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Abstract
Cook's (Cook, 1977) distance is one of the most important diagnostic tools for detecting influential
individual or subsets of observations in linear regression for cross-sectional data. However, for
many complex data structures (e.g., longitudinal data), no rigorous approach has been developed
to address a fundamental issue: deleting subsets with different numbers of observations introduces
different degrees of perturbation to the current model fitted to the data and the magnitude of
Cook's distance is associated with the degree of the perturbation. The aim of this paper is to
address this issue in general parametric models with complex data structures. We propose a new
quantity for measuring the degree of the perturbation introduced by deleting a subset. We use
stochastic ordering to quantify the stochastic relationship between the degree of the perturbation
and the magnitude of Cook's distance. We develop several scaled Cook's distances to resolve the
comparison of Cook's distance for different subset deletions. Theoretical and numerical examples
are examined to highlight the broad spectrum of applications of these scaled Cook's distances in a
formal influence analysis.
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1. Introduction
Influence analysis assesses whether a modification of a statistical analysis, called a
perturbation (see Section 2.2), seriously affects specific key inferences, such as parameter
estimates. Such perturbation schemes include the deletion of an individual or a subset of
observations, case weight perturbation, and covariate perturbation among many others [8, 9,
30]. For example, for linear models, a perturbation measures the effect on the model of
deleting a subset of the data matrix. In general, perturbation measures do not depend on the
data directly, but rather on its structure via the model. If a small perturbation has a small
effect on the analysis, our analysis is relatively stable, while if a large perturbation has a
small effect on the analysis, we learn that our analysis is robust [11, 16]. If a small
perturbation seriously influences key results of the analysis, we want to know the cause [9,
11]. For instance, in influence analysis, a set of observations is flagged as ‘influential’ if its
removal from the dataset produces a significant difference in the parameter estimates or
equivalently a large value of Cook's distance for the current statistical model [8, 5].
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Since the seminal work of Cook [8] on Cook's distance in linear regression for cross-
sectional data, considerable research has been devoted to developing Cook's distance for
detecting influential observations (or clusters) in more complex data structures under various
statistical models [8, 10, 6, 1, 12, 23, 15, 29, 14]. For example, for longitudinal data, Preisser
and Qaqish [19] developed Cook's distance for generalized estimating equations, while
Christensen, Pearson and Johnson [7], Banerjee and Frees [4], and Banerjee [3] considered
case deletion and subject deletion diagnostics for linear mixed models. Furthermore, in the
presence of missing data, Zhu et al. [29] developed deletion diagnostics for a large class of
statistical models with missing data. Cook's distance has been widely used in statistical
practice and can be calculated in popular statistical software, such as SAS and R.

A major research problem regarding Cook's distance that has been largely neglected in the
existing literature is the development of Cook's distance for general statistical models with
more complex data structures. The fundamental issue that arises here is that the magnitude
of Cook's distance is positively associated with the amount of perturbation to the current
model introduced by deleting a subset of observations. Specifically, a large value of Cook's
distance can be caused by deleting a subset with a larger number of observations and/or
other causes such as the presence of influential observations in the deleted subset. To
delineate the cause of a large Cook's distance for a specific subset, it is more useful to
compute Cook's distance relative to the degree of the perturbation introduced by deleting the
subset [11, 30].

The aim of this paper is to address this fundamental issue of Cook's distance for complex
data structures in general parametric models. The main contributions of this paper are
summarized as follows.

a.1 We propose a quantity to measure the degree of perturbation introduced by
deleting a subset in general parametric models. This quantity satisfies several
attractive properties including uniqueness, non-negativity, monotonicity, and
additivity.

a.2 We use stochastic ordering to quantify the relationship between the degree of the
perturbation and the magnitude of Cook's distance. Particularly, in linear
regression for cross-sectional data, we first show the stochastic relationship
between the Cook's distances for any two subsets with possibly different
numbers of observations.

a.3 We develop several scaled Cook's distances and their first-order approximations
in order to compare Cook's distance for deleted subsets with different numbers
of observations.

The rest of the paper is organized as follows. In Section 2, we quantify the degree of the
perturbation for set deletion and delineate the stochastic relationship between Cook's
distance and the degree of perturbation. We develop several scaled Cook's distances and
derive their first-order approximations. In Section 3, we analyze simulated data and a real
dataset using the scaled Cook's distances. We give some final remarks in Section 4.

2. Scaled Cook's Distance
2.1. Cook's distance

Consider the probability function of a random vector , denoted by p(Y|θ),
where θ = (θ1, . . . , θq)T is a q × 1 vector in an open subset Φ of Rq and Yi = (yi,1, . . . ,
yi,mi), in which the dimension of Yi, denoted by mi, may vary significantly across all i.
Cook's distance and many other deletion diagnostics measure the distance between the
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maximum likelihood estimators of θ with and without Yi [10, 8]. A subscript ‘[I]’ denotes
the relevant quantity with all observations in I deleted. Let Y[I] be a subsample of Y with YI
= {Y(i,j) : (i, j) ∈ I} deleted and p(Y[I]|θ) be its probability function. We define the
maximum likelihood estimators of θ for the full sample Y and a subsample Y[I] as

(2.1)

respectively. Cook's distance for I, denoted by CD(I), can be defined as follows:

(2.2)

where Gnθ is chosen to be a positive definite matrix. The matrix Gnθ is not changed or re-
estimated when a subset of the data is deleted. Throughout the paper, Gnθ is set as

 or its expectation, where  represents the second-order derivative with
respect to θ. For clustered data, the observations within the same cluster are correlated. A
sensible model p(Y|θ) should explicitly model the correlation structure in the clustered data

and thus  implicitly incorporates such a correlation structure.

More generally, suppose that one is interested in a subset of θ or q1 linearly independent
combinations of θ, say LTθ, where L is a q × q1 matrix with rank(L) = q1 [4, 10]. The
partial inuence of the subset I on , denoted by CD(I|L), can be defined as

(2.3)

For notational simplicity, even though we may focus on a subset of θ, we do not distinguish
between CD(I|L) and CD(I) throughout the paper.

