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Abstract

Despite the availability of a preventive vaccine, chronic hepatitis B virus (HBV) infection-induced 

liver diseases continue to be a major global public health problem. HBV naturally infects only 

humans and chimpanzees. This narrow host range has hindered our ability to study the 

characteristics of the virus and how it interacts with its host. It is thus important to establish small 

animal models to study HBV infection, persistence, clearance and the immunopathogenesis of 

chronic hepatitis B. In this review, we briefly summarize currently available animal models for 

HBV research, then focus on mouse models, especially the recently developed humanized mice 

that can support HBV infection and immunopathogenesis in vivo. This article is part of a 

symposium in Antiviral Research on “From the discovery of the Australia antigen to the 

development of new curative therapies for hepatitis B: an unfinished story.”
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1. Introduction

Approximately 350 million people are chronically infected with hepatitis B virus (HBV), 

putting them at high risk of developing liver fibrosis/cirrhosis and eventually developing 

hepatocellular carcinoma (HCC) over several decades (Scaglione and Lok, 2012). The 

impaired immune response to viral antigens during chronic HBV infection is associated with 

persistent liver inflammation which leads to liver diseases (Guidotti and Chisari, 2006). The 

lack of robust animal models has hindered our understanding of how HBV interacts with 

host restriction factors to establish chronic infection (Bility et al., 2013). Moreover, our 

knowledge about how chronic infection leads to liver injury, cirrhosis and cancer, is also 

limited.
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HBV can only naturally infect humans and chimpanzees. To overcome this experimental 

limitation, several small animal models, such as HBV transgenic mice, the hydrodynamic-

based HBV DNA transfection model, the viral vector-based HBV genome transduction 

model and the human-mouse liver/immune system chimeric model of HBV replication and 

infection have been developed. These models should help us to understand the 

immunopathogenesis of chronic hepatitis B and should greatly facilitate the development of 

new treatments. In this review, we first briefly introduce the contribution of the chimpanzee 

and tree shrew models, then focus on progress made in the development of mouse models, 

especially the recently developed human-murine chimeric mouse models, for studying 

hepatitis B biology and therapy.

2. Contributions of the chimpanzee and tree shrew models to HBV research

The chimpanzee is susceptible to HBV infection, and has been employed to study 

pathogenesis, host immune responses and the evaluation of potential therapies since the 

1970s. Inoculation of chimpanzees with serum from human HBV carriers induced acute 

infection and hepatitis (Barker et al., 1973; Berquist et al., 1975). Chimpanzees played an 

essential role in evaluating the efficacy and safety of the yeast-produced recombinant 

HBsAg vaccine (McAleer et al., 1984).

The chimpanzee model has also contributed substantially to our understanding of HBV 

virus-host interactions. Genomic analysis of virus-induced and immune response-related 

genes in the liver of acutely infected chimpanzees indicated that HBV does not significantly 

induce an innate immune response during entry and expansion (Wieland et al., 2004). In 

contrast, a large number of T cell-derived IFN-γ-regulated genes are detected in the liver 

during viral clearance, reflecting the importance of an adaptive immune response in the 

control of HBV infection (Wieland et al., 2004). The immunological priming and outcome 

of infection was also dependent on the size of the HBV inoculum (Asabe et al., 2009). In 

vivo depletion experiments demonstrated that CD8 T cells, but not CD4 T cells were the 

main effector cells responsible for HBV clearance and pathogenesis during acute HBV 

infection in chimpanzees (Thimme et al., 2003). Viral clearance was shown to be mediated 

by both cytolytic and noncytolytic effector functions of the effector CD8 T cells (Guidotti 

and Chisari, 2001; Guidotti et al., 1999).

Chimpanzees can also be chronically infected with HBV, and chronic infections are 

associated with persistent inflammation in the liver, although the degree of the disease 

appears to be much milder than in humans (Shouval et al., 1980). This chronic infection 

model provides a platform for testing antiviral drugs. A recent example is the toll-like 

receptor 7 agonist (GS-9620), which activates signaling in immune cells of chronically 

HBV-infected chimpanzees to induce clearance of HBV-infected cells (Lanford et al., 

2013). Though the chimpanzee model provides a unique platform for HBV research, the use 

of this model for basic research and drug testing is restricted for ethical and also economic 

reasons. The necessity to use chimpanzees for preclinical research was recently reassessed in 

the USA, where the Institute of Medicine concluded that recent advances in cell-based 

models and in small animal models with human cells rendered the use of chimpanzees 

unnecessary (Wadman, 2011).
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In addition to higher primates, the tree shrew is the only other animal that can be 

experimentally infected with HBV (Walter et al., 1996; Yan et al., 1996). HBV infection in 

tree shrew results in viral replication in the liver, HBsAg secretion in the serum and 

subsequent appearance of anti-HBe and anti-HBs antibodies, recapitulating many aspects of 

self-limited acute hepatitis in humans (Walter et al., 1996). HBV infection can also result in 

chronic infection in tree shrew and can lead to development of hepatocellular carcinoma by 

week 160(Yan et al., 1996). Primary hepatocytes isolated from tree shrew are susceptible to 

HBV infection and serve as a valuable tool to study HBV infection in vitro (Glebe et al., 

2003; Glebe et al., 2005; Walter et al., 1996). Recently, a study using tree shrew hepatocytes 

found that sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor 

for human hepatitis B and D virus (Yan et al., 2012, 2015). However, experimental infection 

of tree shrews in vivo with HBV is not highly efficient, and there is currently a lack of both 

genetically uniform shrew strains as well as research tools for this model. These factors have 

hampered further adoption of this system for studying HBV infection.

Surrogate animal models for hepatitis B virus study, such as the woodchuck and duck 

models, have also contributed a lot to our understanding of hepadnavirus biology, and these 

models are still helpful for testing new drugs and treatments. We will not introduce these 

models in detail in the present article. Readers can refer to (Kosinska et al., 2015; Kulkarni 

et al., 2007) for reviews of WHV-infected woodchucks and (Cova and Zoulim, 2004) for 

DHBV-infected ducks.

3. HBV transgenic mouse models

Transgenic mice expressing either the complete HBV genome or individual genes provide 

valuable tools to study HBV replication, pathogenesis and therapies (Babinet et al., 1985; 

Chisari et al., 1986; Chisari et al., 1989; Chisari et al., 1985; Farza et al., 1988; Guidotti et 

al., 1995; Kim et al., 1991). When transgenically expressed in mice, small surface antigen 

(HBsAg) can be readily detected in the serum (Babinet et al., 1985; Chisari et al., 1985). 

These mice were tolerant to HBsAg and did not develop liver disease (Babinet et al., 1985; 

Chisari et al., 1985). However, transgenic mice that overexpressed HBsAg along with large 

surface antigen could retain the proteins in the ER, leading to its accumulation in the liver 

(Chisari et al., 1986), hepatocellular injury, chronic inflammation and eventually to 

hepatocellular carcinoma (HCC) (Chisari et al., 1987; Chisari et al., 1986; Chisari et al., 

1989).

