proposed to improve conformational
sampling efficiency, including biased sampling of the free-energy surface and non-equilibrium
unfolding simulations [24]. In addition, world-wide parallel computing (e.g. Folding@Home
[31]) and generalized ensemble sampling techniques that involve parallel simulations of
molecular systems coupled with a Monte Carlo (MC) protocol [32,33] have been successfully
applied to protein folding [25,34-36].

Multi-scale modeling approaches have also been used to combine efficient conformational
sampling of coarse-grained models and accuracy of all-atom models to study protein folding
pathways. In this approach, iterative simulations and inter-conversion between high and low-
resolution protein models are performed. Feig et al. developed a multi-scale modeling tool set,
MMTSB [37], which integrates a simplified protein model with the MC simulation engine,
MONSSTER [38], and the all-atom MD packages AMBER [39] or CHARMM[40]. Using a
combination of CHARMM and discrete molecular dynamics (DMD) [41-46], Ding et al.
reconstructed the transition state ensemble of the src-SH3 protein domain through multi-scale
simulations [47]. The protein folding studies can also be facilitated by sampling protein
conformations near the native state. Several native-state sampling algorithms [48,49] have been
successfully utilized to study plasticity [50], cooperative interactions [51], and allostery [52]
in proteins. Considering native-state ensemble naturally takes into account protein flexibility,
which is shown to be crucial in structure based drug designs.

During the last five years, several tools for performing web-based analyses of protein folding
dynamics have been developed. The Fold-Rate server (http://psfs.cbrc.jp/fold-rate/) [53]
predicts rates of protein folding using the amino-acid sequence. The Parasol folding server
(http://parasol.tamu.edu/groups/amatogroup/foldingserver) [54] predicts protein folding
pathways using “probabilistic roadmaps”-based motion planning techniques. The iFold server
(http://ifold.dokhlab.org) [55] allows discrete molecular dynamics (DMD) simulations of
protein dynamics using simplified two-bead per residue protein models. These tools facilitate
the second phase of protein folding research, whereby targeted simulations may be performed
for probing the dynamics of protein folding and unfolding under controlled conditions.

DMD approaches [43-46] with simplified structural models of proteins have been extensively
used for investigating general principles of protein folding and unfolding [56-60]. Dokholyan
et al.[61] have highlighted the differences between molecular dynamics and DMD approaches.
As opposed to the traditional MD approach of iteratively solving Newtonian equations of
motion for evolving protein folding trajectory, DMD simulations solve ballistic equations of
motion with square-well approximation to inter-particle interaction potentials. DMD algorithm
gains efficiency over traditional MD simulations in multiple ways. First, due to ballistic
modeling of particle dynamics, a larger time step can be used in DMD simulations on average,
which corresponds to the time interval between fastest ballistic interactions; secondly a faster
inter-particle collision detection and velocity updating algorithm is used, since only the
coordinates of colliding atoms need to be updated at each collision. Additionally, faster
simulation speeds are attainable with the DMD approach through simplification of protein
models. Overall, an increase in simulation speed of 5–10 orders of magnitude is attainable
using DMD [62]. Jang et al. [56] used DMD and simplified protein models with Gō interactions
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[63] to probe protein folding kinetics. Protein folding kinetics studies using DMD simulations
are reviewed in [42]. Recently, DMD simulations we used in uncovering the structural
mechanisms of protein aggregation [64-66]. Among the fundamental challenges in studying
protein folding using computer simulations are the time-scales and length-scales that can be
investigated. DMD simulations have been shown to be useful for investigating long-timescale
folding dynamics of complex biological systems such as poly-alanine aggregation [66,67] and
the nucleosome core particle [68].

In addition to the extensive in silico and in vitro studies of protein folding, significant progress
has been made in understanding protein folding in vivo. There are two major differences
between protein folding in vivo and in vitro. First, protein folding in vivo is usually assisted by
molecular machinery, such as chaperones (in an ATP-dependent manner), and often involves
small molecule cofactors. Molecular chaperones such as the heat shock protein Hsp70 and
chaperonin proteins facilitate protein folding, in part, by isolating the proteins from bulk cytosol
[69,70]. Hartl and Horwich pioneered the research of chaperone-mediated protein folding
[71], highlighting the differences between in vivo and in vitro folding mechanisms[69]. The
mechanism of chaperonin GroEL mediated folding, including in vivo folding intermediates,
has been extensively studied by Horwich and Gierasch [72,73]. Work by Landry et al. [74]
showed that chaperon binding promotes α-helix formation in partially folded polypeptide
chains. Horowitz et al. have investigated the role of chaperonin Cpn60-mediated hydrophobic
exposure in protein folding[75,76]. Nearly one third of all proteins in living cells are
coordinated to small molecule cofactors. The pioneering work of Wittung-Stafshede and
coworkers on the role of cofactors in in vivo protein folding[77,78] demonstrated that bound
metals stabilize the native fold, suggesting cofactor binding to unfolded polypeptides
dramatically accelerates folding timescales[77].

A second notable difference between in vivo and in vitro protein folding is the fact that the
concentrations of macromolecular solutes in cells can reach hundreds of grams per liter in cells
[79], but most in vitro studies are performed in buffered solution with <1% of the cellular
macromolecule concentration. The crowding environment in vivo can have a significant impact
on protein stability and the native structure by changing the energy landscape of protein folding
[80,81]. Dedmon et al.[82] showed that FlgM, a 97-residue protein from Salmonella
typhimurium is unstructured in dilute solution, but in E.coli cells its C-terminal half is
structured. McPhie et al.[83] found that a molten globular state of apomyoglobin at low pH is
stabilized by high concentration of the inert polymer, dextran, compared to the unfolded state.
Moreover, it was found that aggregate formation from human apolipoprotein C-II is
significantly accelerated by the addition of dextran[84], suggesting a direct effect of molecular
crowding on protein aggregation.