Based on (2.2), we know that Cook's distance CD(I) is explicitly determined by three
components including the current model fitted to the data, denoted by , the dataset Y, and
the subset I itself. Cook's distance is also implicitly determined by the goodness of fit of 
to Y for I, denoted by , and the degree of the perturbation to  introduced by
deleting the subset I, denoted by . Thus, we may represent CD(I) as follows:

(2.4)

where F1(·, ·, ·) and F2(·,·) represent nonlinear functions.

We may use the value of CD(I) to assess the influential level of the subset I. We may regard
a subset I as influential if either the value of CD(I) is relatively large compared with other
Cook's distances or the magnitude of CD(I) is greater than the critical points of the χ2

distribution [10]. However, for complex data structures, we will show that it is useful to
compare Cook's distance relative to its associated degree of perturbation.

2.2. Degree of perturbation
Consider the subset I and the current model . We are interested in developing a measure
to quantify the degree of the perturbation to  introduced by deleting the subset I
regardless of the observed data Y. We emphasize here that the degree of perturbation is a
property of the model, unlike Cook's distance which is also a property of Y. Abstractly,

 should be defined as a mapping from a subset I and  to a nonnegative number.
However, according to the best of our knowledge, no such quantities have ever been
developed to define a workable  for an arbitrary subset I in general parametric
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models due to many conceptual difficulties [11]. Specifically, even though [11] placed the
Euclidean geometry on the perturbation space for one-sample problems, such a geometrical
structure cannot be easily generalizable to general data structures (e.g., correlated data) and
related parametric models. For instance, for correlated data, a sensible model  should
model the correlation structure and a good measure  should explicitly incorporate
the correlation structure specified in  and the subset I. However, the Euclidean geometry
proposed by [11] cannot incorporate the correlation structure in the correlated data.

Our choice of  is motivated by five principles as follows.

• (P.a) (non-negativity) For any subset I,  is always non-negative.

• (P.b) (uniqueness)  if and only if I is an empty set.

• (P.c) (monotonicity) If , then .

• (P.d) (additivity) If , and p(YI1·2|Y[I1], θ) = p(YI1·2|Y[I1·2], θ)
for all θ, then we have .

• (P.e)  should naturally arise from the current model , the data Y, and the
subset I.

Principles (P.a) and (P.b) indicate that deleting any nonempty subset always introduces a
positive degree of perturbation. Principle (P.c) indicates that deleting a larger subset always
introduces a larger degree of perturbation. Principle (P.d) presents the condition for ensuring
the additivity property of the perturbation. Since Y[I1·2] is the union of Y[I1] and YI2, p(YI1·2|
Y[I1], θ) = p(YI1·2], θ) is equivalent to that of YI1·2 being independent of YI2 given Y[I1].
The additivity property has important implications in cross-sectional, longitudinal, and
family data. For instance, in longitudinal data, the degree of perturbation introduced by
simultaneously deleting two independent clusters equals the sum of their degrees of
individual cluster perturbations.

Principle (P.e) requests that  should depend on the triple . We propose
 based on the Kullback-Leibler divergence between the fitted probability function

p(Y|θ) and the probability function of a model for characterizing the deletion of YI, denoted
by p(Y|θ, I). Note that p(Y|θ) = p(Y[I]|θ)p(YI|Y[I], θ), where p(YI|Y[I], θ) is the conditional
density of YI given Y[I]. Let θ* be the true value of θ under  [24, 25]. We define p(Y|θ,
I) as follows:

(2.5)

in which p(YI|Y[I], θ*) is independent of θ. In (2.5), by fixing θ = θ* in p(YI|Y[I], θ), we

essentially drop the information contained in YI as we estimate θ. Specifically,  is the
maximum likelihood estimate of θ under p(Y|θ, I). If  is correctly specified, then p(YI|
Y[I], θ*) is the true data generator for YI given Y[I]. The Kullback-Leibler distance between
p(Y|θ) and p(Y|θ, I), denoted by KL(Y, θ|θ*, I), is given by

(2.6)

We use KL(Y, θ|θ*, I) to measure the effect of deleting YI on estimating θ without knowing
that the true value of θ is θ*. If YI is independent of Y[I], then we have
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which is independent of Y[I]. In this case, the effect of deleting YI on estimating θ only
depends on {p(YI|θ) : θ ∊ Θ}.

A conceptual difficulty associated with KL(Y,θ|θ*, I) is that both θ and θ* are unknown.
Although θ* is unknown, it can be assumed to be a fixed value from a frequentist viewpoint.
For the unknown θ, we can always use the data Y and the current model  to calculate an
estimator  in a neighborhood of θ*. Under some mild conditions [24, 25], one can show

that  is asymptotically normal and thus  should be centered around θ*.
Moreover, since Cook's distance is to quantify the change of parameter estimates after
deleting a subset, we need to consider all possible θ around θ* instead of focusing on a
single θ. Specifically, we consider θ in a neighborhood of θ* by assuming a Gaussian prior
for θ with mean θ* and positive definite covariance matrix Σ* (e.g., the Fisher information
matrix), denoted by p(θ|θ*, Σ*). Finally, we define  as the weighted Kullback-
Leibler distance between p(Y|θ) and p(Y|θ, I) as follows:

(2.7)

This quantity  can also be interpreted as the average effect of deleting YI on
estimating θ with the prior information that the estimate of θ is centered around θ*. Since

 is directly calculated from the model  and the subset I, it can naturally account
for any structure specified in . Furthermore, if we are interested in a particular set of
components of θ and treat others as nuisance parameters, we may fix these nuisance
parameters in their true value.

To compute  in a real data analysis, we only need to specify  and (θ*, Σ*). Then,
we may use some numerical integration methods to compute . Although (θ*, Σ*) are
unknown, we suggest substituting θ* by an estimator of θ, denoted by , and Σ* by the
covariance matrix of . Throughout the paper, since  is a consistent estimator of θ* [24,
25], we set  and Σ* as the covariance matrix of .