Although mice that expressed high levels of the HBx antigen in the liver did not have 

obvious signs of liver injury and inflammation, they nevertheless developed HCC (Kim et 

al., 1991; Koike et al., 1994). These results indicate that HBx is oncogenic. Mice 

transgenically expressing the 1.3 copy over-length HBV genome (HBV1.3), which includes 

the viral promoters and regulatory elements, produce HBsAg, HBcAg and HBeAg (Guidotti 

et al., 1995). These mice produce levels of infectious virus in the blood that are comparable 

to those in chronically infected humans(Guidotti et al., 1995). High levels of HBV 

replication in the liver of mice does not induce hepatocellular injury, which further confirms 

that HBV is not cytopathic (Guidotti et al., 1995).
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Adoptive transfer of HBV-specific CTLs into HBV transgenic mice resulted in the clearance 

of HBsAg, accompanied by elevated serum alanine transaminase (ALT) (Ando et al., 1993; 

Moriyama et al., 1990). The CTLs induced an acute hepatitis and lysed HBsAg-expressing 

hepatocytes, and these effects were dependent on major histocompatibility class I (Ando et 

al., 1993; Moriyama et al., 1990). Besides killing the infected hepatocytes, the activated, 

adoptively transferred CTLs produced IFN-γ, which then stimulated the production of 

chemokines and recruited the infiltration of antigen-nonspecific lymphocytes and 

neutrophils. The infiltrated cells in the liver amplified the cytopathic effect of the CTLs 

(Ando et al., 1993). On the other hand, CTLs can also inhibit viral replication by 

noncytolytic mechanisms that involve secretion of IFN-γ and tumor necrosis factor-α (TNF-

α) (Guidotti et al., 1996). Thus, the immune system controls the virus through both cytolytic 

and noncytolytic mechanisms (Guidotti and Chisari, 2001).

The major clinical problem of HBV infection is HBV-induced chronic hepatitis. However, 

transgenic mice are immunologically tolerant to HBsAg and do not develop chronic liver 

disease. To model chronic hepatitis B, transgenic expression of the HBV genome was 

established in severe combined immunodeficient (SCID) mice. Adoptive transfer of 

unprimed, syngeneic splenocytes into HBV-transgenic SCID mice lead to partial clearance 

of the virus from both liver and serum and the development of chronic liver disease 

(Feitelson et al., 2004; Larkin et al., 1999). This model will permit identification of viral and 

host factors that contribute to chronic liver disease in the absence of tolerance.

HBV1.3 transgenic mice are not only suitable for the study of hepatitis B pathogenesis, but 

they also allow for the evaluation of therapeutic stratagems to inhibit viral replication. HBV 

replication in transgenic mice was shown to be inhibited by various cytokines such as IFN-γ, 

TNF-α, type I interferon and IL-18 (Kakimi et al., 2000; Kimura et al., 2002; McClary et al., 

2000). The efficacy of various nucleoside analogues, such as adefovir dipivoxil (Julander et 

al., 2002), lamivudine(Weber et al., 2002) and entecavir (Julander et al., 2003), were also 

tested in HBV-replicating transgenic mice.

In conclusion, the transgenic HBV mouse model contributes substantially to our 

understanding of hepatitis B immunopathogenesis in vivo and represents a suitable model to 

investigate novel therapeutic strategies for chronic infection. However, there are important 

limitations of this model. The study of viral entry and spread, as well as the development of 

drugs to inhibit these steps, are not possible using this model. Furthermore, these mice are 

not suitable for monitoring viral elimination, because the HBV genome is integrated in the 

mouse genome. All viral RNAs in this system are produced from the integrated viral 

genome and not from cccDNA, which is apparently absent in transgenic mouse hepatocytes. 

Finally, the tolerance induced by the transgenic viral proteins, probably starting from the 

embryonic stage, makes the study of therapeutic vaccines difficult. To study the mechanisms 

of HBV-induced liver disease and to develop therapeutic strategies for viral clearance, 

alternative mouse models were developed using hydrodynamic injection or viral vector-

mediated transduction of the HBV genome.
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4. Hydrodynamic-based transfection of HBV DNA in mice

Hydrodynamic injection is an efficient method to transfect genetic materials into the mouse 

liver in vivo (Liu et al., 1999). Transfection of hepatocytes in vivo by hydrodynamic 

injection with a replication-competent HBV genome is an alternative way to study viral 

replication and HBV-host interactions in mice, and this can circumvent the problem of 

central tolerance. After hydrodynamic injection of HBV DNA, HBV antigens and 

replicative intermediates are synthesized and virus can be detected in the blood (Yang et al., 

2002). The transfected immunocompetent mice displayed acute self-limiting hepatitis. The 

mice developed an HBV-specific antibody response and specific CTLs, which were 

associated with the disappearance of HBV serum antigens and HBV-positive hepatocytes. In 

contrast, expression of HBV antigens persisted in immunocompromised NOD-Scid mice 

(Yang et al., 2002), indicating that the host immune response may contribute to virus 

clearance.

The immune effectors which contribute to the clearance of HBV DNA were explored using 

a panel of immune-deficient mouse strains that were hydrodynamically transfected with the 

HBV genome (Yang et al., 2010). Results showed that CD4 and CD8 T cells, but not B 

cells, play a major role in HBV clearance. Interestingly, the innate immune effectors, such 

as type I interferon and TNF-α mediated pathways and NK cells, also contribute to the 

elimination of transfected HBV DNA (Yang et al., 2010). However, it should be noted that 

the persistence of HBV transgenes in mouse liver by hydrodynamic transfection is 

dependent on the mouse genetic background and the plasmid backbone (Huang et al., 2006). 

HBV surface antigenemia persisted for >6 months in around 40% of C57BL/6 mice after 

hydrodynamic injection of pAAV/HBV1.2 plasmids but not the pGEM4Z/HBV1.2 plasmids 

(Huang et al., 2006). It is likely that specific sequences in the AAV backbone could regulate 

the expression of the transgenes and lead to persistent expression of HBV surface antigen. 

Unlike in C57BL/C mice, serum HBsAg level dropped quickly 1 week after hydrodynamic 

injection of pAAV-HBV1.2 into Balb/C mice (Huang et al., 2006). This result indicates that 

genetic backgrounds indeed influence HBV clearance in mice. Thus, for the study of HBV 

tolerance, C57BL/6 mice hydrodynamically injected with pAAV/HBV1.2 plasmids can 

serve as a useful model to investigate mechanisms and therapies.

Experiments using the pAAV-HBV1.2 hydrodynamic injection model have shown that the 

HBV nucleocapsid determines HBV persistence in both C57BL/6 and Balb/C mice (Lin et 

al., 2010). The capsid structure of HBV, but not the free core protein, seems important for 

the induction HBV-specific antibody and CTL responses. In addition to the viral factors, 

host factors also affect virus persistence. HBV clearance in humans is heavily dependent on 

the age at the time of exposure. A recent report suggests that the gut microbiota contribute to 

the age-dependence of HBV clearance, using a hydrodynamic transfection mouse model 

(Chou et al., 2015).

The pAAV-HBV1.2 hydrodynamic injection model also provides a platform for testing 

therapies for HBV infection. Liver-infiltrating T cells from mice with HBV persistence 

expressed higher level of programmed death 1(PD-1), and blockade of the PD-1 pathway 

not only reversed T cell dysfunction but also reduced HBV persistence (Tzeng et al., 2012). 
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Another report showed that IL-15 treatment can suppress HBV replication in pAAV-

HBV1.2 transfected mice (Yin et al., 2012). The HBV regulatory protein X (HBx) has been 

shown to enhance viral replication in vivo (Keasler et al., 2007). Treatment with 

bifunctional 5’-triphosphate short interfering RNAs targeting X (3p-HBx-siRNAs) not only 

directly reduced HBx and HBV replication, but also triggered type I IFN signaling through 

the RIG-I pathway to inhibit HBV in HBV carrier mice (Han et al., 2011).