Over the past three decades, novel experimental techniques and simulations have yielded many
significant insights in protein folding research. Important advances have been made, especially
toward the understanding of folding and unfolding mechanisms, the structure of folding
transition states, folding kinetics, the nature of folding pathways, and the structure of unfolded
proteins and protein folding in vivo. Theoretical approaches to study protein folding have
largely complemented experiments by providing experimentally testable hypotheses. In recent
years, the rational manipulation of folding pathways and the association between protein
folding and disease have marked a more applied phase of protein folding research.

III. Protein stability
The thermodynamic stability of a protein is measured by the free energy difference between
the folded state and the unfolded state (ΔG = Gunfold - Gfold). It determines the fraction of folded
proteins, thereby having a profound effect on protein function. Natural proteins are only
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marginally stable[85]. The energetic contributions from the favorable folding forces such as
hydrophobic packing, hydrogen bonding and electrostatic interactions are nearly offset by the
entropic penalization of folding. As a result, the measured the ΔG values of most proteins fall
in the range of 3-15 kcal/mol [86]. Due to this subtle balance between various physical
interactions, a single mutation may shift the balance and significantly affect the stability of the
whole protein. The accurate estimation of protein stability changes induced by mutations,
measured as ΔΔG = ΔGWT − ΔGMut, still remains a significant challenge for computational
biologists.

Experimentally, ΔG values can be obtained from denaturing experiments [6,87-90] where the
protein unfolds by increasing temperature or by adding denaturing agents such as urea and
guanidinium HCl (GdHCl). Theoretically, given the interactions, free energy can be obtained
from statistical mechanics using the partition function, Z, as G = -RT lnZ. Analytical
calculations of partition functions require integration over all degrees of freedom in the
protein’s conformational space, which is impossible in practice, except for simple models.
Advances in computational biology have made possible the direct calculation of ΔΔG by MD
or Monte Carlo simulations[28,91-94], a comprehensive review of which can be found in Ref.
[95]. Using MD simulations, a ΔΔG value has been calculated for T157V mutant of T4
lysozyme which is in close agreement with experimental measurements [92].

The computational cost of direct ΔΔG estimation is still too high, however, preventing it from
being applied to a large number of mutations for protein engineering. More heuristic
approaches have been adapted which try to describe the free energy using empirical or effective
functions taking advantage of the vast amount of known protein structures and stability
measurements. Such simplifications significantly decrease the computational overhead and
allow ΔΔG calculations of large numbers of mutants that can be compared with experimental
results. In recent years, various methods have been proposed for large-scale ΔΔG predictions
with reasonable prediction accuracies (which are commonly assessed by the linear correlation
coefficient between the predicted and measured ΔΔG values). A comparison between these
methods is listed in Table 2.

One approach utilizes statistical potentials that are developed using information from known
protein structures, where the frequency distribution of amino acids conformations (such as
pairwise distances and torsion angles) is used to extract effective potentials for free energy
evaluations[96]. Gilis and Rooman first applied database-derived backbone dihedral potentials
to study the change of thermodynamic stability upon point mutations[97-99]. They found that
torsion-angle potentials predict ΔΔG accurately for mutations of solvent-exposed residues and
that distance-dependent statistical potentials are more accurate for predicting the ΔΔG of buried
residues. They obtained correlation coefficients of 0.55 to 0.87 for a dataset of 238 mutations.
Zhou et al. [100] developed a knowledge-based potential using the distance-scaled finite ideal-
gas reference state (DFIRE) approach and calculated ΔΔG for 895 mutants, which have a
correlation of 0.67 with experimental measurements. Similarly, statistical potentials utilizing
side-chain rotamer libraries[101], direction- and distance-dependent distributions[102], and
four-body interactions[103] were also adapted for ΔΔG predictions and significant agreement
with experimental measurements was achieved.

Another approach for large-scale ΔΔG predictions uses empirical functions to describe free
energy changes induced by mutations and trains the parameters to recapitulate the experimental
results. Guerois et al. [104] developed the FOLD-X energy function to study the stabilities of
1088 mutants. They used a comprehensive set of parameters to describe the van der Waals,
solvation, hydrogen-bonding, electrostatic and entropic contribution to the protein stability,
and obtained a correlation of 0.64 for the blind test set after training their parameters on 339
mutants[104]. Khatun et al. [105] utilized contact potentials to predict ΔΔG of three sets of
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303, 658 and 1356 mutants and their prediction correlations varied between 0.45 to 0.78.
Bordner and Abagyan [106] used a combination of physical energy terms, statistical energy
terms and a structural descriptor with weight factors scaled to experimental data for ΔΔG
predictions, and found a correlation of 0.59 on 908 test mutants. Saraboji et al. classified the
available thermal denaturing data on mutations according to substitution types, secondary
structures and the area of solvent accessibilities, and used the average value from each category
for the prediction and obtained a correlation of 0.64 [107].

Taking advantage of the vast amount of experimental ΔΔG data now available, machine-
learning techniques have been introduced for ΔΔG estimation. Capriotti et al. [108,109] trained
a support vector machine using temperature, pH, mutations, nearby residues and relative
solvent accessible area as input vectors. The support vector machine, when applied to a test
set, gives a prediction correlation of 0.71. Cheng et al. [110] improved the support vector
machine model to directly include the sequence information and obtained higher correlation
prediction accuracy.