We obtain the following theorems, whose detailed assumptions and proofs can be found in
the Appendix.

Theorem 1. Suppose that L({Y : p(YI|Y[I], θ) = p(YI|Y[I], θ*)}) > 0 for any θ = θ*, where
L(A) is the Lebesgue measure of a set A. Then,  defined in (2.7) satisfies the four
principles (P.a)-(P.d).

As an illustration, we show how to calculate  under the standard linear regression
model for cross-sectional data as follows.

Example 1. Consider the linear regression model , where xi is a p × 1 vector and

the εi are independently and identically distributed (i.i.d) as . Let Y = (y1, . . . , yn)T

and X be an n × p matrix of rank p with i-th row . In this case, θ = (βT, σ2)T . Recall that

, , , and , where In
is an n × n identity matrix and Hx = (hij) = X(XTX)–1XT. We first compute the degree of the
perturbation for deleting each (yi; xi). We consider two scenarios: fixed and random
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covariates. For the case of fixed covariates,  assumes . After some
algebraic calculations, it can be shown that  equals

(2.8)

where Eθ is taken with respect to . Moreover, the right hand side of (2.8)
contains only terms involving n and X, since perturbation is defined only in terms of the
underlying model . This is also at core why only stochastic ordering is possible for Cooks
distance, which is a function of both perturbation and data. See Section 2.3 for detailed
discussions. Furthermore, if β is the parameter of interest in θ and σ2 is a nuisance

parameter, then  and 1/(2n) can be dropped from  in (2.8).

Furthermore, for the case of random covariates, we assume that the xi's are independently
and identically distributed with mean μx and covariance matrix Σx. It can be shown that

 equals

(2.9)

If β is the parameter of interest in θ and σ2 is a nuisance parameter, then  reduces
to p/(2n). Furthermore, consider deleting a subset of observations {(yik, xik) : k = 1, · · · ,
n(I)} and I = {i1, . . . , in(I)}. It follows from Theorem 1 that

. Furthermore, for the case of random covariates, we
have  for any subset I with n(I) observations. Thus, in this case,
deleting any two subsets I1 and I2 with the same number of observations, that is n(I1) =
n(I2), has the same degree of perturbation. An important implication of these calculations in
real data analysis is that we can directly compare CD(I1) and CD(I2) when n(I1) = n(I2).

2.3. Cook's distance and degree of perturbation
To understand the relationship between  and CD(I) in (2.4), we temporarily assume
that the fitted model  is the true data generator of Y. To have a better understanding of
Cook's distance, we consider the standard linear regression model for cross-sectional data as
follows.

Example 1 (continued). We are interested in β and treat σ2 as a nuisance parameter. We
first consider deleting individual observations in linear regression. Cook's distance [8] for
case i, (yi, xi), is given by

(2.10)

where  is the least squares estimate of β,  is a consistent estimator of σ2,

 and , in which . It should be
noted that except for a constant p, CD({i}) is almost the same as the original Cook's distance
(Cook, 1977). As shown in (2.8) and (2.9), regardless of the exact value of (yi, xi), deleting
any (yi, xi) has the approximately same degree of perturbation to . Moreover, the CD({i})

are comparable regardless of i. Specifically, if εi N(0, σ2), then  follows the χ2(1)
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distribution for all i. For the case of random covariates, if xi are identically distributed, then
all CD({i}) are truly comparable, since they follow the same distribution.

We consider deleting multiple observations in the linear model. Cook's distance for deleting
the subset I with n(I) is given by

(2.11)

where êI is an n(I) × 1 vector containing all êi for i ∊ I and , in which XI is

an n(I) × p matrix whose rows are  for all i ∊ I. Similar to the deletion of a single case,
deleting any subset with the same number of observations introduces approximately the
same degree of perturbation to , and the CD(I) are comparable among all subsets with the
same n(I). We will make this statement precise in Theorem 2 given below.

Generally, we want to compare CD(I1) and CD(I2) for any two subsets with n(I1) ≠ n(I2). As
shown in Example 1, when n(I1) > n(I2), deleting I1 introduces a larger degree of
perturbation to model  compared to deleting I2. To compare Cook's distances among
arbitrary subsets, we need to understand the relationship between  and CD(I) for
any subset I. Surprisingly, in linear regression for cross-sectional data, we can show the
stochastic relationship between  and CD(I) as follows.

Theorem 2. For the standard linear model, where y = Xβ + ε and , we have
the following results:

a. for any , CD(1) is stochastically larger than CD(I2) for any X, that is,
 holds for any t > 0.

b. Suppose that the components of XI and XI’ are identically distributed for any two
subsets I and I’ with n(I) = n(I’). Thus, CD(I) and CD(I’) follow the same
distribution when n(I) = n(I’) and CD(I1) is stochastically larger than CD(I2) for
any two subsets I2 and I1 with n(I1) > n(I2).

Theorem 2 (a) shows that the Cook's distances for two nested subsets satisfy the stochastic
ordering property. Theorem 2 (b) indicates that for random covariates, the Cook's distances
for any two subsets also satisfy the stochastic ordering property under some mild conditions.

According to Theorem 2, for more complex data structures and models, it may be natural to
use the stochastic order to stochastically quantify the positive association between the
degree of the perturbation and the magnitude of Cook's distance. Specifically, we consider
two possibly overlapping subsets I1 and I2 with . Although I1) may not
be greater than CD(I2) for a fixed dataset Y, CD(I1), as a random variable, should be
stochastically larger than CD(I2) if  is the true model for Y. We make the following
assumption:

Assumption A1. For any two subsets I1 and I2 with ,

(2.12)

holds for any t > 0, where the probability is taken with respect to .
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Assumption A1 is essentially saying that if  is the true data generator, then CD(I1)
stochastically dominates CD(I2) whenever . According to the
definition of stochastic ordering [20], we can now obtain the following proposition.

Proposition 1. Under Assumption A1, for any two subsets I1 and I2 with
, Cook's distance satisfies

(2.13)

holds for all increasing functions h(·). In particular, we have

 and  is greater than the α-quantile of

 for any α ∊ [0, 1], where  denotes the α–quantile of the
distribution of CD(I) for any subset I.

