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Genome sequencing of carbapenem-resistant Klebsiella pneumoniae isolates from regional U.S. hospitals was used to character-
ize strain diversity and the blaKPC genetic context. A phylogeny based on core single-nucleotide variants (SNVs) supports a divi-
sion of sequence type 258 (ST258) into two distinct groups. The primary differences between the groups are in the capsular poly-
saccharide locus (cps) and their plasmid contents. A strict association between clade and KPC variant was found. The blaKPC

gene was found on variants of two plasmid backbones. This study indicates that highly similar K. pneumoniae subpopulations
coexist within the same hospitals over time.

Carbapenem-resistant Enterobacteriaceae (CRE), including
Klebsiella pneumoniae, are an increasing clinical challenge for

health care facilities worldwide (1–3). Several K. pneumoniae se-
quence types are identified as carrying blaKPC, a gene conferring
resistance to carbapenems (4). One prevalent multidrug-resistant
(MDR) multilocus sequence type, ST258, is disseminated world-
wide (5–7). Recent analysis of genetic diversity within the ST258
lineage suggested the separation of isolates into two distinct
groups, in which the primary chromosomal difference centered
around the capsular polysaccharide locus (cps) region (8).
However, the diversity of genetic elements mobilizing blaKPC in
K. pneumoniae strains within and among hospitals is not known,
and knowledge of it would provide insight into dispersal processes
for these organisms and genetic elements and their evolutionary
history.

We characterized the population structure of blaKPC-positive
clinical strains from a consortium that includes four tertiary-care
hospitals in the midwestern United States (three in Cleveland,
OH, and one in Detroit, MI) (9). Strains were collected from 2004
to 2012, were primarily of the ST258 sequence type (10), and were
isolated from patients with a variety of infections. Draft genome
sequences of 57 MDR K. pneumoniae strains (see Table S1 in the
supplemental material) were determined, and five representative
genomes were determined at a higher quality by using Pacific Bio-
science SMRT sequencing (see Supplemental Methods in the sup-
plemental material). Publicly available strains from GenBank
were used as references to place the 57 genomes in a phylogenetic
context.

A phylogeny scheme based on k-mer alignments of consensus
contigs (kSNP software) (11) was used to determine the popula-
tion structure and strain relatedness. The 33,833 core single-nu-
cleotide variants (SNVs) for all genomes, or 976 SNVs when only
ST258 genomes were analyzed, resulted in ST258 strains grouping
together in the tree (Fig. 1). Within the ST258 group, there were
two well-supported clades (ST258a and ST258b) corresponding
to clade 1 and clade 2 in the study by DeLeo et al. (8). Two distinct
ST258 groups were also found by repetitive sequence-based PCR
(rep-PCR) of the midwestern U.S. consortium strains from Ohio

and Michigan (9). Each clade consisted of strains isolated from all
four hospitals, collected during many years and from multiple
infection sites. Reference ST258 strains reported from Maryland
(KPNIH strains) (12), New Jersey (NJST258) (8), and Italian
(ST258-K26BO and ST258-K28BO) (13) hospitals formed sepa-
rate branches within the ST258b lineage. Interior branches within
the ST258a and ST258b lineages suggest some clustering of strains
by location but were generally poorly resolved with low bootstrap
support.