There are two significant drawbacks with training-based studies. First, improvement of the
prediction accuracy relies on the available experimental stability data for parameter trainings.
It is questionable whether parameters obtained from these trainings are transferable to other
studies [105] since the experimentally-available mutation data may be biased (e.g., towards
substitutions of large residues for small ones). Second, some mutations introduce strains in the
protein backbone. To properly estimate the ΔΔG values, it is necessary to estimate the structural
rearrangement that a protein undergoes to release the strain. To our knowledge, protein
dynamics and flexibility have not been explicitly modeled in previous methods. Ignoring
protein flexibility prohibits the application of current prediction methods to a wide range of
mutations [100,104].

To address both these caveats, Yin et al. [111] developed a novel method, Eris (http://
eris.dokhlab.org), for accurate and rapid evaluation of the ΔΔG values using the recently-
developed Medusa redesign suite[112]. Eris features an all-atom force field developed from
x-ray crystal structures, a fast side-chain packing algorithm, and a backbone relaxation method.
The ΔΔG values of 595 mutants from five proteins were calculated and compared with the
experimental data from the Protherm database and other sources [104,105,113,114].
Significant correlations of ≈0.75 were found between predicted and experimental ΔΔG values.
Eris identifies and efficiently relaxes strains in the backbone, especially when clashes and
backbone strains are introduced by a small-to-large amino acid substitution. Interestingly, when
high-resolution structures are not available, Eris allows refinement of the backbone structure,
which yields better prediction accuracy. Compared with other ΔΔG prediction methods, the
Eris method is a unique approach that combines physical energies with efficient atomic
modeling, resulting in fast and unbiased ΔΔG predictions.

Despite remarkable progress in the last several decades, protein stability estimation methods
are still imperfect. Several obstacles must be cleared in order to achieve a more reliable method
for stability estimation. Due to the complexity of sampling multi-dimensional space, the
entropic free energy of a protein is difficult to evaluate and is thereby often ignored or only
roughly counted in current stability estimation methods. Furthermore, since protein stability
is determined by the free energy difference between the folded and unfolded states, it is crucial
to model the unfolded state and its effect on protein stability (cf. section on unfolded protein
states). Most importantly, the prediction of large conformational changes upon mutations
remains a major challenge in protein-stability estimation.
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IV. Protein folding kinetics
To understand protein folding, important details must be taken into consideration as the protein
proceeds from unfolded to native state. How fast does a protein fold? Are there multiple
pathways accessed en route to its folded state? What are the structural characteristics that
determine the path and rate of protein folding? In addition, as we realized in recent years, there
is a broad class of human diseases that arises from failure of some proteins to adopt and remain
in their native states, partly due to abnormal folding kinetics [115]. For example, a major cystic
fibrosis-related deletion mutation of a single amino acid in the cystic fibrosis transmembrane
conductance regulator (CFTR) affects its folding kinetics, but has minimal effect on its stability
and structure [116]. Also, recent evidence [117] suggests that altered dynamics of superoxide
dismutase (SOD1) mutants, which are non-destabilizing or even stabilizing, possibly cause the
aggregation of mutants in familial amyloid sclerosis (FALS). Elucidation of protein folding
kinetics has never been more important, particularly in the context of finding molecular
mechanisms of protein misfolding diseases.

Probing the structural properties of intermediate states and determining folding pathways have
been major experimental challenges. Nonetheless, there have been significant advances in
experimental techniques. Experimental methods with different temporal resolutions allow a
more detailed dissection of the folding process (Table 3). Other methods allow for investigation
of protein structure (e.g. NMR, ultraviolet/visual light CD, site-directed mutagenesis, Φ-value
analysis, isotope labeling) and global properties (e.g., mass spectroscopy, quasi elastic light
scattering, ultracentrifugation) [118].

As experimental data on folding rates of various proteins accumulated over the years, people
sought the determinants of folding rates. Plaxco and co-workers [119] showed that there is a
high correlation between the folding rate and the structural properties of proteins, as defined
by contact order CO, CO = 1

LN ∑
N
ΔL ij, where L is the sequence length, N is the total number

of inter-residue atomic contacts within a cutoff distance, ΔLij is the sequence separation of
contacting residues i and j. Interestingly, assessment of other protein folding rate determinants
such as local and long-range contacts were found to perform equally well as the contact order
[53]. Also, contact order is a geometric property which does not take into account the
distribution and strength of the interactions on the rate [120]. Fersht and coworkers found that
specific interactions in the folding nucleus are equally important determinants of folding rates.
For example, mutations in the folding nucleus of CI2 did not change its contact order, but result
in a three order magnitude increase in the folding rate [90,121,122]. Sequence-based prediction
of folding rates has also been proposed and was found to be of comparable performance to that
of contact order [123,124]. Thus, there is still a debate as to whether structure-based or
sequence-based prediction is a more reliable predictor of folding rates [123,124].

Extensive studies have likewise been made on the prediction of folding rates using molecular
dynamics simulations. The primary bottleneck in this approach was sampling the time scales
where the folding transitions are observable. Thus, early studies pioneered by Caflisch et al.
[125-127] employed continuum solvent with low viscosity to observe multiple folding
transitions. However, there is a nonlinear relationship between the folding time and viscosity
[128], hence, the precise effect of very low viscosity on the protein folding kinetics of various
systems remains unclear. To circumvent this problem, Pande et al. used “coupled ensemble
dynamics” to simulate the folding of a β-hairpin from protein G using continuum solvent model
[129] and united atom force-field [130] with water-like viscosity. In this and other subsequent
simulations of other β-hairpins, the calculated folding rate was in close agreement with
experimental measurements. A remarkable simulation in this class is a 1 μs folding simulation
on the villin headpiece by Duan and Kollman [28]. Folding rate predictions of this type have
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been limited to small two-state proteins. As protein size increases, it is difficult to
computationally study folding kinetics. Rate predictions have been likewise performed using
molecular dynamics simulations using explicit water models such as the TIP3P [131] and SPC
[132] to gain additional insight into folding kinetics. Examples of MD simulations using
explicit solvent which yielded experimentally consistent rates were performed by Pande et al.,
who observed helix-coil transitions [133] and protein folding [34]. However, a potential
drawback in the use of water models is that they are parameterized to a single temperature
(~298 K), and thus may bias the dynamics in non-native temperature simulations. Overall,
theoretical rate determinations and their subsequent comparisons with experiments provide a
test of our understanding of protein folding kinetics.