5. Transduction of HBV DNA in mice

Another route to deliver HBV genomes into the liver of mice is by adenoviral vector or 

adeno-associated virus vector. Adenoviral vectors are efficient for transduction of liver cells 

of immunocompetent mice(Bramson et al., 1995), and HBV-specific T cell and antibody 

responses can be detected after high dose infection (109 infectious units per mouse) of Ad-

HBV transduction (von Freyend et al., 2011). However, transduction of large amounts of 

HBV genome using high doses of adenovirus results in only transient HBV replication in the 

liver (Huang et al., 2012) because adenoviral infection induces a strong immune response in 

mice, resulting in HBV clearance (Hartman et al., 2007). Only infection of mice with low 

doses of adenoviral vector (108 infectious units per mouse) results in persistent HBV 

infection. Mice transduced with a low dose neither develop a strong HBV-specific T-cell 

response nor produce antibodies against HBV. This model could be used to study the 

pathogenesis of chronic HBV infection and develop new therapeutic strategies. However, it 

should be noted that high levels of HBV, which are commonly detected in chronic hepatitis 

B patients, could not be recapitulated in this model.

Compared to adenovirus transduction, adeno-associated virus (AAV) infection does not 

induce an obvious immune response (Mingozzi et al., 2003). In addition, in vivo hepatic 

gene transfer through AAV vectors can induce immune tolerance to the transgene (Mingozzi 

et al., 2003). Thus, AAV vectors should be an ideal vehicle to deliver HBV DNA into the 

liver. Recently, several groups successfully used AAV vectors to transfer replication-

competent HBV genomes (Dion et al., 2013; Dong et al., 2010; Wang et al., 2012; Yang et 

al., 2014). Yang et al. reported that AAV/HBV induces sustained viremia in both neonatal 

and adult mice. Similar to chronically infected patients, mice infected with AAV/HBV were 

negative for antibodies against HBsAg, and the AAV8/HBV-infected mice failed to elicit an 

HBV-specific immune response upon immunization with conventional HBV vaccine. In the 

other report, HLA-A2/DR1 mice transduced with 5 × 1010 viral genome equivalents of an 

AAV serotype 2/8 chimera lead to persistence of HBV DNA, HBsAg and HBeAg in serum 

for at least 1 year (Dion et al., 2013). While HBV replication intermediates and transcripts 

were detected in the livers of the AAV2/8/HBV infected mice, no significant inflammation 

was observed in the liver, and T cells were tolerant to HBV antigens (Dion et al., 2013).

In order to identify a vaccine that can potentially circumvent the immune tolerance induced 

by AAV/HBV infection, Yang et al. used TLR9 agonist CpG-B as an adjuvant, and found 

that AAV/HBV-infected mice vaccinated with HBsAg/CpG induced strong HBV-specific 

antibody production and T-cell responses, leading to clearance of viremia (Yang et al., 

2014). Furthermore, both HBV DNA and protein were significantly reduced in the livers of 

AAV/HBV-infected mice (Yang et al., 2014). Martin et al. reported that vaccination of 
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AAV/HBV infected mice with TG1050, a non-replicative adenovirus serotype 5 encoding a 

large HBV fusion protein composed of two HBV envelope domains, a truncated HBV core 

and a modified HBV polymerase, induced both splenic and intrahepatic functional T cells 

specific to HBV and a significant reduction of circulating viral markers (Martin et al., 2014).

In conclusion, HBV genome transfer by hydrodynamic injection or by AAV vector 

transduction results in sustained viremia and immune tolerance, which resemble clinical 

HBV carriers. This nontransgenic mouse model is therefore particularly suited to develop 

therapeutic interventions to clear HBV from transfected or transduced cells. The major 

limitations of this model are that there is no natural infection and, most importantly, there is 

no re-infection of mouse hepatocytes. Since HBV clearance in humans entails not only the 

elimination of virus from infected hepatocytes, but also control of HBV spread by new 

infection, a model permissive for true HBV infection is an important research need.

6. Human-murine liver chimeric mouse models

Currently, three kinds of human liver chimeric models are available to study HBV infection 

and test therapeutics. The first is based on transgenic mice with the urokinase plasminogen 

activator (uPA) gene (Rhim et al., 1994), expressed specifically in the liver under the control 

of the mouse albumin promoter. However, over-expression of the uPA gene in an 

uncontrolled manner leads to high lethality of newborn pups, so that newborn uPA mice 

must be rapidly transplanted with healthy hepatocytes. Handling of uPA mice therefore 

became expensive and time-consuming (Vanwolleghem et al., 2010).

A big improvement was made by using a non-liver specific major urinary protein (MUP) 

promoter to generate MUP-uPA SCID/Beige mice, which are generally healthier than Alb-

uPA mice and therefore provide a longer window for engraftment with human 

hepatocytes(Tesfaye et al., 2013). The second mouse model is based on the fumaryl 

acetoacetate hydrolase (Fah) knockout mice, including the FRG (Azuma et al., 2007), NOD-

FRG (Vaughan et al., 2012) and NRG-FAH (Li et al., 2014). Knockout of Fah results in the 

hepatic accumulation of toxic tyrosine metabolitic intermediates and the death of mouse 

hepatocytes. The advantage of Fah knockout mice, compared to uPA mice, is that the mice 

are much healthier and easier to handle, and liver injury can be controlled by administration 

and withdrawal of 2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which 

blocks the accumulation of toxic intermediates caused by Fah knockout(Azuma et al., 2007; 

Bissig et al., 2010). Maintenance of the Fah knockout colony only requires supplementation 

of the water with NTBC.

The third mouse model is based on the recently-generated TK-NOG mice (Hasegawa et al., 

2011), which carry the herpes simplex virus (HSV) thymidine kinase (TK) transgene under 

the control of hepatic specific Alb promoter. Similar to Fah knockout mice, the TK-NOG 

mouse liver damage occurs in a controlled manner. Specific mouse hepatocyte depletion can 

be achieved by administration of a pro-drug, gancyclovir (GCV). One disadvantage of TK-

NOG mice is that male mice are sterile, and each batch of mice should be genotyped for TK 

positivity.
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The above three mouse models all have high levels of human hepatocyte repopulation, as 

evidenced by the high human serum albumin level (Bissig et al., 2010; Dandri et al., 2001; 

Hasegawa et al., 2011; Kosaka et al., 2013; Vanwolleghem et al., 2010). The surgical 

procedure to generate human hepatocyte chimeric mice is rather simple, and involves 

intrasplenic injection of between one and several million primary hepatocytes. Usually, it 

will take 2–3 months to reach workable reconstitution of human hepatocytes, which can 

vary from a few percent to over 95 percent of hepatocytes within the mouse liver (Bissig et 

al., 2010; Hasegawa et al., 2011; Kosaka et al., 2013).

Human chimeric liver mice have been used to evaluate HBV antivirals in vivo, including 

polymerase inhibitors such as lamivudine, entecavir and adefovir (Bissig et al., 2010; Dandri 

et al., 2005; Tsuge et al., 2005) and entry inhibitors such as Myrcludex-B, which is derived 

from the HBV large S protein (Oehler et al., 2014; Petersen et al., 2008). This model is also 

used to study HBV covalently closed circular DNA (cccDNA) biology in vivo 

(Lutgehetmann et al., 2010). It was shown that, in the absence of antiviral drugs, cell 

division in the setting of liver regeneration induced strong destabilization of the cccDNA 

reservoir, leading to cccDNA clearance in the great majority of chronically infected 

hepatocytes.