A 50-kb region of elevated SNV density between the two ST258
clades was centered around and extended beyond the capsular
polysaccharide (cps) locus to the mdtABC locus (1.78 to 1.86 Mb
in NJST258-1) and was identified using BRATnextgen software
(14) as a likely recombination hot spot. The cps locus is a major
source of variability among K. pneumoniae isolates in part because
of its role in host-pathogen interactions (15). The cps locus in
ST258b strains has one nucleotide difference from the wzi-81 al-
lele in the typing scheme of Brisse et al. (16) and bears rhamnose-
utilizing genes. The cps locus in these strains was most similar to
that in the blaKPC-2-producing Kp13 strain from Brazil (17, 18)
and clade 2 strains in reference 8, cpsBO-4 in reference 19, and to the
cps locus in the KPNIH strains, with more than 99.99% nucleotide
identity throughout the 50-kb region. The cps locus in ST258a
strains (wzi-29) was nearly identical to the cps locus in the ST258
clade 1 (8), in VA360 (ANGI00000000), a blaKPC-2 ST258 strain
from Ohio, in KpMDU1 (AMWO00000000), a blaKPC-2 strain
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from Australia, and to cps207-2 (19). Common to these ST258a
strains is a shared IS1 insertion within the cps region. An addi-
tional cluster of 28 SNVs is present over an 8-kb span (1.98 to 1.99
Mbp in NJST258-1). These two regions together were identified

by DeLeo et al. as a 215-kb region of divergence (RD). Based on a
sequence comparison, the ST258b genomes are more similar
across this region to the non-ST258 Kp13 strain, while the ST258a
genomes are most similar to HS11286 (20) (NC_016845), a
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FIG 1 Phylogenetic trees and plasmid content. (A) Maximum likelihood tree generated from core SNVs using kSNP (11) for K. pneumoniae strains sequenced
as part of this project and reference strains. The presence of plasmids is indicated by colored or open circles. Colored circles indicate substantially identical
plasmids as inferred from draft genome sequences. Open circles indicate genomes that contain the same repA type but whose plasmid content and organization
were not similar. Plasmids carrying the blaKPC gene are noted with a star under the plasmid name. (B) Core SNV tree constructed as in panel A but using only
ST258 strains as input. Numbers at nodes represent bootstrap support (�50%).
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closely related non-ST258 strain. HS11286 differs across the cps
region (wzi-74 type) from both ST258 groups though, suggesting
that the RD was created by at least two recombination events.

Chromosomal and mobile gene content comparisons also sup-
ported the separation of the two ST258 lineages. In addition to
differences in the cps region, several chromosomal gene content
differences between the ST258 lineages were found. There is a
97-bp deletion in the entS gene, which encodes the enterobactin
exporter (21), in the ST258b consortium strains but not in other
ST258b strains (KPNIH and two NJST258 strains). Phage-associ-
ated and IS-mediated gene losses included one region that is pres-
ent in every ST258a strain but absent from every ST258b strain
corresponding to 2.530 to 2.545 Mb in the HS11286 genome and
that contains genes predicted to be involved in competence induc-
tion and two-component regulatory systems. Both ST258 lineages
have an IS5 insertion at this location, but only strains within
ST258b are missing the adjacent sequences. The KPNIH strains in
ST258b carry this sequence, so it appears that the region was lost
after the split from the KPNIH strains. The ST258a strains are
missing open reading frames (ORFs) predicted to be involved in
maltose metabolism (HS21186, 2.805 to 2.814 Mb), also adjacent
to an IS5 insertion common to both lineages; this region is also
missing from VA360.

The primary source of gene content variability, however, is in
plasmid content and blaKPC context. The blaKPC gene can be car-
ried on plasmids of several different types in K. pneumoniae, typ-
ically embedded within the Tn4401 transposon (22). The blaKPC

gene in the study genomes was Tn4401 associated but found on
different plasmid backbones (Fig. 1A and 2). The blaKPC-2 variant
was always on the Tn4401a isoform (23), while the blaKPC-3 variant
was always on Tn4401b. Furthermore, there was strict fidelity be-
tween lineage and blaKPC and Tn4401 type, where ST258a strains
always carried blaKPC-2 and Tn4401a and ST258b strains always
carried blaKPC-3 and Tn4401b, except for UHKPC22, which car-

ried the blaKPC-7 variant. This is quite surprising given the ob-
served dynamic nature of Tn4401, as other K. pneumoniae strains
were shown to carry diverse blaKPC variants on Tn4401 isoform a
or b (24). The plasmid context for Tn4401 also varied by lineage,
where in the ST258a clade, Tn4401a was found on variants of
IncFIIk plasmids, with pUHKPC05_113 being nearly identical to
pKpQIL (NC_014016) (25), and others sharing significant seg-
ments with pBK32179 (NC_020132 [26]) (e.g., p1601080-130 and
pVAKPC278-138). Tn4401b was found on an IncI2 plasmid in all
ST258b strains (e.g., pUHKPC45-77) that is nearly identical to
pBK15692 (NC_022520 [27]).