Structural investigation of the transition state ensemble (TSE) is extremely challenging
experimentally, since the TSE is an unstable state whose experimental detection is very
difficult. Computationally, transition state conformations may be identified using unfolding
simulations (cf. section on unfolded protein states), projection into one or two reaction
coordinates, validation of putative transition states through calculation of the probability to
fold (Pfold), and path sampling. The intuitive appeal of low-dimensional energy landscapes in
explaining simple chemical reactions inspired people to develop a similar formulation for
protein folding. However, unlike simple molecules, the high degrees of freedom of a protein
make the analysis formidable. Thus, several groups proposed dimensional reduction by
projecting the multi-dimensional energy landscape into few relevant coordinates. The proposed
reaction coordinates could be the volume of the molecule [134], the fraction of amino acids in
their native conformation [135], the number of contacts between amino acids [136,137], and
the fraction of native contacts in a conformation [136,137]. Some others directly tackled the
transition state by developing rigorous path sampling techniques [138]. They constructed a
large ensemble of transition paths, and through statistical analysis, they determined
conformations whose Pfold=0.5. Although this method is computationally expensive, it is
advantageous since there is no presupposed reaction coordinate.

Characteristics of the transition state ensemble have mainly been investigated by Φ-analysis
[139], which involves measuring the folding kinetics and equilibrium thermodynamics of
mutants containing amino acid substitutions throughout a protein. This method provides means
to identify interactions mediated by specific amino acid side chains that stabilize the folding
transition state[140]. Φ-analysis has been applied to a large number of proteins (such as BPTI,
myoglobin, protein A, ubiquitin, SH3 domain, and the WW domain) and, recently, even to
amyloidogenesis[141,142]. However, despite the prevalence of the methodology, there is
debate regarding the validity and conventional interpretation of Φ-analysis, especially when
the ΔΔG between wild type and mutant is less than 1.7 kcal/mol [2,42,143,144]. However,
Fersht and coworkers argued that reliable ϕ-values can be derived from mutations in suitable
proteins with 0.6 < ΔΔG < 1.7 kcal/mol[145]. Plaxco and coworkers disproved the assumed
independence of the changes in free energy of transition and folded states when calculating
error estimates in Φ-values [143]. They proposed a new method of error estimation that
accounts for the interdependence of changes in free energy of transition and folded states.

Using simplified protein models and rapid sampling DMD, Dokholyan et al. directly observed
and characterized the transition state ensemble of Src homology 3 (SH3) (Fig. 2) [47,59,146,
147]. To probe the contribution of each amino acid residue to the transition state ensemble,
they calculated the Φ-values, and found high correlation between simulation and experimental
Φ-values. Moreover, they also predicted that the two most kinetically important residues in
folding are L24 and G64. Both L24 and G64 are experimentally-verified to be important
kinetically [148].
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Experiments suggest that proteins may be kinetically trapped en route to the native state
[149-151], but how do proteins avoid kinetic traps? By using a Go-model scaled to include
sequence-specific interactions, Khare et al. [152] found that the residues which contribute most
to Cu, Zn SOD1 stability also function as “gatekeepers” that avoid kinetic traps and protein
misfolding. “Gatekeeper” residues were also identified in later computational studies of the
ribosomal protein S6. Stoycheva et al. [153] and Matysiak et al.[154] show that the mutations
of gatekeeper residues can alter the folding landscape of S6 and shift the balance between its
folding and aggregation. All these computational studies are fully consistent with experimental
observations and the existence of gatekeeper residues suggests a selective pressure on avoiding
misfolding in natural proteins.

The close interplay of computational and experimental efforts has advanced our knowledge of
protein folding kinetics, including predicting the protein folding rate, identifying the
kinetically-important residues, and characterizing the multiple pathways. For example, recent
studies have demonstrated an agreement between theoretical and experimental folding free
energy landscapes [154-160]. The characterization of molecular interactions responsible for
different pathways opens the possibility to manipulate folding pathways. Current strategies of
manipulating the folding pathway includes addition of denaturants, point mutations, and
circular permutations [161]. Specifically, Kuhlman and Baker rationally engineered multiple
mutations in protein L to alter its folding pathways [162]. Lowe and Itzhaki likewise recently
redesigned the folding pathways of the repeat protein myotrophin [163]. Hence, one strategy
to tackle kinetics-related folding abnormalities is to rationally engineer the folding pathway
after the full characterization of a protein’s folding kinetics.

V. Protein intermediate states
Proteins sample ensembles of heterogeneous conformations in solution. This emerging view
of the one-to-many correspondence between protein primary sequence and its possible three-
dimensional conformations also challenges the traditional paradigm that protein function is
dictated by the native state. In recent years, it has been found that even for the conventionally
observed small two-state proteins (~100 amino acids or less) there exist partially unfolded
intermediates on the folding pathways. These intermediates are generally undetectable in
kinetic folding experiments [8,116,164-168] and, therefore, are called “hidden intermediates”.
In addition, mounting evidence has indicated that the intermediate states formed during protein
folding and unfolding may have significant roles in protein functions (Fig. 3). The folding and
unfolding intermediates impact the physiological functions of proteins by exposing cryptic
post-translational modifications or ligand binding sites. The intermediates are usually weakly-
populated (thermodynamic intermediates) or short-lived (kinetic intermediates), and their
characterization presents a significant challenge with current experimental methods. Recent
synergies between computational and experimental studies have greatly facilitated the
unprecedented structural characterization of rare intermediates and suggested a functional role
for these evasive conformations.