Because the chimeric mice are genetically immune deficient, the immune-mediated 

inhibition and/or clearance of HBV-infected hepatocytes cannot be evaluated in these 

models. However, in the absence of an adaptive immune system, these models can allow for 

the investigation of the antiviral effect of some innate immunomodulators, such as IFN-α 

(Belloni et al., 2012; Lutgehetmann et al., 2011; Tsuge et al., 2011). IFN-α treatment was 

shown to inhibit HBV transcription in this system by promoting epigenetic repression of the 

cccDNA template(Belloni et al., 2012). HBV, in turn, was found to counteract the inhibition 

by down-regulating the IFN-stimulated genes or blocking the IFN signaling pathway, by 

inhibiting STAT1 translocation into the nucleus (Lutgehetmann et al., 2011; Tsuge et al., 

2011). Thus, human chimeric mice are useful for the study the HBV and host cell 

interactions, but only in the context of innate immunity.

It is still technically challenging to study HBV infection using cell culture models, because 

these do not support secondary rounds of infection. Human liver chimeric mice, on the other 

hand, are permissible for spreading infection, allowing for more relevant investigation of the 

biology of chronic hepatitis B. Experimentation with HBV bearing different mutations, or 

from different genotypes (Sugiyama et al., 2006; Tanaka et al., 2008; Tsuge et al., 2010; 

Tsuge et al., 2005), has furthered our understanding of HBV genes. For example, HBeAg 

was demonstrated to be unnecessary for viral infection and replication (Tsuge et al., 2005). 

However, HBx is indispensable for viral replication in vivo (Tsuge et al., 2010).

Ectopic transplantation of human liver tissue under the kidney capsule can also support 

HBV replication (Bocher et al., 2000; Eren et al., 2000; Ilan et al., 1999; Ohashi et al., 

2000). These models were used to assess some antivirals in the early years. However, 

because the human liver engraftment in this model does grow and is relatively small in 

volume compared to the chimeric livers in the above models, the HBV titer in the blood was 
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lower and viremia duration was short. This model is now seldom used, as human liver 

chimeric mice are widely available.

It is well known that HBV is non-cytopathic, and HBV infection induced-liver diseases are 

mediated by host immune responses. While the human-mouse liver chimeric model contains 

humanized liver, it does not have a human immune system. Therefore this model is not 

suitable to study how human immune cells interact with HBV and cause liver disease. 

Chimeric mice with both human liver and immune system are necessary to study the 

immune-pathogenesis of HBV and to develop immuno-therapeutic treatments.

7. Humanized mouse models with both human liver and immune cells

To elucidate the mechanism of HBV-induced liver diseases and enable immunotherapeutic 

testing, we recently developed the novel NSG/Jo2 model, which is an immunodeficient 

mouse model that enables human liver cells and functional immune system development 

following transplantation with human fetal liver-derived hematopoietic stem cells and liver 

progenitor cells (Bility et al., 2014a).The NSG/Jo2 model is derived from the NOD-scid−/−-

gamma chain−/− (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mouse with the human HLA-A2 

transgene, and it utilizes the Jo2 antibody (mouse CD95 activating antibody) as a means of 

selectively inducing apoptosis in mouse hepatocytes (Bility et al., 2014a). Intrahepatic 

transplantation of immunodeficient mice with human CD34+ hematopoietic stem cells and 

human hepatic progenitor cells purified from 15–18 weeks old human fetal liver tissue into 

newborn immuno-deficient mice results in hematopoietic cell development. Conditional 

induction of mouse hepatocyte apoptosis then results in human hepatocyte regeneration 

(Bility et al., 2014a; Washburn et al., 2011). A human immune system is developed at 12 

weeks post-transplantation, along with human hepatocyte regeneration, as measured by 

human CD45+ cells and sub-lineages and human albumin levels in the blood, respectively 

(Bility et al., 2014a; Washburn et al., 2011).

Most importantly, the double-humanized immune system and liver-reconstituted mice 

exhibit normal liver physiology and structure, with no sign of liver disease (Bility et al., 

2014a; Washburn et al., 2011). The A2/NSG-hu HSC/Hep humanized mouse model 

supported persistent HBV infection, human immune responses, chronic liver inflammation 

and fibrosis. HBV-mediated liver immune impairment and liver disease were associated 

with high level of infiltrated human immunosuppressive/pro-fibrogenic macrophages. The 

results of this study suggest a critical role for macrophage activation in hepatitis B-induced 

liver diseases, thus providing a novel therapeutic target. This novel humanized mouse model 

provides a valuable platform for studying HBV infection, human immune response and liver 

diseases. (Bility et al., 2014a).

In addition, we reported another novel humanized mouse model, namely the AFC8 model, 

which is derived from the Balb/C-RAG2-γC-null immuno-deficient mouse (double-

knockout [DKO]) carrying a liver-specific transgene with inducible apoptotic activity, that 

enables human liver cells and immune system development and supports HCV infection 

following transplantation with human fetal liver-derived hematopoietic stem cells and liver 

progenitor cells (Bility et al., 2014b; Bility et al., 2012; Washburn et al., 2011).
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Although the recently reported humanized mouse models with human liver cells and 

immune system have enabled the study of the immunopathogenic mechanisms of chronic 

HBV-induced liver disease, these models have several limitations. The human immune 

system in the DKO mouse background is not fully developed, with deficiencies in antigen-

specific T- and B-cell responses (Aryee et al., 2014; Shultz et al., 2011; Washburn et al., 

2011). The NSG mice have improved antigen-specific T and B cell responses, compared to 

the DKO mice, but they still do not generate a completely functional human immune system 

(Aryee et al., 2014; Bility et al., 2014a; Shultz et al., 2011). Additionally, the human liver 

cell repopulation in the hepatic progenitor cell-reconstituted animals is relatively reduced, 

compared to adult hepatocyte-reconstituted mice (Bissig et al., 2010; Washburn et al., 2011).

Furthermore, the differentiation state of hepatic progenitor cells is also relatively immature 

(Washburn et al., 2011). HBV/HCV infection of humanized mice with human liver and 

immune system results in relatively lower viral replication, when compared to adult 

hepatocyte-transplanted mice (Bility et al., 2014a; Bissig et al., 2010; Washburn et al., 

2011), which is most likely due to the low hepatocyte repopulation level and the immature 

state of the hepatocytes. However, the human immune system could also be playing a role in 

controlling viral replication, albeit inefficiently (Bility et al., 2014a; Washburn et al., 2011). 

The development of humanized mouse models with high reconstitution of fully-

differentiated human hepatocytes, along with a completely competent human immune 

system, remains the goal for developing small animal models for studying chronic hepatitis 

B and associated inflammatory liver diseases (Bility et al., 2013; de Jong et al., 2010; 

Legrand et al., 2009; Strick-Marchand et al., 2015).

8. Summary and Perspectives

HBV naturally only infects human and chimpanzees; this narrow host range has hindered 

our understanding of HBV biology. Thus, a well-defined small animal model which 

supports robust infection is essential for us to understand the infection, replication and 

pathogenesis of chronic hepatitis B and to develop therapeutics.