Proposition 1 formally characterizes the fundamental issue of Cook's distance. Specifically,
for any two subsets I1 and I2 with , CD(I1) has a high probability of
being greater than CD(I2) when  is the true data generator. Thus, Cook's distance for
subsets with different degrees of perturbation are not directly comparable. More importantly,
it indicates that CD(I) cannot be simply expressed as a linear function of . Thus, the
standard solution, which standardizes CD(I) by calculating the ratio of CD(I) over ,
is not desirable for controlling for the effect of .

2.4. Scaled Cook's distances
We focus on developing several scaled Cook's distances for I, denoted by SCD(I), to detect
relatively influential subsets, while accounting for the degree of perturbation . Since
we have characterized the stochastic relationship between  and CD(I) when  is
the true data generator, we are interested in reducing the effect of the difference among

 for different subsets I on the magnitude of CD(I). A simple solution is to calculate
several features (e.g., mean, median, or quantiles) of CD(I) and match them across different
subsets under the assumption that  is the true data generator. Throughout the paper, we
consider two pairs of features including (mean, Std) and (median, Mstd), where Std and
Mstd, respectively, denote the standard deviation and the median standard deviation. By
matching any of the two pairs, we can at least ensure that the centers and scales of the scaled
Cook's distances for different subsets are the same when  is the true data generator.

We introduce two scaled Cook's distance measures, called scaled Cook's distances, as
follows.

Definition 1. The scaled Cook's distances for matching (mean, Std) and (median, Mstd) are,
respectively, defined as

where both the expectation and the quantile are taken with respect to .

We can use SCD1(I) and SCD2(I) to evaluate the relatively influential level for different
subsets I. A large value of SCD1(I) (or SCD2(I)) indicates that the subset I is relatively
influential. Therefore, for any two subsets I1 and I2, the probability of observing the event
SCD(I1) > SCD(I2) and that of the event SCD(I1) < SCD(I2) should be reasonably close to
each other. Thus, the SCD(I) are roughly comparable. Note that the scaled Cook's distances
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do not provide a “per unit” effect of removing one observation within the set I, whereas they
measure the standardized influential level of the set I when  is true. Moreover, the
standardization in Definition 1 still implies that higher than average values of CD(I) still
correspond with high positive values of SCD(I), even though for some deletions, it is
possible for SCD(I) to be negative unlike CD(I).

The next task is how to compute , , , and

 for each subset I under the assumption that  is the true data generator.
Computationally, we suggest using the parametric bootstrap to approximate the four
quantities of CD(I) as follows.

Step 1. We use  to approximate the model , generate a random

sample Ys from  and then calculate  for each s and each subset
I.

Step 2. By repeating Step 1 S times, we can obtain a sample {CD(I)(s) : s = 1, · · ·, S} and

then we use its empirical mean  to approximate E[CD(I)| ].

Step 3. We approximate Std[CD(I)| ], QCD(I)(0.5| ), and Mstd[CD(I)| ] by using their
corresponding empirical quantities of {CD(I)(s) : s = 1, · · ·, S}.

In this process, we have used  to approximate  [24] and simulated data Ys from  in
the standard parametric bootstrap method. If Y truly comes from , then the simulated data
Ys should resemble Y. Since  is a consistent estimate of θ*,

 and thus  is a consistent estimate of
. Similar arguments hold for the other three quantities of CD(I). In Steps

2 and 3, we can use a moderate S, say S = 100, in order to accurately approximate all four
quantities of CD(I). According to our experience, such an approximation is very accurate
even for small n. See the simulation studies in Section 3.1 for details. However, for most
statistical models with complex data structures, it can be computationally intensive to
compute  for each Ys. We will address this issue in Section 2.6.

As an illustration, we consider how to calculate SCD1(I) for any subset I in the linear
regression model.

Example 1 (continued). In (2.11), since all CD(I) share , we replace  by . Thus, we

approximate CD(I) by , where  and

To compute SCD1(I), we just need to calculate the two quantities  and
Std[CD*(I)| ]. Since CD*(I) is a quadratic form, it can be shown that
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where  denotes the expectation taken with respect to X.

2.5. Conditionally scaled Cook's distances
In certain research settings (e.g., regression), it may be better to perform influence analysis
while fixing some covariates of interest, such as measurement time. For instance, in
longitudinal data, if different subjects can have different numbers of measurements and
measurement times, which are not covariates of interest in an influence analysis, it may be
better to eliminate their effect in calculating Cook's distance. We are interested in comparing
Cook's distance relative to  while fixing some covariates.

To eliminate the effect of some fixed covariates, we introduce two conditionally scaled
Cook's distances as follows.

Definition 2. The conditionally scaled Cook's distances (CSCD) for matching (mean, Std)
and (median, Mstd) while controlling for Z are, respectively, defined as

where Z is the set of some fixed covariates in Y and the expectation and quantiles are taken
with respect to  given Z.

According to Definition 2, these conditionally scaled Cook's distances can be used to
evaluate the relative influential level of different subsets I given Z. Similar to SCD1(I) and
SCD2(I), a large value of CSCD1(I, Z) (or CSCD2(I, Z)) indicates a large influence of the
subset I after controlling for Z. It should be noted that because Z is fixed, the CSCDk(I, Z)
do not reflect the influential level of Z and the CSCDk(I, Z) may vary across different Z.
The conditionally scaled Cook's distances measure the difference of the observed influence
level of the set I given Z to the expected influence level of a set with the same data structure
when  is true and Z is fixed.

The next problem is how to compute , , ,
and  for each subset I when  is the true data generator and Z is fixed.
Similar to the computation of the scaled Cook's distances, we can essentially use almost the
same approach to approximate the four quantities for CSCD1(I, Z) and CSCD2(I, Z).
However, a slight difference occurs in the way that we simulate the data. Specifically, let YZ

be the data Y with Z fixed. We need to simulate random samples  from 

and then calculate  for each subset I.

As an illustration, we consider how to calculate CSCD1(I, Z) for any subset I in the linear
regression model.