Among the traditional experimental methods, hydrogen exchange (HX)[169] is a unique tool
that allows the detection and characterization of not only kinetic, but also weakly populated
thermodynamic intermediates. In a typical equilibrium HX experiment, the rate at which an
individual main-chain amide hydrogen exchanges with solvent deuterons is measured by NMR
or mass spectrometry [170]. The exchange rates of different amide hydrogens are sensitive to
local and global structural changes of proteins, and thus contain useful structural information
about different protein conformations. From the amide hydrogen exchange rates measured by
HX it is possible to detect and characterize weakly-populated intermediates which are
inaccessible by bulk methods. Over the years, HX methods have provided considerable insight
into the coarse features of intermediate state conformations for a wide variety of proteins
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[169]. However, HX is limited in its ability to describe the detailed structures of intermediates,
which severely restricts its applications. In contrast, computational methods can reveal
structural information at much higher resolutions that cannot be accessed by experiments. Also,
unlike bulk experimental methods like HX, computational methods are able to study protein
motions at the single-molecule level, which enables the detection of heterogeneous
conformations in an ensemble of molecules.

In recent studies, Gsponer et al.[171] and Dixon et al.[172] have developed new computational
approaches to incorporate HX protection factors from NMR experiments as constraints into
MD simulations to detect and/or characterize the conformations of intermediate states. Using
their new approach, Gsponer et al.[171] were able to define the thermodynamic folding
intermediates of the bacterial immunity protein Ig7. A structural comparison between this
thermodynamic intermediate and kinetic intermediate determined from other methods
indicates that the kinetic and thermodynamic intermediates of Ig7 are similar. In a parallel
study, Dixon et al.[172] computationally predicted and characterized a folding intermediate of
the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK), which plays critical
roles in cell proliferation and migration. The detected intermediate was hypothesized to expose
a cryptic phosphorylation site in the FAT domain and regulate the localization of FAK. The
existence of this intermediate and the predicted structural features were later experimentally
confirmed [165]. Besides HX methods, the site-specific structural information obtained from
other NMR-based techniques such as relaxation dispersion spectroscopy [173], has also been
incorporated into MD simulations to study weakly-populated folding intermediates [174].

A major limitation of traditional experimental methods such as HX is that they can only
measure the average behavior of an ensemble of molecules and often cannot distinguish
individual folding and unfolding routes or intermediates in the ensemble. By contrast, single-
molecule methods enable the observation of the folding and unfolding of individual molecules
and play increasingly important roles in studying intermediates[175]. Two single-molecule
techniques: fluorescence resonance energy transfer [176] and force spectroscopy including
optical tweezers and AFM[177], have been utilized to probe intermediate states of proteins
[178-180]. Direct comparisons of results from single-molecule stretching experiments by AFM
and computational simulations shed light on the mechanical unfolding of proteins and how
intermediates contribute to protein function.

Using AFM, Marszalek et al. [179] uncovered a force-induced unfolding intermediate of Ig
domain I27 from titin, a modular protein which is responsible for muscle elasticity. This
experimentally-discovered intermediate was also predicted by steered-molecular dynamics
(SMD) simulations [179]. Based on the results of SMD, the authors further predicted that the
hydrogen-bonding network between strand A’ and G in I27 mainly determines its mechanical
stability. This prediction was verified in a mutagenesis study where Li et al. [181] showed that
the point mutations on the residues participating in this hydrogen-bonding network
dramatically altered the mechanical stability of I27. In a similar study of another protein,
domain 10 of type III fibronectin module, which plays a pivotal role in mechanical coupling
between cell surface and extracellular matrix (ECM), Gao et al. [182] predicted force-induced
unfolding intermediates using SMD simulations. The discovered intermediates were
considered to expose binding sites which are necessary for the assembly of ECM fibronectin
fibrils. One of the computationally-predicted unfolding intermediates is in excellent agreement
with the one observed in a more recent AFM stretching experiment [178].

The finding that folding and unfolding intermediates can have significant contributions to
protein function is challenging the conventional understanding of protein structure and function
that is centered on the native state. It is expected that a close synergy between computational
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and experimental approaches will continue to play essential roles in characterizing these
evasive protein states.

VI. Unfolded protein states
Unveiling the structural and dynamic properties of denatured proteins is crucial for
understanding the protein folding [183,184] and misfolding [185] problems. For example, the
computational determination of a protein’s thermodynamic stability requires an accurate
approximation of the denatured state as the reference state. NMR hydrogen exchange
experiments also rely on models of protein unfolded states to tabulate the intrinsic hydrogen
exchange rate [186]. Furthermore, understanding the structural properties of unfolded proteins
may shed light on the early events of protein folding and protein aggregation [187].

It has long been postulated that the denatured state of proteins is composed of an ensemble of
featureless random coil-like conformations. According to Flory’s random coil theory[188], the
size of a random coil polymer, characterized by the radius of gyration Rg, follows a power law
dependence on the length of the polymer chain, n, Rg = R0nν. Here, R0 is the scaling constant,
which is a function of persistence length, and ν represents the power law scaling exponent.
Flory predicted the exponent to be 0.6 and later a more accurate renormalization calculation
obtained ν=0.588 [189]. Tanford et al. first confirmed this random coil scaling behavior for
denatured proteins [190]. Using intrinsic viscosity measurements for 12 proteins denatured by
5-6 M GuHCl, the authors obtained a scaling exponent ν=0.67±0.09. Wilkins et al. [191]
showed that the hydrodynamic radii of sets of 8 highly denatured, disulfide-free proteins follow
a power law scaling with ν=0.58±0.11. Recently, Kohn et al. [192] reassessed the scaling
behavior of denatured proteins using small angle x-ray scattering for 17 proteins of lengths
varying from 8 to 549 residues. They found the scaling exponent to be ν=0.598±0.029. All
these experimental results confirm the random coil scaling of denatured proteins. In a random
coil model of the denatured state, proteins are believed to lack persistent structure both locally
and globally. The distribution of end-to-end distances or radii of gyration can be fit by a
Gaussian distribution. A recent computational study [193] confirmed this behavior by
generating an ensemble of protein conformations whereby only steric interactions between
amino acids were considered for four different proteins. A scaling exponent of 0.58±0.02 was
obtained.

