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Abstract
Motivated by recent work studying massive imaging data in the neuroimaging literature, we
propose multivariate varying coefficient models (MVCM) for modeling the relation between
multiple functional responses and a set of covariates. We develop several statistical inference
procedures for MVCM and systematically study their theoretical properties. We first establish the
weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic
bias and variance, and then we derive asymptotic bias and mean integrated squared error of
smoothed individual functions and their uniform convergence rate. We establish the uniform
convergence rate of the estimated covariance function of the individual functions and its
associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of
varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We
also propose a simultaneous confidence band for each individual effect curve. We conduct Monte
Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply
MVCM to investigate the development of white matter diffusivities along the genu tract of the
corpus callosum in a clinical study of neurodevelopment.
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1. Introduction
With modern imaging techniques, massive imaging data can be observed over both time and
space [41, 17, 37, 4, 19, 25]. Such imaging techniques include functional magnetic
resonance imaging (fMRI), electroencephalography (EEG), diffusion tensor imaging (DTI),
positron emission tomography (PET), and single photon emission-computed tomography
(SPECT) among many other imaging techniques. See, for example, a recent review of
multiple biomedical imaging techniques and their applications in cancer detection and
prevention in Fass [17]. Among them, predominant functional imaging techniques including
fMRI and EEG have been widely used in behavioral and cognitive neuroscience to
understand functional segregation and integration of different brain regions in a single
subject and across different populations [19, 18, 29]. In DTI, multiple diffusion properties
are measured along common major white matter fiber tracts across multiple subjects to
characterize the structure and orientation of white matter structure in human brain in vivo [2,
3, 54].

A common feature of many imaging techniques is that massive functional data are observed/
calculated at the same design points, such as time for functional images (e.g., PET and
fMRI). As an illustration, we present two smoothed functional data as an illustration and a
real imaging data in Section 6, that we encounter in neuroimaging studies. First, we plot two
diffusion properties, called fractional anisotropy (FA) and mean diffusivity (MD), measured
at 45 grid points along the genu tract of the corpus callosum (Figs. 1 (a) and (b)) from 40
randomly selected infants from a clinical study of neurodevelopment with more than 500
infants. Scientists are particularly interested in delineating the structure of the variability of
these functional FA and MD data and their association with a set of covariates of interest,
such as age. We will systematically investigate the development of FA and MD along the
genu of the corpus callosum tract in Section 6. Secondly, we consider the BOLD fMRI
signal, which is based on hemodynamic responses secondary to neural activity. We plot the
estimated hemodynamic response functions (HRF) corresponding to two stimulus categories
from 14 randomly selected subjects at a selected voxel of a common template space from a
clinical study of Alzheimer’s disease with more than 100 infants. Although the canonical
form of the HRF is often used, when applying fMRI in a clinical population with possibly
altered hemodynamic responses (Figs. 1 (c) and (d)), using the subject’s own HRF in fMRI
data analysis may be advantageous because HRF variability is greater across subjects than
across brain regions within a subject [34, 1]. We are particularly interested in delineating the
structure of the variability of the HRF and their association with a set of covariates of
interest, such as diagnostic group [33].

A varying-coefficient model, which allows its regression coefficients to vary over some
predictors of interest, is a powerful statistical tool for addressing these scientific questions.
Since it was systematically introduced to statistical literature by Hastie and Tibshirani [24],
many varying-coefficient models have been widely studied and developed for longitudinal,
time series, and functional data [13, 48, 12, 15, 44, 26, 38, 28, 27, 51, 23]. However, most
varying-coefficient models in the existing literature are developed for univariate response.
Let yi(s) = (yi1(s), …, yiJ (s))T be a J-dimensional functional response vector for subject i, i
= 1, …, n, and xi be its associated p × 1 vector of covariates of interest. Moreover, s varies
in a compact subset of Euclidean space and denotes the design point, such as time for
functional images and voxel for structural and functional images. For notational simplicity,
we assume s ∈ [0, 1], but our results can be easily extended to higher dimensions. A
multivariate varying coefficient model (MVCM) is defined as

(1.1)
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where Bj(s) = (bj1(s), …, bjp(s))T is a p × 1 vector of functions of s, εij(s) are measurement

errors, and ηij(s) characterizes individual curve variations from . Moreover, {ηij(s) :
s ∈ [0, 1]} is assumed to be a stochastic process indexed by s ∈ [0, 1] and used to
characterize the within-curve dependence. For image data, it is typical that the J functional
responses yi(s) are measured at the same location for all subjects and exhibit both the within-
curve and between-curve dependence structure. Thus, for ease of notation, it is assumed
throughout this paper that yi(s) was measured at the same M location points s1 = 0 ≤ s2 ≤ …
≤ sM = 1 for all i.