Several mouse models have been developed for HBV study, each with its own advantages 

and disadvantages (summarized in Table 1). Transgenic mice expressing either the complete 

HBV genome or single viral genes have allowed investigators to study the replication, gene 

expression, and immunopathogenesis of HBV infection. However, the immune system of 

transgenic mice is tolerant to the virus, and the mice don’t show signs of hepatitis. Chronic 

hepatitis can be achieved by the adoptive transfer of anti-HBV CTLs into immunocompetent 

HBV transgenic mice, or by the transfer of syngeneic spleen cells into HBV transgenic 

SCID mice. From these models, we now know that the host immune response serves as a 

double-edged sword toward HBV infection, inhibiting replication while also contributing to 

the development of chronic liver disease.

Although HBV-transgenic mice have been used to test numerous drugs, the model cannot be 

used for the study of HBV entry spread, or to test drugs that inhibit these steps. Furthermore, 

these mice are not suitable for monitoring viral elimination, because the HBV genome is 

integrated into the host chromosome.. The immune system also exhibits central tolerance to 
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the transgenic gene products, making the study of therapeutic vaccines in this model 

difficult. Alternative models were developed by transfecting HBV DNA into the liver cells 

by hydrodynamic-based gene delivery methods or by transduction using AAV vectors. 

However, none of these models allow us to investigate real HBV infection and its interaction 

with a natural host immune system.

Recent progress in human-mouse liver chimeric models allows us to study HBV virus 

infection of human hepatocytes and to test therapeutics. Even more importantly, the 

chimeric mouse model with both human liver and immune system provides a unique 

platform to study how the virus interacts with the human immune system in vivo and to 

manipulate the human immune system to treat HBV infection.

Many preclinical studies based on immunotherapy are now ongoing to cure chronic hepatitis 

B. However, most such studies are performed in HBV-transgenic or transfected/transduced 

mice. Differences between the mouse and human immune system will probably make 

translation difficult. The humanized mouse with both human liver and human immune 

system should serve as a unique model for the development of immunotherapeutic strategies 

for HBV infection. Efforts are needed to improve the reconstitution of both the human liver 

and human immune system in the same mouse, to make this model more efficient and more 

applicable for immuno-intervention.

Acknowledgment

This work was supported in part by grants from UNC UCRF innovation grant, from NIH: DK095962, DK100664, 
CA164029, AI095097 (L.S.), and UNC Lineberger Comprehensive Cancer Center and UNC Infectious Disease 
Pathogenesis Postdoctoral Training Grants (M.T.B.).

References

Ando K, Moriyama T, Guidotti LG, Wirth S, Schreiber RD, Schlicht HJ, Huang SN, Chisari FV. 
Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant 
hepatitis. The Journal of experimental medicine. 1993; 178:1541–1554. [PubMed: 8228807] 

Aryee KE, Shultz LD, Brehm MA. Immunodeficient mouse model for human hematopoietic stem cell 
engraftment and immune system development. Methods Mol Biol. 2014; 1185:267–278. [PubMed: 
25062635] 

Asabe S, Wieland SF, Chattopadhyay PK, Roederer M, Engle RE, Purcell RH, Chisari FV. The size of 
the viral inoculum contributes to the outcome of hepatitis B virus infection. Journal of virology. 
2009; 83:9652–9662. [PubMed: 19625407] 

Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, 
Grompe M. Robust expansion of human hepatocytes in Fah−/−/Rag2−/ −/Il2rg−/− mice. Nature 
biotechnology. 2007; 25:903–910.

Babinet C, Farza H, Morello D, Hadchouel M, Pourcel C. Specific expression of hepatitis B surface 
antigen (HBsAg) in transgenic mice. Science. 1985; 230:1160–1163. [PubMed: 3865370] 

Barker LF, Chisari FV, McGrath PP, Dalgard DW, Kirschstein RL, Almeida JD, Edington TS, Sharp 
DG, Peterson MR. Transmission of type B viral hepatitis to chimpanzees. The Journal of infectious 
diseases. 1973; 127:648–662. [PubMed: 4574998] 

Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, Petersen J, Raimondo G, Dandri 
M, Levrero M. IFN-alpha inhibits HBV transcription and replication in cell culture and in 
humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J 
Clin Invest. 2012; 122:529–537. [PubMed: 22251702] 

Cheng et al. Page 11

Antiviral Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Berquist KR, Peterson JM, Murphy BL, Ebert JW, Maynard JE, Purcell RH. Hepatitis B antigens in 
serum and liver of chimpanzees acutely infected with hepatitis B virus. Infection and immunity. 
1975; 12:602–605. [PubMed: 1100525] 

Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, Zhang L, Tu Z, Gao Y, Fu Y, Niu J, Wang F, Su 
L. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of 
human-specific liver fibrosis and M2-like macrophages. PLoS pathogens. 2014a; 10:e1004032. 
[PubMed: 24651854] 

Bility MT, Curtis A, Su L. A chimeric mouse model to study immunopathogenesis of HCV infection. 
Methods Mol Biol. 2014b; 1213:379–388. [PubMed: 25173399] 

Bility MT, Li F, Cheng L, Su L. Liver immune-pathogenesis and therapy of human liver tropic virus 
infection in humanized mouse models. Journal of gastroenterology and hepatology. 2013; 
28(Suppl 1):120–124. [PubMed: 23855307] 

Bility MT, Zhang L, Washburn ML, Curtis TA, Kovalev GI, Su L. Generation of a humanized mouse 
model with both human immune system and liver cells to model hepatitis C virus infection and 
liver immunopathogenesis. Nat Protoc. 2012; 7:1608–1617. [PubMed: 22899330] 

Bissig KD, Wieland SF, Tran P, Isogawa M, Le TT, Chisari FV, Verma IM. Human liver chimeric 
mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest. 2010; 
120:924–930. [PubMed: 20179355] 

Bocher WO, Galun E, Marcus H, Daudi N, Terkieltaub D, Shouval D, Lohr HF, Reisner Y. Reduced 
hepatitis B virus surface antigen-specific Th1 helper cell frequency of chronic HBV carriers is 
associated with a failure to produce antigen-specific antibodies in the trimera mouse. Hepatology. 
2000; 31:480–487. [PubMed: 10655274] 

Bramson JL, Graham FL, Gauldie J. The use of adenoviral vectors for gene therapy and gene transfer 
in vivo. Current opinion in biotechnology. 1995; 6:590–595. [PubMed: 7579670] 

Chisari FV, Filippi P, Buras J, McLachlan A, Popper H, Pinkert CA, Palmiter RD, Brinster RL. 
Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in 
transgenic mice. Proceedings of the National Academy of Sciences of the United States of 
America. 1987; 84:6909–6913. [PubMed: 3477814] 

Chisari FV, Filippi P, McLachlan A, Milich DR, Riggs M, Lee S, Palmiter RD, Pinkert CA, Brinster 
RL. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen 
secretion in transgenic mice. Journal of virology. 1986; 60:880–887. [PubMed: 3783819] 

Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA, Brinster RL, 
Palmiter RD. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic 
mice. Cell. 1989; 59:1145–1156. [PubMed: 2598264] 

Chisari FV, Pinkert CA, Milich DR, Filippi P, McLachlan A, Palmiter RD, Brinster RL. A transgenic 
mouse model of the chronic hepatitis B surface antigen carrier state. Science. 1985; 230:1157–
1160. [PubMed: 3865369] 

Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, Tseng HT, Wu D, Lu X, 
Wang HY, Chen PJ, Chen DS. Age-related immune clearance of hepatitis B virus infection 
requires the establishment of gut microbiota. Proceedings of the National Academy of Sciences of 
the United States of America. 2015; 112:2175–2180. [PubMed: 25646429] 

Cova L, Zoulim F. Duck hepatitis B virus model in the study of hepatitis B virus. Methods in 
molecular medicine. 2004; 96:261–268. [PubMed: 14762276] 

Dandri M, Burda MR, Torok E, Pollok JM, Iwanska A, Sommer G, Rogiers X, Rogler CE, Gupta S, 
Will H, Greten H, Petersen J. Repopulation of mouse liver with human hepatocytes and in vivo 
infection with hepatitis B virus. Hepatology. 2001; 33:981–988. [PubMed: 11283864] 

Dandri M, Burda MR, Zuckerman DM, Wursthorn K, Matschl U, Pollok JM, Rogiers X, Gocht A, 
Kock J, Blum HE, von Weizsacker F, Petersen J. Chronic infection with hepatitis B viruses and 
antiviral drug evaluation in uPA mice after liver repopulation with tupaia hepatocytes. Journal of 
hepatology. 2005; 42:54–60. [PubMed: 15629507] 

de Jong YP, Rice CM, Ploss A. New horizons for studying human hepatotropic infections. J Clin 
Invest. 2010; 120:650–653. [PubMed: 20179350] 

Cheng et al. Page 12

Antiviral Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dion S, Bourgine M, Godon O, Levillayer F, Michel ML. Adeno-associated virus-mediated gene 
transfer leads to persistent hepatitis B virus replication in mice expressing HLA-A2 and HLA-DR1 
molecules. Journal of virology. 2013; 87:5554–5563. [PubMed: 23468504] 

Dong XY, Yu CJ, Wang G, Tian WH, Lu Y, Zhang FW, Wang W, Wang Y, Tan WJ, Wu XB. 
Establishment of hepatitis B virus (HBV) chronic infection mouse model by in vivo transduction 
with a recombinant adeno-associated virus 8 carrying 1. 3 copies of HBV genome (rAAN8-1. 
3HBV). Bing du xue bao = Chinese journal of virology / [bian ji, Bing du xue bao bian ji wei yuan 
hui]. 2010; 26:425–431.

Eren R, Ilan E, Nussbaum O, Lubin I, Terkieltaub D, Arazi Y, Ben-Moshe O, Kitchinzky A, Berr S, 
Gopher J, Zauberman A, Galun E, Shouval D, Daudi N, Eid A, Jurim O, Magnius LO, Hammas B, 
Reisner Y, Dagan S. Preclinical evaluation of two human anti-hepatitis B virus (HBV) monoclonal 
antibodies in the HBV-trimera mouse model and in HBV chronic carrier chimpanzees. 
Hepatology. 2000; 32:588–596. [PubMed: 10960454] 

Farza H, Hadchouel M, Scotto J, Tiollais P, Babinet C, Pourcel C. Replication and gene expression of 
hepatitis B virus in a transgenic mouse that contains the complete viral genome. Journal of 
virology. 1988; 62:4144–4152. [PubMed: 2845128] 

Feitelson MA, Larkin JD, Schinazi RF. Hepatitis B virus transgenic severe combined immunodeficient 
mouse model of acute and chronic liver disease. Methods in molecular medicine. 2004; 96:269–
287. [PubMed: 14762277] 

Glebe D, Aliakbari M, Krass P, Knoop EV, Valerius KP, Gerlich WH. Pre-s1 antigen-dependent 
infection of Tupaia hepatocyte cultures with human hepatitis B virus. Journal of virology. 2003; 
77:9511–9521. [PubMed: 12915565] 

Glebe D, Urban S, Knoop EV, Cag N, Krass P, Grun S, Bulavaite A, Sasnauskas K, Gerlich WH. 
Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides 
and tupaia hepatocytes. Gastroenterology. 2005; 129:234–245. [PubMed: 16012950] 

Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune 
response. Annual review of immunology. 2001; 19:65–91.

Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annual review of 
pathology. 2006; 1:23–61.

Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of 
the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 1996; 4:25–36. [PubMed: 8574849] 

Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic 
mice. Journal of virology. 1995; 69:6158–6169. [PubMed: 7666518] 

Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without 
destruction of infected cells during acute HBV infection. Science. 1999; 284:825–829. [PubMed: 
10221919] 

Han Q, Zhang C, Zhang J, Tian Z. Reversal of hepatitis B virus-induced immune tolerance by an 
immunostimulatory 3p-HBx-siRNAs in a retinoic acid inducible gene I-dependent manner. 
Hepatology. 2011; 54:1179–1189. [PubMed: 21721030] 

Hartman ZC, Kiang A, Everett RS, Serra D, Yang XY, Clay TM, Amalfitano A. Adenovirus infection 
triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive 
immune responses in vivo. Journal of virology. 2007; 81:1796–1812. [PubMed: 17121790] 

Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M, Ito M, Suematsu M, Peltz G, 
Nakamura M, Suemizu H. The reconstituted 'humanized liver' in TK-NOG mice is mature and 
functional. Biochem Biophys Res Commun. 2011; 405:405–410. [PubMed: 21238430] 

Huang LR, Gabel YA, Graf S, Arzberger S, Kurts C, Heikenwalder M, Knolle PA, Protzer U. Transfer 
of HBV genomes using low doses of adenovirus vectors leads to persistent infection in immune 
competent mice. Gastroenterology. 2012; 142:1447–1450. e1443. [PubMed: 22426294] 

Huang LR, Wu HL, Chen PJ, Chen DS. An immunocompetent mouse model for the tolerance of 
human chronic hepatitis B virus infection. Proceedings of the National Academy of Sciences of 
the United States of America. 2006; 103:17862–17867. [PubMed: 17095599] 

Ilan E, Burakova T, Dagan S, Nussbaum O, Lubin I, Eren R, Ben-Moshe O, Arazi J, Berr S, Neville L, 
Yuen L, Mansour TS, Gillard J, Eid A, Jurim O, Shouval D, Reisner Y, Galun E. The hepatitis B 

Cheng et al. Page 13

Antiviral Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



virus-trimera mouse: a model for human HBV infection and evaluation of anti-HBV therapeutic 
agents. Hepatology. 1999; 29:553–562. [PubMed: 9918935] 

Julander JG, Colonno RJ, Sidwell RW, Morrey JD. Characterization of antiviral activity of entecavir in 
transgenic mice expressing hepatitis B virus. Antiviral research. 2003; 59:155–161. [PubMed: 
12927305] 

Julander JG, Sidwell RW, Morrey JD. Characterizing antiviral activity of adefovir dipivoxil in 
transgenic mice expressing hepatitis B virus. Antiviral research. 2002; 55:27–40. [PubMed: 
12076749] 

Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B 
virus replication in vivo. The Journal of experimental medicine. 2000; 192:921–930. [PubMed: 
11015434] 

Keasler VV, Hodgson AJ, Madden CR, Slagle BL. Enhancement of hepatitis B virus replication by the 
regulatory X protein in vitro and in vivo. Journal of virology. 2007; 81:2656–2662. [PubMed: 
17182675] 

Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in 
transgenic mice. Nature. 1991; 351:317–320. [PubMed: 2034275] 