The random coil scaling behavior [188,194] was originally derived for homopolymers.
However, proteins are heteropolymers for which specific interactions between amino acids
play an important role and determine a unique native structure. Hence, while the scaling of the
sizes of denatured proteins follows the random coil scaling as shown in experiments, it does
not necessarily exclude the possibility that the denatured proteins can have residual native-like
structures. Under denaturing conditions, the protein can still exhibit native conformational bias
and retain a certain amount of residual native structures. Mounting experimental evidence
[168,195-198] supports residual native-like structural elements in the denatured state for a
variety of proteins. Using residual dipolar coupling from NMR measurements, Shortle and
Ackerman [195] showed that native-like topology persists under strong denaturing conditions
as high as 8 M Urea for a truncated staphylococcal nuclease. By applying quasi-elastic neutron-
scattering on α-lactalbumin, Bu et al. [196] demonstrated residual helical structure and tertiary-
like interactions even in the absence of disulfide bonds and under highly denaturing conditions.
Similarly, by using triple-resonance NMR, native-like topology has also been observed in
protein L [197].

Several theoretical and computational studies [199-202] have addressed the role of specific
interactions in conformational biasing toward the native state in the denatured states. Using a
simple force field with only steric and hydrogen bond interactions, Pappu et al. [200]
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demonstrated that denatured protein states have a strong preference for the native structure. It
was suggested [199-202] that the conformational bias of native structures in the denatured state
is a possible explanation of the Levinthal’s paradox [3].

To reconcile the seemingly controversial properties of denatured proteins — the random coil
scaling of their sizes and the presence of residual native structures — several computational
works have recently been reported [203-207]. Fitzkee and Rose [206] reproduced the random
coil scaling exponent using a denatured protein model with fixed secondary structure elements
for a set of proteins. Tran et al. [204,207] constructed the protein denatured state ensemble at
atomic resolution in the excluded volume limit. Jha et al. [205] built the denatured state using
a statistical coil library. Both the Pappu and Sosnick groups found that the putative denatured
state ensemble features transient local structures such as turns, strand, and helices. In the mean
time, the dimension of the denatured state follows the experimentally-observed random-coil
scaling exponent. Ding et al. [203] developed a computational method to model denatured
proteins using a structure-based potential [63]. This interaction model is commonly used in
thermodynamic and kinetics studies of protein folding [58,208-210] to model amino acid
interactions. This study [203] suggested that denatured proteins follow the random coil scaling
sizes and retain residual secondary structures akin to those observed in native protein states.
Hence, these computational works provide a conceptual reconciliation between two seemingly
mutually-exclusive views of protein unfolded states.

What is the physical origin of the random coil scaling of protein size along with the seemingly
contradictory persistence of local structures in denatured proteins? Previous computational
studies [203-205,207] suggest that the residual structures in the denatured state are limited to
short-range elements, which only extend approximately seven to ten residues. The correlated
fluctuation of residual structures diminishes quickly along the sequence and long-range contact
formation is purely governed by the random diffusion of peptide chains. Hence, a coarse-
graining process, which groups locally-interacting amino acids along the polypeptide chain
into renormalized structural units (Fig. 4) reduces a denatured protein to a renormalized
homopolymer. The renormalization process will result in an effective homopolymer which
forms contacts due to chain diffusion. Protein sizes follow the renormalized power law scaling
as proposed by Flory [188]: Rg=R0(N/L)ν=(R0L-ν)Nν. Thus, we expect that the scaling exponent
of denatured proteins ν is the same as for homopolymers, whose structural units are locally
interacting amino acids.

The observation of residual native secondary structures in thermally-denatured protein states
is consistent with a “guided-folding” scenario [211], where the rate-limiting process is the
packing of the preformed secondary structures into the correct fold. In contrast, a random coil
model of the denatured state without residual native-like structures implies that a protein has
to overcome an excessive entropic barrier to form both the secondary and tertiary structures
upon folding. The existence of persistent native-like secondary structures in the denatured state
may also be responsible for the recent success of protein structure prediction using small
secondary structure segments derived from the protein data bank [212]. The existence of
residual native-like structures in the denatured state also provides a novel way to manipulate
a protein’s stability by stabilizing or destabilizing the residual structures [213].

VII. Protein self-association and aggregation
While all the information needed for proteins to fold is encoded in their amino acid sequence
[1], there are many more elements that play a part in vivo. In a crowded cellular environment,
surrounded by interacting proteins, nascent polypeptides face a formidable challenge in finding
the correct interactions that result in a folded and functional protein. Many become “trapped”
in meta-stable intermediate structures which are usually recognized by proteasomal machinery
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and degraded or refolded by chaperones. Alternatively, they can associate with similar
misfolded proteins to form aggregates.