Example 1 (continued). We set Z = X to calculate CSCD1(I, Z). We need to compute
 and . Since CD*(I) is a quadratic form, it is easy to

show  and

.
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2.6. First-order approximations
We have focused on developing the scaled Cook's distances and their approximations for the
linear regression model. More generally, we are interested in approximating the scaled
Cook's distances for a large class of parametric models for both independent and dependent
data.

We obtain the following theorem.

Theorem 3. If Assumptions A2-A5 in the Appendix hold and n(I)/n → γ ∊ [0, 1), where
n(I) denotes the number of observations of I, then we have the following results:

a. Let  and

, CD(I) can be approximated by

(2.14)

b.
;

c.
.

Theorem 3 (a) establishes the first order approximation of Cook's distance for a large class
of parametric models for both dependent and independent data. This leads to a substantial

savings in computational time, since it is computationally easier to calculate , ,

and  compared to CD(I). Theorem 3 (b) and (c) give an approximation of 
and , respectively. Generally, it is difficult to give a simple approximation

to  and , since it involves the fourth moment of 
which does not have a simple form.

Based on Theorem 3, we can approximate the scaled Cook's distance measures as follows.

Step (i). We generate a random sample Ys from  and calculate  based on the

simulated sample Ys and fixed Z, denoted by . Explicitly, to calculate , we

replace Y in , , and  by Ys. The computational burden involved in computing

 is very minor.

Compared to the exact computation of the scaled Cook's distances, we have avoided
computing the maximum likelihood estimate of θ based on Ys, which leads to great

computational savings in computing  for large S, say S > 100. Theoretically, since  is

a consistent estimate of θ*,  is a consistent estimate of .

Compared with reestimating  for each Ys, a drawback of using  in calculating  is

that  does not account for the variability in . Similar arguments hold for the other
three quantities of CD(I).

Step (ii). By repeating Step (i) S times, we can use the empirical quantities of

 to approximate , , ,
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and . Subsequently, we can approximate CSCD1(I, Z) and CSCD2(I, Z)

and determine their magnitude based on .

For instance, let  and  be, respectively, the sample mean and standard

deviation of . We calculate

We use  to approximate  and then compare  across
different I in order to determine whether a specific subset I is relatively influential or not.

Moreover, since  can be regarded as the ‘true’ scaled Cook's distance when

 is true, we can either compare  with  for all subsets Ĩ and

s or compare  with  for all s. Specifically, we calculate two
probabilities as follows:

(2.15)

(2.16)

where #(Î) is the total number of all possible sets and 1(·) is an indicator function of a set.
We regard a subset I as influential if the value of PA(I, Z) (or PB(I, Z)) is relatively large.
Similarly, we can use the same strategy to quantify the size of CSCD2(I, Z), SCD1(I), and
SCD2(I).

Another issue is the accuracy of the first order approximation  to the exact CD(I). For
relatively influential subsets, even though the accuracy of the first-order approximation may

be relatively low,  can easily pick out these influential points. Thus, for diagnostic
purposes, the first-order approximation may be more effective at identifying influential
subsets compared to the true Cook's distance. We conduct simulation studies to investigate

the performance of the first-order approximation  relative to the exact CD(I).
Numerical comparisons are given in Section 3.

We consider cluster deletion in generalized linear mixed models (GLMM). Example 2.
Consider a dataset that is composed of a response yij, covariate vectors xij(p × 1) and cij(p1 ×
1), for observations j = 1, . . . , mi within clusters i = 1, . . . , n. The GLMM assumes that
conditional on a p1 × 1 random variable bi, yij follows an exponential family distribution of
the form [18]

(2.17)
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where  in which β = (β1, . . . , βp)T and k(·) is a known continuously
differentiable function. The distribution of bi is assumed to be N(0, Σ), where Σ = Σ(γ)
depends on a p2 × 1 vector γ of unknown variance components. In this case, we fix all
covariates xij and cij and all mi and include them in Z. For simplicity, we fix (γ, τ) at an
appropriate estimate ( ) throughout the example.

We focus here on cluster deletion in GLMMs. After some calculations, the first order
approximation of CD(Ii) for deleting the i-th cluster is given by

(2.18)

where Ii = {(i, 1), . . . ,(i, mi)},  is the log-likelihood function for the i–th cluster,

 and . Note that

Then, conditional on all the covariates and {m1, . . . , mn} in Z, we can show that

 can be approximated by

 when  is true. Moreover, we

may approximate  by using the fourth moment of . It is not

straightforward to approximate  and . Computationally,
we employ the parametric bootstrap method described above to approximate the
conditionally scaled Cook's distances CSCD1(Ii, Z) and CSCD2(Ii, Z).

3. Simulation Studies and A Real Data Example
In this section, we illustrate our methodology with simulated data and a real data example.
We also include some additional results in the supplement article [27]. The code along with
its documentation for implementing our methodology is available on the first author's
website at http://www.bios.unc.edu/research/bias/software.html.

3.1. Simulation Studies
The goals of our simulations were to examine the finite sample performance of Cook's
distance and the scaled Cook's distances and their first-order approximations for detecting
influential clusters in longitudinal data. We generated 100 datasets from a linear mixed
model. Specifically, each dataset contains n clusters. For each cluster, the random effect bi

was first independently generated from a  distribution and then, given bi, the
observations yij (j = 1, . . . , mi; i = 1, . . . , n) were independently generated as

 and the mi were randomly drawn from {1, . . . 5}. The covariates xij
were set as (1, ui, tij)T, among which tij represents time and ui denotes a baseline covariate.
Moreover, tij = log(j) and the ui's were independently generated from a N(0, 1) distribution.
For all 100 datasets, the responses were repeatedly simulated, whereas we generated the
covariates and cluster sizes only once in order to fix the effect of the covariates and cluster
sizes on Cook's distance for each cluster. The true value of θ = (βT, σb, σy)T was fixed at (1,
1, 1, 1, 1)T. The sample size n was set at 12 to represent a small number of clusters.
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For each simulated dataset, we considered the detection of influential clusters [4]. We fitted
the same linear mixed model and used the expectation-maximization (EM) algorithm to

calculate  and  for each cluster I. We treated (σb, σy) as nuisance parameters and β as
the parameter vector of interest. We calculated the degree of the perturbation  for
deleting each subject {i} while fixing the covariates, and then we calculated the
conditionally scaled Cook's distances and associated quantities. Let xi be an mi × 3 matrix

with the j-th row being . It can be shown that for the case of fixed covariates, we have

(3.1)

where Eβ is taken with respect to  and , in which

 and 1mi is an mi × 1 vector with all elements one. We set

 and substituted β* by .