Deeper investigation into plasmid carriage revealed that there
is both overlap and segregation of plasmid types between the
ST258 groups (Fig. 1B). For example, strains from both clades
carry IncFIIk plasmids. Some ST258a strains carry two IncFIIk

plasmids (e.g., UHKPC05), while others have only pUHKPC05-
113, only pUHKPC05-162, or a hybrid of the two (e.g.,
pVAKPC278-138 or p1601080-130). However, there is only one
IncFIIk plasmid variant in each ST258b strain (pUHKPC45-160).
While the IncFIIk plasmids are highly variable among the ST258a
strains, the content and organization of other plasmids are more
consistent across genomes. For example, the IncX3 plasmid
(pUHKPC05-43) is nearly identical within the ST258a strains,
with a backbone similar to that of pKPC-NY79 (28). Strains from
both lineages carry this IncX3 repA, but the plasmid backbones are
different between the clades. The plasmid pUHKPC45-40 has a
backbone similar to that of pNJST258C1 and is present only in the
ST258b clade. pUHKPC45-117 has a backbone similar to that of
the blaKPC-3-carrying plasmid pNJST258N2 in the ST258 clade 2
strains described in reference 8, but the blaKPC-3 gene in our
ST258b/clade 2 strains is on pUHKPC45-77. pVAKPC278_13 is
very similar to pColEST258 (JN247853) and is widely present in K.
pneumoniae strains. The considerable variability in plasmid struc-
ture and content among strains cooccurring in the same hospitals

FIG 2 Comparison of IncFIIk plasmid content and organization of K. pneumoniae ST258 strains. IncFIIk plasmid sequences from PacBio Hierarchical Genome
Assembly Pipeline (HGAP) assemblies and reference plasmids pBK32179, pNJST258-N1, and pKpQIL were aligned using Mauve (31). Colors indicate shared
locally colinear blocks. Blue, replication genes (nomenclature as described in reference 26); yellow, Tn4401; red, antibiotic resistance genes.
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suggests that additional plasmid types and arrangements remain
to be described in K. pneumoniae.

The fidelity between sublineage cps type and blaKPC type was
maintained across geographic and temporal distances even
though these strain types were present in all locations during the
same time period. Reference strains from other geographic areas
had the same association between cps type and blaKPC type, which
suggests that this population structure (i) is not restricted to
strains in the geographic region examined here and (ii) has been
maintained during global dispersal. However, SNV patterns, gene
content comparisons, and plasmid carriage suggest that there is
regional divergence occurring among strains within each clade,
likely due to founder effects. For example the KPNIH strains and
NJST258 genomes form separate branches with longer branch
lengths from the ST258b strains in this study, while ST258b study
strains have distinct gene losses and carry Tn4401 on different
plasmids. Clinical data from van Duin et al. (9) indicate that pa-
tients infected with ST258a experience longer hospital stays than
patients infected with ST258b strains, and ST258b/KPC2 strains
have higher MIC values for tested carbapenems (see Table S1 in
the supplemental material). However, the full implications for the
linkage of blaKPC type and distinct chromosomal backgrounds
with physiological differences in infection dynamics between
ST258a and ST258b strains remain to be explored. For example,
an investigation into iron uptake differences between ST258
strains missing full-length entS genes may reveal potential fitness
costs during host infection (29). As additional variation within the
cps region among ST258 strains has now been detected (30), ad-
ditional genomic analysis of ST258 strains would further our un-
derstanding of carbapenem-resistant K. pneumoniae evolution.
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