Kimura K, Kakimi K, Wieland S, Guidotti LG, Chisari FV. Interleukin-18 inhibits hepatitis B virus 
replication in the livers of transgenic mice. Journal of virology. 2002; 76:10702–10707. [PubMed: 
12368312] 

Koike K, Moriya K, Iino S, Yotsuyanagi H, Endo Y, Miyamura T, Kurokawa K. High-level expression 
of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology. 1994; 
19:810–819. [PubMed: 8138251] 

Kosaka K, Hiraga N, Imamura M, Yoshimi S, Murakami E, Nakahara T, Honda Y, Ono A, Kawaoka 
T, Tsuge M, Abe H, Hayes CN, Miki D, Aikata H, Ochi H, Ishida Y, Tateno C, Yoshizato K, 
Sasaki T, Chayama K. A novel TK-NOG based humanized mouse model for the study of HBV 
and HCV infections. Biochem Biophys Res Commun. 2013; 441:230–235. [PubMed: 24140055] 

Kosinska AD, Liu J, Lu M, Roggendorf M. Therapeutic vaccination and immunomodulation in the 
treatment of chronic hepatitis B: preclinical studies in the woodchuck. Medical microbiology and 
immunology. 2015; 204:103–114. [PubMed: 25535101] 

Kulkarni K, Jacobson IM, Tennant BC. The role of the woodchuck model in the treatment of hepatitis 
B virus infection. Clinics in liver disease. 2007; 11:707–725. vii. [PubMed: 17981226] 

Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng 
J, Wolfgang G, Halcomb RL, Tumas DB. GS-9620, an oral agonist of Toll-like receptor-7, induces 
prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 
2013; 144:1508–1517. 1517 e1501–1517 e1510. [PubMed: 23415804] 

Larkin J, Clayton M, Sun B, Perchonock CE, Morgan JL, Siracusa LD, Michaels FH, Feitelson MA. 
Hepatitis B virus transgenic mouse model of chronic liver disease. Nature medicine. 1999; 5:907–
912.

Legrand N, Ploss A, Balling R, Becker PD, Borsotti C, Brezillon N, Debarry J, de Jong Y, Deng H, Di 
Santo JP, Eisenbarth S, Eynon E, Flavell RA, Guzman CA, Huntington ND, Kremsdorf D, Manns 
MP, Manz MG, Mention JJ, Ott M, Rathinam C, Rice CM, Rongvaux A, Stevens S, Spits H, 
Strick-Marchand H, Takizawa H, van Lent AU, Wang C, Weijer K, Willinger T, Ziegler P. 
Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell 
Host Microbe. 2009; 6:5–9. [PubMed: 19616761] 

Li F, Cowley DO, Banner D, Holle E, Zhang L, Su L. Efficient genetic manipulation of the NOD-
Rag1−/−IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 
technology. Scientific reports. 2014; 4:5290. [PubMed: 24936832] 

Lin YJ, Huang LR, Yang HC, Tzeng HT, Hsu PN, Wu HL, Chen PJ, Chen DS. Hepatitis B virus core 
antigen determines viral persistence in a C57BL/6 mouse model. Proceedings of the National 
Academy of Sciences of the United States of America. 2010; 107:9340–9345. [PubMed: 
20439715] 

Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of 
plasmid DNA. Gene therapy. 1999; 6:1258–1266. [PubMed: 10455434] 

Cheng et al. Page 14

Antiviral Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lutgehetmann M, Bornscheuer T, Volz T, Allweiss L, Bockmann JH, Pollok JM, Lohse AW, Petersen 
J, Dandri M. Hepatitis B virus limits response of human hepatocytes to interferon-alpha in 
chimeric mice. Gastroenterology. 2011; 140:2074–2083. 2083, e2071–e2072. [PubMed: 
21376046] 

Lutgehetmann M, Volz T, Kopke A, Broja T, Tigges E, Lohse AW, Fuchs E, Murray JM, Petersen J, 
Dandri M. In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently 
closed circular DNA in mice. Hepatology. 2010; 52:16–24. [PubMed: 20578126] 

Martin P, Dubois C, Jacquier E, Dion S, Mancini-Bourgine M, Godon O, Kratzer R, Lelu-Santolaria 
K, Evlachev A, Meritet JF, Schlesinger Y, Villeval D, Strub JM, Van Dorsselaer A, Marchand JB, 
Geist M, Brandely R, Findeli A, Boukhebza H, Menguy T, Silvestre N, Michel ML, Inchauspe G. 
TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an 
antiviral effect in HBV-persistent mice. Gut. 2014

McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human hepatitis B 
vaccine from recombinant yeast. Nature. 1984; 307:178–180. [PubMed: 6318124] 

McClary H, Koch R, Chisari FV, Guidotti LG. Relative sensitivity of hepatitis B virus and other 
hepatotropic viruses to the antiviral effects of cytokines. Journal of virology. 2000; 74:2255–2264. 
[PubMed: 10666256] 

Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, Wang Y, Arruda VR, High KA, Herzog RW. 
Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. 
The Journal of clinical investigation. 2003; 111:1347–1356. [PubMed: 12727926] 

Moriyama T, Guilhot S, Klopchin K, Moss B, Pinkert CA, Palmiter RD, Brinster RL, Kanagawa O, 
Chisari FV. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus 
transgenic mice. Science. 1990; 248:361–364. [PubMed: 1691527] 

Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L, Giersch K, Bierwolf J, Riecken K, Pollok JM, 
Lohse AW, Fehse B, Petersen J, Urban S, Lutgehetmann M, Heeren J, Dandri M. Binding of 
hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid 
metabolism. Hepatology. 2014; 60:1483–1493. [PubMed: 24711282] 

Ohashi K, Marion PL, Nakai H, Meuse L, Cullen JM, Bordier BB, Schwall R, Greenberg HB, Glenn 
JS, Kay MA. Sustained survival of human hepatocytes in mice: A model for in vivo infection with 
human hepatitis B and hepatitis delta viruses. Nat Med. 2000; 6:327–331. [PubMed: 10700236] 

Petersen J, Dandri M, Mier W, Lutgehetmann M, Volz T, von Weizsacker F, Haberkorn U, Fischer L, 
Pollok JM, Erbes B, Seitz S, Urban S. Prevention of hepatitis B virus infection in vivo by entry 
inhibitors derived from the large envelope protein. Nature biotechnology. 2008; 26:335–341.

Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Replacement of diseased mouse liver by 
hepatic cell transplantation. Science. 1994; 263:1149–1152. [PubMed: 8108734] 

Scaglione SJ, Lok AS. Effectiveness of hepatitis B treatment in clinical practice. Gastroenterology. 
2012; 142:1360–1368. e1361. [PubMed: 22537444] 

Shouval D, Chakraborty PR, Ruiz-Opazo N, Baum S, Spigland I, Muchmore E, Gerber MA, Thung 
SN, Popper H, Shafritz DA. Chronic hepatitis in chimpanzee carriers of hepatitis B virus: 
morphologic, immunologic, and viral DNA studies. Proceedings of the National Academy of 
Sciences of the United States of America. 1980; 77:6147–6151. [PubMed: 6934542] 

Shultz LD, Brehm MA, Bavari S, Greiner DL. Humanized mice as a preclinical tool for infectious 
disease and biomedical research. Ann N Y Acad Sci. 2011; 1245:50–54. [PubMed: 22211979] 