We carried out three experiments as follows. The first experiment was to evaluate the

accuracy of the first-order approximation to CD(I). The explicit expression of  is
given in Example S2 of the supplementary document. We considered two scenarios. In the
first scenario, we directly simulated 100 datasets from the above linear mixed model. In the
second scenario, for each simulated dataset, we deleted all the observations in clusters n – 1
and n and then reset (m1, b1) = (1, 4) and (mn, bn) = (5, 3) to generate yi,j for i = 1, n and all j
according to the above linear mixed model. Thus, the new first and n-th clusters can be
regarded as influential clusters due to the extreme values of b1 and bn. Moreover, the

number of observations in these two clusters is unbalanced. We calculated CD(I) and ,

the average CD(I), and the biases and standard errors of the differences  for
each cluster {i} (Table 1).

Inspecting Table 1 reveals three findings as follows. First, when no influential cluster is
present in the first scenario, the average CD(I) is an increasing function of ,
whereas it is only positively proportional to the cluster size n(I) with a correlation
coefficient of 0.83. This result agrees with the results of Proposition 1. Secondly, in the
second scenario, the average CD(I) for the true ’good’ clusters is positively proportional to

 with a correlation coefficient of 0.76, while that for the influential clusters is
associated with both  and the amount of influence that we introduced. Thirdly, for
the true ‘good’ clusters, the first-order approximation is very accurate and leads to small

average biases and standard errors. Even for the influential clusters,  is relatively close
to CD(I). For instance, for cluster {n}, the bias of 0.19 is relatively small compared with
0.78, the mean of CD({n}).

In the second experiment, we considered the same two scenarios as the first experiment.
Specifically, for each dataset, we approximated  and  by
setting S = 200 and using their empirical ones, and calculated their first approximations

 and . Across all 100 data sets, for each cluster I, we computed the
averages of  and , and the biases and standard errors of

the differences  and .

Table 1 shows the results for each scenario. First, in both scenarios, the average
 is an increasing function of , whereas it is only positively

proportional to the cluster size n(I) with a correlation coefficient (CC) of 0.80. This is in
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agreement with the results of Proposition 1. The average of  are positively
proportional to mi (CC=0.76) and  (CC=0.99). Secondly, for all clusters, the first-
order approximations of  and  are very accurate and lead
to small average biases and standard errors.

The third experiment was to examine the finite sample performance of Cook's distance and
the scaled Cook's distances for detecting influential clusters in longitudinal data. We
considered two scenarios. In the first scenario, for each of the 100 simulated datasets, we
deleted all the observations in cluster n and then reset mn = 1 and varied bn from 0.6 to 6.0
to generate yn,j according to the above linear mixed model. The second scenario is almost
the same as the first scenario except that we reset mn = 10. Note that when the value of bn is
relatively large, e.g., bn = 2:5, the n-th cluster is an influential cluster, whereas the n-th
cluster is not influential for small bn. A good case-deletion measure should detect the n-th
cluster as truly influential for large bn, whereas it does not for small bn. For each data set, we

approximated CSCD1(I, Z), CSCD2(I, Z), , and  by setting S =
100. Subsequently, we calculated PA(I, Z) and PB(I, Z) in (2.15) and

. Finally, across all 100 datasets, we calculated
the averages and standard errors of all diagnostic measures for the n-th cluster for each
scenario.

Inspecting Figure 1 reveals some findings as follows. First, deleting the n-th cluster with 10
observations causes a larger effect than that with 1 observation (Fig 1 (a) and (e), (d) and

(h)). As expected, the distributions of CD({n}) and  shift up as bn increases (Fig
1 (a), (b), (e), and (f)). Secondly, in the first scenario, CD({n}) is stochastically smaller than
most other CD(I)s, when the value of bn is relatively small (Fig. 1 (d)). However, in the
second scenario, CD({n}) is stochastically larger than most other CD(I)s (Fig. 1 (h)) even
for small values of bn. Specifically, when mn = 1, the average PC({n}, Z) is smaller than 0.4
as bn = 0.6 and bn = 1.2, whereas when mn = 10, the average PC({n}, Z) is higher than 0.75
even as bn = 0.6. In contrast, in the two scenarios, the value of PB({n}, Z) is close to 0.5 as
bn = 0.6 (Fig. 1 (d) and (h)). It indicates that the cluster size does not have a big effect on the

distribution of  (Fig. 1 (c) and (g)).

3.2. Yale Infant Growth Data
The Yale infant growth data were collected to study whether cocaine exposure during
pregnancy may lead to the maltreatment of infants after birth, such as physical and sexual
abuse. A total of 298 children were recruited from two subject groups (cocaine exposed
group and unexposed group). One feature of this dataset is that the number of observations
per children mi varies significantly from 2 to 30 [22, 21]. The total number of data points is

. Following Zhang [26], we considered two linear mixed models given by

, where yi,j is the weight (in kilograms) of the j-th visit from the i-th subject, xi,j
= (1, di,j, (di,j – 120)+, (di,j – 200)+, (gi – 28)+, di,j(gi – 28)+, di,j(gi – 28)+, (di,j – 60)+ (gi –
28)+, (di,j – 490)+(gi – 28)+, sidi,j, si(di,j – 120)+)T, in which di,j and gi (days) are the age of
visit and gestational age, respectively, and si is the indicator for gender. In addition, we
assumed εi = (εi,1, . . . , εi,mi)

T ~ Nmi (0, Ri(α)), where α is a vector of unknown parameters

in Ri(α). We first considered . We refer to this model as model M1.
Then, it is assumed that variance and autocorrelation parameters are, respectively, given by
V(d) = exp(α0 + α1d + α2d2 + α3d3) and ρ(l) = α4 + α5l, where l is the lag between two
visits. We refer to this model as model M2.
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We systematically examined the key assumptions of models M1 and M2 as follows. (i) We
presented a cumulative residual plot and calculated the cumulative sums of residuals over

the age of the visit to test  [17], whose p-value is greater than 0.543. It may suggest that
the mean structure is reasonable. The cumulative residual plot is given in Figure 2 (b).