Extant protein sequences are the result of a long history of evolutionary refinement establishing
a set of interactions defining the native state. However, the same inherent recognition that
occurs between sequences within a protein is the basis for a type of self-association termed 3-
dimensional domain swapping ([214], extensively catalogued in 2002 by Liu and Eisenberg
[215]). Domain swapping is an important phenomenon, taking part in both normal and disease-
related processes, and is intimately tied to protein folding. Domain swapping may be viewed
as a natural mechanism for dealing with instability due to evolutionary changes in the amino
acid sequence [216]. For example, a mutation that rigidifies a loop connecting two parts of a
protein induces strain, which can be relieved without the loss of function by “swapping” the
portion of the protein on one side of the loop with the corresponding part of a similar protein.
Dimerization by this mechanism has advantages including a high local concentration of
enzymatic activity, since two functional proteins are joined together.

Many diseases are now associated with protein aggregation and particularly with a form of
ordered aggregate called the amyloid fibrils, which, regardless of the native sequence and
structure of the precursor proteins, share distinct structural characteristics. From a protein
folding standpoint, the inherent properties of the polypeptide chain that allow proteins with
little or no sequence or structural similarity to misfold and assemble into similar high-order
structures are of vital interest. Studies of aggregate structure reveal defined characteristics such
as extensive hydrogen bond networks perpendicular to the fiber axis, called a cross-β
conformation[217], and an α to β transition known to occur during the oligomerization of
amyloid-forming proteins with significant helical content. Evidence for domain swapping as
an early step in the aggregation process has been reported for several proteins [218-220]. In
several aggregation-associated diseases including familial Amyotrophic Lateral Sclerosis and
the transthyretin amyloidoses, the dissociation of a protein from its multimeric native state is
known to be the rate limiting step for aggregation, suggesting a method for preventing
aggregation by stabilizing the native interfaces of these assemblies [221-223].

Amyloid fibrils have alternately been deemed responsible for the pathologies of their various
associated diseases and, more recently, credited with delaying or counteracting the observed
pathologies by acting as a sink for highly cytotoxic soluble oligomers [224]. The viewpoint
that soluble oligomers act as cytotoxic species has garnered widespread attention since at least
1999 when it was noted that the abundance of soluble Aβ 1-42 oligomers is inversely correlated
with neuronal degeneration in Alzheimer’s disease whereas amyloid levels do not correlate
[225,226]. In 2003, Glabe and co-workers discovered that soluble oligomeric species from
several disease-related proteins shared a common structural epitope to which an antibody was
developed [227]. Later studies showed that soluble oligomers are able to disrupt the polarity
of cellular membranes [144,228,229], one possible basis for disease-associated toxicity.

Various cellular protective mechanisms have evolved to ensure the proper folding of proteins.
Molecular chaperones, for example, recognize misfolded proteins and provide an environment
conducive to the formation of the appropriate native contacts [230]. Vast proteosomal
machinery clears proteinaceous debris from the cell using ubiquitin ligases to tag misfolded
proteins for degradation and removal [231,232]. One hypothesis formulated to explain the
prevalence of protein aggregation in neurodegenerative diseases is that the ubiquitin
proteasome loses efficiency over time causing a buildup of protein aggregates and debris in
post-mitotic cells such as neurons [233]. Also, parkin, an E3 ubiquitin ligase was found to be
mutated in at least half of autosomal recessive juvenile parkinsonism patients, suggesting that
a deficit in the clearance of its target protein leads to an early onset of symptoms [234].
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Computational studies of protein aggregation have traditionally been inadequate due to the
massive complexity of the system in both time and length scale. Several approaches have been
used to overcome this complexity (Fig. 5). Traditional all-atom molecular dynamics
simulations have been carried out to model the aggregation of disease-related peptides such as
Aβ and polyglutamine [235-237]. Other techniques seek to identify which parts within larger
proteins are responsible for their aggregation behavior, resulting in the identification of
sequence stretches in various proteins that are “amyloidogenic,” or “hot spots” for aggregation
[238-240]. Underlying this work is the idea that evolution acts to prevent aggregation by
burying aggregation-prone protein sequences or otherwise prohibiting their apposition in
protein structures and during folding1. To study the nature of subunit assembly and extension
during aggregation, which are out of reach for all-atom molecular dynamics in both the size
scale and time scale, simplified protein models are being utilized [65]. By accessing
aggregation events that are out of the reach of experimentalists, computational studies of
aggregation are an essential compliment to the experimental findings regarding aggregate
structure and formation mechanisms.

Protein aggregation is now widely viewed as a fundamental property of the polypeptide chain,
meaning that all of the considerations discussed in the earlier sections of this review must, to
some degree, apply to the study of aggregating proteins. Therefore, the study of protein self-
association and aggregation really is the study of protein folding in the context of external
influences like protein concentration, localization, or evolution. As this field develops and
knowledge of protein aggregation as a general phenomenon accumulates, we stand to gain not
only vital tools for treating specific diseases, but also insight into the behavior of all proteins
with respect to their environment.

VIII. Conclusions
Perhaps the most significant four measures of success in the natural sciences are our abilities
(i) to observe natural phenomena, (ii) to explain natural phenomena, (iii) to predict the effect
of relevant variables on a specific phenomenon, and (iv) to rationally manipulate these
phenomena. The protein folding field has seen significant breakthroughs according to all of
these measures. Research in the protein folding field uncovered folding pathways and states
that accompany the transition from unfolded to folded proteins, revealed the origin of the
cooperative folding transition, allowed prediction of folding rates and changes in
thermodynamic stability upon mutation, and permitted rational alteration of protein structure
and folding pathways.