Strick-Marchand H, Dusseaux M, Darche S, Huntington ND, Legrand N, Masse-Ranson G, Corcuff E, 
Ahodantin J, Weijer K, Spits H, Kremsdorf D, Di Santo JP. A novel mouse model for stable 
engraftment of a human immune system and human hepatocytes. PLoS One. 2015; 10:e0119820. 
[PubMed: 25782010] 

Sugiyama M, Tanaka Y, Kato T, Orito E, Ito K, Acharya SK, Gish RG, Kramvis A, Shimada T, Izumi 
N, Kaito M, Miyakawa Y, Mizokami M. Influence of hepatitis B virus genotypes on the intra- and 
extracellular expression of viral DNA and antigens. Hepatology. 2006; 44:915–924. [PubMed: 
17006908] 

Tanaka Y, Sanchez LV, Sugiyama M, Sakamoto T, Kurbanov F, Tatematsu K, Roman S, Takahashi S, 
Shirai T, Panduro A, Mizokami M. Characteristics of hepatitis B virus genotype G coinfected with 

Cheng et al. Page 15

Antiviral Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genotype H in chimeric mice carrying human hepatocytes. Virology. 2008; 376:408–415. 
[PubMed: 18474388] 

Tesfaye A, Stift J, Maric D, Cui Q, Dienes HP, Feinstone SM. Chimeric mouse model for the infection 
of hepatitis B and C viruses. PLoS One. 2013; 8:e77298. [PubMed: 24155939] 

Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. CD8(+) T cells 
mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. Journal 
of virology. 2003; 77:68–76. [PubMed: 12477811] 

Tsuge M, Hiraga N, Akiyama R, Tanaka S, Matsushita M, Mitsui F, Abe H, Kitamura S, Hatakeyama 
T, Kimura T, Miki D, Mori N, Imamura M, Takahashi S, Hayes CN, Chayama K. HBx protein is 
indispensable for development of viraemia in human hepatocyte chimeric mice. The Journal of 
general virology. 2010; 91:1854–1864. [PubMed: 20219897] 

Tsuge M, Hiraga N, Takaishi H, Noguchi C, Oga H, Imamura M, Takahashi S, Iwao E, Fujimoto Y, 
Ochi H, Chayama K, Tateno C, Yoshizato K. Infection of human hepatocyte chimeric mouse with 
genetically engineered hepatitis B virus. Hepatology. 2005; 42:1046–1054. [PubMed: 16250045] 

Tsuge M, Takahashi S, Hiraga N, Fujimoto Y, Zhang Y, Mitsui F, Abe H, Kawaoka T, Imamura M, 
Ochi H, Hayes CN, Chayama K. Effects of hepatitis B virus infection on the interferon response in 
immunodeficient human hepatocyte chimeric mice. J Infect Dis. 2011; 204:224–228. [PubMed: 
21673032] 

Tzeng HT, Tsai HF, Liao HJ, Lin YJ, Chen L, Chen PJ, Hsu PN. PD-1 blockage reverses immune 
dysfunction and hepatitis B viral persistence in a mouse animal model. PloS one. 2012; 7:e39179. 
[PubMed: 22761734] 

Vanwolleghem T, Libbrecht L, Hansen BE, Desombere I, Roskams T, Meuleman P, Leroux-Roels G. 
Factors determining successful engraftment of hepatocytes and susceptibility to hepatitis B and C 
virus infection in uPA-SCID mice. Journal of hepatology. 2010; 53:468–476. [PubMed: 
20591528] 

Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A, Camargo N, Bial J, Ploss A, 
Kappe SH. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J 
Clin Invest. 2012; 122:3618–3628. [PubMed: 22996664] 

von Freyend MJ, Untergasser A, Arzberger S, Oberwinkler H, Drebber U, Schirmacher P, Protzer U. 
Sequential control of hepatitis B virus in a mouse model of acute, self-resolving hepatitis B. 
Journal of viral hepatitis. 2011; 18:216–226. [PubMed: 20367794] 

Wadman M. Chimp research under scrutiny. Nature. 2011; 480:424–425. [PubMed: 22193077] 

Walter E, Keist R, Niederost B, Pult I, Blum HE. Hepatitis B virus infection of tupaia hepatocytes in 
vitro and in vivo. Hepatology. 1996; 24:1–5. [PubMed: 8707245] 

Wang G, Dong XY, Tian WH, Yu CJ, Zheng G, Gao J, Wang GJ, Wei GC, Zhou YS, Wu XB. Study 
on the differences of two mouse models of hepatitis B virus infection by transduction with 
rAAV8-1. 3HBV. Bing du xue bao = Chinese journal of virology / [bian ji, Bing du xue bao bian ji 
wei yuan hui]. 2012; 28:541–547.

Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice 
CM, Su L. A Humanized Mouse Model to Study Hepatitis C Virus Infection, Immune Response, 
and Liver Disease. Gastroenterology. 2011; 140:1334–1344. [PubMed: 21237170] 

Weber O, Schlemmer KH, Hartmann E, Hagelschuer I, Paessens A, Graef E, Deres K, Goldmann S, 
Niewoehner U, Stoltefuss J, Haebich D, Ruebsamen-Waigmann H, Wohlfeil S. Inhibition of 
human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse 
model. Antiviral research. 2002; 54:69–78. [PubMed: 12062392] 

Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B 
virus infection. Proceedings of the National Academy of Sciences of the United States of America. 
2004; 101:6669–6674. [PubMed: 15100412] 

Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen 
P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. Sodium taurocholate cotransporting 
polypeptide is a functional receptor for human hepatitis B and D virus. eLife. 2012; 1:e00049. 
[PubMed: 23150796] 

Yan H, Liu Y, Sui J, Li W. NTCP opens the door for hepatitis B virus infection. Antiviral Res. 2015 In 
press. 

Cheng et al. Page 16

Antiviral Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yan RQ, Su JJ, Huang DR, Gan YC, Yang C, Huang GH. Human hepatitis B virus and hepatocellular 
carcinoma. I. Experimental infection of tree shrews with hepatitis B virus. Journal of cancer 
research and clinical oncology. 1996; 122:283–288. [PubMed: 8609151] 

Yang D, Liu L, Zhu D, Peng H, Su L, Fu YX, Zhang L. A mouse model for HBV immunotolerance 
and immunotherapy. Cellular & molecular immunology. 2014; 11:71–78. [PubMed: 24076617] 

Yang PL, Althage A, Chung J, Chisari FV. Hydrodynamic injection of viral DNA: a mouse model of 
acute hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United 
States of America. 2002; 99:13825–13830. [PubMed: 12374864] 

Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M, Chisari FV. Immune effectors 
required for hepatitis B virus clearance. Proceedings of the National Academy of Sciences of the 
United States of America. 2010; 107:798–802. [PubMed: 20080755] 

Yin W, Xu L, Sun R, Wei H, Tian Z. Interleukin-15 suppresses hepatitis B virus replication via IFN-
beta production in a C57BL/6 mouse model. Liver international : official journal of the 
International Association for the Study of the Liver. 2012; 32:1306–1314. [PubMed: 22380514] 

Cheng et al. Page 17

Antiviral Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• It is important to establish small animal models to study HBV infection, 

persistence and immunopathogenesis.

• We first review the contribution of chimpanzee and tree shrew models of 

chronic hepatitis B.

• We then review transgenic mouse models, hydrodynamic-based transfection of 

HBV DNA and transduction of HBV DNA.

• We then review human-murine liver chimeric mouse models and humanized 

mice with both human liver and immune cells.
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