(ii) For model M1, inspecting the plot of raw residuals  against age in Figure 2
(c) reveals that the variance of the raw residuals appears to increase with the age of visit. As
pointed by Zhang [26], it may be more sensible to use model M2. Let

 be the vector of standardized residuals of M2, where ri =
(ri,1, . . . , ri,mi)

T. The standardized residuals under M2 do not have any apparent structure as
age increases (Figure 2 (d)).

(iii) Under each model, we calculated CD(I) for each child [4]. We treated β as parameters
of interest and all elements of α as nuisance parameters. For model M1, we obtained a
strong Pearson correlation of 0.363 between Cook's distance and the cluster size. This
indicates that the bigger the cluster size, the larger the Cook's distance measure. Figure 4 (b)
highlights the top ten influential subjects. Compared with model M1, we observed similar
findings by using CD(I) under model M2, which were omitted for space limitations.

There are several difficulties in using Cook's distance under both models M1 and M2 [19, 7,
4, 3]. First, cluster size varies significantly across children and deleting a larger cluster may
have a higher probability of having a larger influence as discussed in Section 2.3. For
instance, we observe (m285, CD({285})) = (8, 0.738) and (m274, CD({274})) = (22, 1.163).
A larger CD({274}) can be caused by a larger m274 = 22 and/or influential subject 274,
among others. Since m274 is much larger than m285, it is difficult to claim that subject 274 is
more influential than subject 285. Secondly, there is no rule for determining whether a
specific subject is influential relative to the fitted model. Specifically, it is unclear whether
the subjects with larger CD({i}) are truly influential or not. Thirdly, inspecting Cook's
distance solely does not seem to delineate the potential misspecification of the covariance
structure under model M1. We will address these three difficulties by using the new case-
deletion measures.

(iv) Under each model, we calculated  for deleting each subject {i} for fixed
covariates, and then we calculated the conditionally scaled Cook's distances and associated
quantities. We then used 1000 bootstrap samples to approximate CSCD1(I, Z) and CSCD2(I,
Z). Subsequently, we calculated PA(I, Z) and PB(I, Z) in (2.15).

We observed several findings. First, under model M1, we observed a strong positive
correlation between  and mi (Fig. 3 (a)). Secondly, even though m269 = 12 is
moderate, subject 269 has the largest degree of perturbation. Inspecting the raw data in
Figure 2 (a) reveals that subject 269 is of older age during visits compared with other
subjects. Thirdly, we also observed a strong positive correlation between  and the
Cook's distance (Fig. 3 (b)), which may indicate their stochastic relationship as discussed in
Section 2.3. Fourthly, we observed a positive correlation between Cook's distance and the
conditionally scaled Cook's distance (Fig. 3(b) and (c)), but their levels of influence for the
same subject are quite different. For instance, the magnitude of CSCD1({269}, Z) is only
moderate, whereas CD1({269}, Z) is the highest one. We observed similar findings under
model  and presented some findings in Figure 3 (d) and (e).

We used PB(I, Z) to quantify whether a specific subject is influential relative to the fitted
model  (Fig. 3 (f)). For instance, since CD({246}) = 0.253, it is unclear whether subject
246 is influential or not according to CD, whereas we have CSCD1({246}, Z) = 21.443 and
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PB({246}, Z) = 1.0. Thus, subject 246 is really influential after eliminating the effect of the
cluster size. Moreover, it is difficult to compare the influential levels of subjects 274 and
285 using CD. All of the conditionally scaled Cook's distances and associated quantities
suggest that subject 274 is more influential than subject 285 after eliminating the degree of
perturbation difference. We observed similar findings under model  and omitted them
due to space limitations. See Figure 3 (d) and (e) for details.

We compared the goodness of fit of models  and  to the data by using the proposed
case-deletion measures. First, inspecting Figure 3 (d) reveals a strong similarity between the
degrees of perturbation under models  and  for all subjects. Secondly, by using the
conditionally scaled Cook's distance, we observed the different levels of influence for the
same subject under  and . For instance, CSCD1(I, Z) identifies subjects 246, 141, 109,
193 and 31 as the top five influential subjects under , whereas it identifies subjects 274,
217, 90, 109, and 289 as the top ones under . Finally, examining PB(I, Z) reveals a large
percentage of influential points for model , but a small percentage of influential points
for model . See Figure 3 (f) for details. This may indicate that model  outperforms
model . Furthermore, although we may develop goodness-of-fit statistics based on the
scaled Cook's distances and show that model  outperforms model , this will be a topic
of our future research.

In summary, the use of the new case-deletion measures provides new insights in real data
analysis. First,  explicitly quantifies the degree of perturbation introduced by
deleting each subject. Secondly, CSCDk(I, Z) for k = 1, 2 explicitly account for the degree
of perturbation for each subject. Thirdly, PB(I, Z) allows us to quantify whether a specific
subject is influential relative to the fitted model. Fourthly, inspecting PB(I, Z) and CSCDk(I,
Z) may delineate the potential misspecification of the covariance structure under model M1.