Most varying coefficient models in the existing literature coincide model (1.1) with J = 1
and without the within-curve dependence. Statistical inferences for these varying coefficient
models have been relatively well studied. Particularly, Hoover et al. [26] and Wu, Chiang
and Hoover [47] were among the first to introduce the time-varying coefficient models for
analysis of longitudinal data. Recently, Fan and Zhang [15] gave a comprehensive review of
various statistical procedures proposed for many varying coefficient models. It is of
particular interest in data analysis to construct simultaneous confidence bands (SCB) for any
linear combination of Bj instead of point-wise confidence intervals and to develop global
test statistics for the general hypothesis testing problem on Bj. For univariate varying
coefficient models without the within-curve dependence, Fan and Zhang [14] constructed
SCB using the limit theory for the maximum of the normalized deviation of the estimate
from its expected value. Faraway [16], Chiou, Muller and Wang [8], and Cardot [5]
proposed several varying coefficient models and their associated estimators for univariate
functional response, but they did not give functional central limit theorem and simultaneous
confidence band for their estimators. It has been technically difficult to carry out statistical
inferences including simultaneous confidence band and global test statistic on Bj in the
presence of the within-curve dependence.

There have been several recent attempts to solve this problem in various settings. For time
series data, which may be viewed as a case with n = 1 and M → ∞, asymptotic SCB for
coefficient functions in varying coefficient models can be built by using local kernel
regression and a Gaussian approximation result for non-stationary time series [52]. For
sparse irregular longitudinal data, Ma, Yang and Carroll [35] constructed asymptotic SCB
for the mean function of the functional regression model by using piecewise constant spline
estimation and a strong approximation result. For functional data, Degras [9] constructed
asymptotic SCB for the mean function of the functional linear model without considering
any covariate, while Zhang and Chen [51] adopted the method of “smoothing first, then
estimation” and propose a global test statistic for testing Bj, but their results cannot be used
for constructing SCB for Bj. Recently, Cardot et al. [7], Cardot and Josserand [6] built
asymptotic SCB for Horvitz-Thompson estimators for the mean function, but their models
and estimation methods differ significantly from ours.

In this paper, we propose an estimation procedure for the multivariate varying coefficient
model (1.1) by using local linear regression techniques, and derive a simultaneous
confidence band for the regression coefficient functions. We further develop a test for linear
hypotheses of coefficient functions. The major aim of this paper is to investigate the
theoretical properties of the proposed estimation procedure and test statistics. The theoretical
development is challenging but of great interest for carrying out statistical inferences on Bj.
The major contributions of this paper are summarized as follows. We first establish the weak
convergence of the local linear estimator of Bj, denoted by B̂j, by using advanced empirical
process methods [42, 31]. We further derive the bias and asymptotic variance of B̂j. These
results provide insight into how the direct estimation procedure for Bj using observations
from all subjects outperforms the estimation procedure with the strategy of “smoothing first,
then estimation.”. After calculating B̂j, we reconstruct all individual functions ηij and
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establish their uniform convergence rates. We derive uniform convergence rates of the
proposed estimate for the covariance matrix of ηij and its associated eigenvalue and
eigenvector functions by using related results in Li and Hsing [32]. Using the weak
convergence of the local linear estimator of Bj, we further establish the asymptotic
distribution of a global test statistic for linear hypotheses of the regression coefficient
functions, and construct an asymptotic SCB for each varying coefficient function.

The rest of this paper is organized as follows. In Section 2, we describe MVCM and its
estimation procedure. In Section 3, we propose a global test statistic for linear hypotheses of
the regression coefficient functions and construct an asymptotic SCB for each coefficient
function. In Section 4, we discuss the theoretical properties of estimation and inference
procedures. Two sets of simulation studies are presented in Section 5 with the known ground
truth to examine the finite sample performance of the global test statistic and SCB for each
individual varying coefficient function. In Section 6, we use MVCM to investigate the
development of white matter diffusivities along the genu tract of the corpus callosum in a
clinical study of neurodevelopment.