Given the recognition of many human maladies as “diseases of protein folding” over the past
two decades, the wealth of new knowledge about the folding process is driving the study of
protein folding back into its native environment, i.e. inside living organisms. The effect of the
cellular environment on protein folding, e.g., how proteins fold in vivo and especially the
behavior of “intrinsically-disordered” proteins is a highly active area of inquiry [82,242,
243],. More applied research is ongoing in the design of animal models of diseases associated
with protein folding such as cystic fibrosis, ALS, Alzheimer’s disease, and the prion diseases
[244-246], and the design of small molecules for use in clinical trials for treating diseases like
the transthyretin amyloidoses [247]. The future of the protein folding field lies in its direct
application to such medical problems, and for a growing number of protein systems, the future
is now.

1It is interesting to note here that in the case of Pmel17, which aggregates to form a “functional amyloid” involved in melanin biosynthesis,
a protein seems to have evolved to aggregate at an incredible rate, perhaps to minimize the population time in a soluble oligomer form
[241].
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Figure 1. Growth of the Protein Folding Field
The average number of publications per year in protein folding field (left y axis) and the average
number of publications per year that are dedicated to application (right y axis) were plotted
every five years between 1970 and 2004, and 2005-2006. The first dataset was generated by
searching articles in PubMed that contain the keyword ‘protein folding’ or ‘protein unfolding’
in either title or abstract. The second dataset was extracted from the previous dataset by
searching with the following additional keywords: ‘engineering’, ‘design’, ‘misfolding’,
‘aggregation’, ’amyloid’ and ‘amyloid disease’.

Chen et al. Page 23

Arch Biochem Biophys. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Fast and slow folding pathways
Molecular dynamics simulations of the c-Crk SH3 folding show multiple folding pathways via
only one or two intermediates. [Reprinted with permission from ref. [258]. Copyright
Biophysical Society.]
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Figure 3. Protein intermediate states
Intermediate states are meta-stable in protein free energy landscapes (N: the native state; I*,
I**: intermediates). They may play a significant role in protein function, including exposing
cryptic posttranslational modifications or ligand binding sites.
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Figure 4. Unfolded protein states
The unfolded state of a protein features residual local structures, which span a short segment
of approximately 10 residues (L~10). This structural correlation quickly decays as the segment
length increases. A renormalization process, which groups the local amino acid residues into
a coarse-grained bead, reduces the unfolded protein into an effective non-interacting polymer.
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Figure 5. Computational studies of protein self-association and aggregation
Different computational techniques have been utilized to study various aspects of protein self-
association and aggregation. (A) All-atom molecular dynamics is used to model the
aggregation of short peptides. (B) Simulations of peptides from within larger proteins are used
to suggest aggregation “hotspots.” (C) By combining simplified interaction models and protein
models, aggregating systems that are inaccessible by traditional molecular dynamics due to
size and time limitations can be studied. The curves show the approximation of a continuous
interaction potential by a square well as used in DMD [58]. The dotted circles represent “beads”
in the model which take the place of several atoms in the original protein. The structure to the
right shows the self-association of two identical proteins forming an extended β-sheet.
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Table 1
Protein folding in select model systems
A sampling of experimental and theoretical approaches for probing protein folding for three model protein
systems: Chymotrypsin Inhibitor 2 (CI2), Lysozyme, and src/Fyn SH3 Domain.

Theme Relevant experiments and theoretical
models

Contribution to Protein Folding Research

Mechanism of folding/
unfolding

Equillibrium denaturation by
guanidinium chloride[6]

CI2 unfolding and refolding follows two-state transition.
Lysozyme folding intermediates obstruct formation of transition
state, but does not change the folding rate [248].

Protein engineering, Φ-value analysis
[249].

CI2 folding supports nucleation-condensation model [19,20].
CI2 transition state has secondary, tertiary structure elements
[121].
Native topology and hydrogen bonds mediates SH3 folding
[250,251].

Quantitative Φ–value analysis using
MD simulations [122].

Postulated structure of CI2 unfolding transition state.

Free-energy landscape: protein folding
funnel [23].

Statistical description of protein folding process.
Role of water in facilitating protein folding [155].

Transition State Structure MD simulations of CI2 transition state
[252].

Folding of CI2 is cooperative.

Multiscalar modeling and DMD
simulations.

Identification of src SH3 residues critical to folding nucleus
[47].

Monte Carlo simulations on lattice
models [253]

pfold as a reaction coordinate for protein folding.

Folding Kinetics Equillibrium and stopped-flow
fluorescence [254].

Src SH3 unfolding is cooperative; its denatured state may be
compact under native conditions [254].

Relaxation dispersion NMR of Fyn SH3
[174].

Identified and characterized low-population folding
intermediates

Graph representation of CI2 and src-
SH3 conformation [255].

Protein network contact topology determines proteins’ ability to
fold.

Φ-value analysis of SH3 [256]. Hydrophobic core composition is another determinant of protein
folding rate

Multiple MD simulations of CI2
unfolding [257].

Preferred pathway for protein folding on a funnel-like average
energy surface.

Unfolded proteins structure Unfolded proteins’ NMR [195]. Size of
measurements of various unfolded
proteins [192].

Denatured proteins have a strong local conformational bias
towards native state. On the other hand, the scaling of protein
sizes in the unfolded state suggests a random-coil like
conformations.

Computational models of denatured
proteins [192,203].

Unfolded states features local native-like structures (short-rage
correlations), but the correlations decays quickly. Protein
behaves as a “renormalized” random coil after grouping local
structures together.
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Table 3
Methods for observing fast folding events [Adapted from [118], p. 77]

Technique Approximate timescale probed
LASER flash photolysis 100 fs -1 ms
Electron-transfer-induced refolding 1 μs – 1 ms
Acoustic relaxation 1 ns – 1 ms
Dielectric relaxation 1 ns – 1 s
LASER T-jump 1 ns – 100 ms
Electrical discharge T-jump 100 ns – 10 s
Mixing 10 μs - ∞
Pressure-jump 60 μs – 1 s
NMR line broadening 100 μs – 100 ms
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