4. Discussion
We have introduced a new quantity to quantify the degree of perturbation and examined its
properties. We have used stochastic ordering to quantify the relationship between the degree
of the perturbation and the magnitude of Cook's distance. We have developed several scaled
Cook's distances to address the fundamental issue of deletion diagnostics in general
parametric models. We have shown that the scaled Cook's distances provide important
information about the relative influential level of each subset. Future work includes
developing goodness-of-fit statistics based on the scaled Cook's distances, developing
Bayesian analogs to the scaled Cook's distances, and developing user-friendly R code for
implementing our proposed measures in various models, such as survival models and
models with missing covariate data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
The following assumptions are needed to facilitate the technical details, although they are
not the weakest possible conditions. Because we develop all results for general parametric
models, we only assume several high-level assumptions as follows.

Assumption A2.  for any I is a consistent estimate of θ* ∈ Θ.

Assumption A3. All p(Y[I]|θ) are three times continuously differentiable on Θ and satisfy

in which |R[I](θ)| = op(1) uniformly for all , where

 and .

Assumption A4. For any I and Z, ,

and .

Assumption A5. For any set I and Z,

Remarks: Assumptions A2-A5 are very general conditions and are generalizations of some
higher level conditions for the extremum estimator, such as the maximum likelihood
estimate, given in Andrews [2]. Assumption A2 assumes that the parameter estimators with
and without deleting the observations in the subset I are consistent. Assumption A3 assumes
that the log-likelihood functions for any I and Y[I] admit a second-order Taylor's series
expansion in a small neighborhood of θ*. Assumptions A4 and A5 are standard assumptions
to ensure that the first- and second-order derivatives of p(Y[I]|θ) and p(YI|Y[I], θ) have
appropriate rates of n and nI [2, 28]. Sufficient conditions of Assumptions A2-A5 have been
extensively discussed in the literature [2, 28].

Proof of Theorem 1. (P.a) directly follows from the Jensen inequality, (2.6) and (2.7). For
(P.b), if I is an empty set, then KL(Y, θ|I) ≡ 0 and thus . On the other hand, if

, then KL(Y, θ|I) ≡ 0 for almost every θ. Thus, by using the Jensen inequality,
we have p(YI|Y[I], θ) ≡ p(YI|Y[I], θ*) for all θ ∈ Θ. Based on the identifiability condition,
we know that I must be an empty set. Let I1·2 = I1 – I2. It is easy to show that
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Thus, by substituting the above equation into (2.6), we have

(4.1)

in which the second term on the right hand side can be written as

which yield (P.c). Based on the assumption of (P.d), we know that

for all θ. Thus, the second term on the right hand side of (4.1) reduces to , which
finishes the proof of (P.d).

Proof of Theorem 2. (a) Let I3 = I1 \ I2, I1 is a union of two disjoint sets I3 and I2. Without
loss of generality, HI1 can be decomposed as

Let λ1,1 ≥ . . . ≥ λ1,n(I1) ≥ 0 and λ2,1 ≥ . . . ≥ λ2,n(I2) ≥ 0 be ordered eigenvalues of HI1 and
HI2, respectively, where n(Ik) denotes the number of observations in Ik for k = 1, 2. It
follows from Wielandt's eigenvalue inequality [13] that λ1,l ≥ λ2,l for all l = 1, . . . , n(I2).

For k = 1, 2, we define  as the spectral decomposition of HIk and

, where Γk is an orthnormal matrix and Λk =
diag(λk,1, . . . , λk,n(Ik)). It can be shown that for k = 1, 2,

Since f(x) = x/(1 – x) is an increasing function of x ∈ (0, 1), this completes the proof of
Theorem 2 (a).

Note that , where λj are the eigenvalues of HI and h =
(h1, . . . , hn(I))T ~ N(0, σ2In(I)). Moreover, the distribution of λ is uniquely determined by
HI. Combining h ~ N(0, σ2In(I)) with the assumptions of Theorem 2 (b) yields that CD(I)
and CD(I′) follow the same distribution when n(I) = n(I′). Furthermore, we can always
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choose an  such that  and . Following arguments in Theorem 2 (a), we
can then complete the proof of Theorem 2 (b).

Proof of Theorem 3. (a) It follows from a Taylor's series expansion and assumption A3 that

where  for t ∈ [0, 1]. Combining this with Assumption A4 and the fact that

, we get

(4.2)

Substituting (4.2) into  completes the proof of Theorem 3
(a).

(b) It follows from Assumptions A2-A4 that

Let . Using a Taylor's series expansion along with Assumptions A4
and A5, we get

(4.3)

Since ,

It follows from Assumption A4 that for θ in a neighborhood of θ*, Fn(θ) and Fn(θ*) – fI(θ)
can be replaced by  and , respectively, which completes
the proof of Theorem 3 (b).

(c) Similar to Theorem 3 (b), we can prove Theorem 3 (c).
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Fig 1.
Simulation results from 100 datasets simulated from a linear mixed model in the two
scenarios. The first row corresponds to the first scenario, in which m12 = 1 and b12 varies
from 0.6 to 6.0. The second row corresponds to the second scenario, in which m12 = 10 and
b12 varies from 0.6 to 6.0. Panels (a) and (e) show the box plots of Cook's distances as a
function of b12; panels (b) and (f) show the box plots of CSCD1(I, Z) as a function of b12;
panels (c) and (g) show the box plots of PB(I, Z) as a function of b12; panels (d) and (h)
show the mean curve of PB(I, Z) based on CSCD1(I, Z) (red line) and the mean curve of
PC(I, Z) based on CD(I) (green line) as functions of b12.
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Fig 2.
Yale infant growth data. Panel (a) presents the line plot of infant weight against age, in
which the observations of subject 269 are highlighted; panel (b) shows the cumulative
residual curve versus age, in which the observed cumulative residual curve is highlighted in
blue; and panels (c) and (d), respectively, present age versus raw residual and age versus
standardized residual for cluster deletion.
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Fig 3.
Yale infant growth data. Panel (a) shows mi versus , in which the ten subjects with
the largest values of degree of perturbation or cluster size are highlighted; panel (b) shows

 versus CD(I), in which the top ten influential subjects are highlighted; panel (c)
shows  versus CSCD1(I, Z), in which the top eleven influential subjects are
highlighted; and panels (d), (e), and (f), respectively, show , CSCD1(I, Z), and PB(I,
Z) for models  and .
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