2. Estimation Procedure
Throughout this paper, we assume that εi(s) = (εi1(s), …, εiJ (s))T and ηi(s) = (ηi1(s), …, ηiJ
(s))T are mutually independent, and ηi(s) and εi(s) are independent and identical copies of
SP(0, Ση) and SP(0, Σε), respectively, where SP(μ, Σ) denotes a stochastic process vector
with mean function μ(t) and covariance function Σ(s, t). Moreover, εi(s) and εi(t) are
assumed to be independent for s ≠ t and Σε(s, t) takes the form of Sε(t)1(s = t), where Sε(t) =
(sε,jj′(t)) is a J × J matrix of functions of t and 1(·) is an indicator function. Therefore, the
covariance structure of yi (s), denoted by Σy(s, t), is given by

(2.1)

2.1. Estimating varying coefficient functions
We employ local linear regression [11] to estimate the coefficient functions Bj. Specifically,
we apply the Taylor expansion for Bj(sm) at s as follows

(2.2)

where zh (sm − s) = (1, (sm − s)/h)T and Aj(s) = [Bj(s) h1j Ḃj(s)] is a p × 2 matrix, in which
Ḃj(s) = (ḃj1(s), …, ḃjp(s))T is a p × 1 vector and ḃjl(s) = dbjl(s)/ds for l = 1, …, p. Let K(s) be
a kernel function and Kh(s) = h−1K(s/h) be the rescaled kernel function with a bandwidth h.
We estimate Aj(s) by minimizing the following weighted least squares function:

(2.3)

Let us now introduce some matrix operators. Let a⊗2 = aaT for any vector a and C⊗D be
the Kronecker product of two matrices C and D. For an M1 × M2 matrix C = (cjl), denote
vec(C) = (c11, …, c1M2, …, cM11, …, cM1M2)T. Let Âj(s) be the minimizer of (2.3). Then

(2.4)
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where . Thus, we have

(2.5)

where Ip is a p × p identity matrix.

In practice, we may select the bandwidth h1j by using leave-one-curve-out-cross-validation.
Specifically, for each j, we pool the data from all n subjects and select a bandwidth h1j,
denoted by ĥ1j, by minimizing the cross-validation score given by

(2.6)

where B ̂j(s, h1j)(−i) is the local linear estimator of Bj(s) with the bandwidth h1j based on data
excluding all the observations from the i-th subject.

2.2. Smoothing individual functions
By assuming certain smoothness conditions on ηij(s), we also employ the local linear
regression technique to estimate all individual functions ηij(s) [11, 43, 49, 38, 45, 51].
Specifically, we have the Taylor expansion for ηij(sm) at s:

(2.7)

where dij(s) = (ηij(s), h2jη̇ij(s))T is a 2 × 1 vector. We develop an algorithm to estimate dij(s)
as follows. For each i and j, we estimate dij(s) by minimizing the weighted least squares
function.

(2.8)

Then, ηij(s) can be estimated by

(2.9)

where K̃h2j (s) are the empirical equivalent kernels and d̂ij(s) is given by

Finally, let Sij be the smoother matrix for the j-th measurement of the i-th subject [11], we
can obtain

(2.10)

where .
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A simple and efficient way to obtain h2j is to use generalized cross-validation method. For
each j, we pool the data from all n subjects and select the optimal bandwidth h2j, denoted by
ĥ2j, by minimizing the generalized cross-validation score given by

(2.11)

Based on ĥ2j, we can use (2.9) to estimate ηij(s) for all i and j.

2.3. Functional principal component analysis
We consider a spectral decomposition of Ση(s, t) = (Ση,jj′(s, t)) and its approximation.
According to Mercer’s theorem [36], if Ση(s, t) is continuous on [0, 1] × [0, 1], then Ση,jj(s,
t) admits a spectral decomposition. Specifically, we have

(2.12)

for j = 1, …, J, where λj1 ≥ λj2 ≥ … ≥ 0 are ordered values of the eigenvalues of a linear

operator determined by Ση,jj with  and the ψjl(t)’s are the corresponding
orthonormal eigenfunctions (or principal components) [32, 50, 22]. The eigenfunctions form
an orthonormal system on the space of square-integrable functions on [0, 1] and ηij(t) admits

the Karhunen-Loeve expansion as  is referred
to as the (jl)-th functional principal component scores of the i-th subject. For each fixed (i,

j), the ξijls are uncorrelated random variables with E(ξijl) = 0 and . Furthermore,
for j ≠ j′, we have

After obtaining η̂i(s) = (η̂i1(s), …, η̂iJ (s))T, we estimate Ση(s, t) by using the empirical
covariance of the estimated η̂i(s) as follows:

Following Rice and Silverman [39], we can calculate the spectral decomposition of Σ̂η,jj(s, t)
for each j as follows:

(2.13)

where λ̂j1 ≥ λ̂j2 ≥ … ≥ 0 are estimated eigenvalues and the ψ̂jl(t)’s are the corresponding
estimated principal components. Furthermore, the (j, l)-th functional principal component

scores can be computed using  for i = 1, …, n. We
further show the uniform convergence rate of Σ̂η(s, t) and its associated eigenvalues and
eigenfunctions. This result is useful for constructing the global and local test statistics for
testing the covariate effects.
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3. Inference Procedure
In this section, we study global tests for linear hypotheses of coefficient functions and SCB
for each varying coefficient function. They are essential for statistical inference on the
coefficient functions.

3.1. Hypothesis test
Consider the linear hypotheses of B(s) as follows:

(3.1)

where B(s) = [B1(s),…,BJ (s)], C is a r × Jp matrix with rank r, and b0(s) is a given r ×1
vector of functions. Define a global test statistic Sn as

(3.2)

where  and d(s) = Cvec(B̂(s) − bias(B̂(s))) − b0(s).

To calculate Sn, we need to estimate the bias of B̂j (s) for all j. Based on (2.5), we have

(3.3)

By using Taylor’s expansion, we have

where B ̈j(s) = d2Bj(s)/ds2 and B⃛j(s) = d3Bj(s)/ds3. Following the preasymptotic substitution
method of Fan and Gijbels [11], we replace Bj(sm) − Âj(s)zh1j (sm − s) by

, in which  are estimators obtained by
using local cubic fit with a pilot bandwidth selected in (2.6).

It will be shown below that the asymptotic distribution of Sn is quite complicated and it is
difficult to directly approximate the percentiles of Sn under the null hypothesis. Instead, we
propose using a wild bootstrap method to obtain critical values of Sn. The wild bootstrap
consists of the following three steps.

Step 1. Fit model (1.1) under the null hypothesis H0, which yields B̂* (sm),

 for i = 1, …, n and m = 1, …, M.

Step 2. Generate a random sample  and τi(sm)(g) from a N(0, 1) generator for i = 1, …, n
and m = 1, …, M and then construct

Then, based on ŷi(sm)(g), we recalculate B̂(s)(g), bias(B̂(s)(g)), and d(s)(g) = Cvec(B̂(s)(g) −
bias(B̂(s)(g))) − b0(s). We also note that Cvec(B̂(s)(g)) ≈ b0 and Cvec(bias(B̂(s)(g))) ≈ 0.
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Thus, we can drop the term bias(B̂(s)(g)) in d(s)(g) for computational efficiency.
Subsequently, we compute

Step 3. Repeat Step 2 G times to obtain  and then calculate

. If p is smaller than a pre-specified significance level α, say 0.05,
then one rejects the null hypothesis H0.

3.2. Simultaneous confidence bands
Construction of SCB for coefficient functions is of great interest in statistical inference for
model (1.1). For a given confidence level α, we construct SCB for each bjl(s) as follows:

(3.4)

where  are the lower and upper limits of SCB. Specifically, it will be
shown below that a 1 − α simultaneous confidence band for bjl(s) is given as follows:

(3.5)

where Cjl(α) is a scalar. Since the calculation of b̂jl(s) and bias(b̂jl(s)) has been discussed in
(2.5) and (3.3), the next issue is to determine Cjl(α).

Although there are several methods of determining Cjl(α) including random field theory [46,
40], we develop an efficient resampling method to approximate Cjl(α) as follows [53, 30].

• We calculate  for all i, j, and m.

• For g = 1, …, G, we independently simulate  from N(0, 1) and
calculate a stochastic process Gj(s)(g) given by

• We calculate sups∈[0, 1] |elGj(s)(g)| for all g, where el be a p × 1 vector with the l-th
element 1 and 0 otherwise, and use their 1 − α empirical percentile to estimate
Cjl(α).

4. Asymptotic Properties
In this section, we systematically examine the asymptotic properties of B̂(s), η̂ij(s), Σ̂η(s, t),
and Sn developed in Sections 2 and 3. Let us first define some notation. Let ur(K) = ∫ tr

K(t)dt and υr(K) = ∫ tr K2(t)dt, where r is any integer. For any smooth functions f(s) and g(s,
t), define ḟ(s) = df(s)/ds, f ̈(s) = d2f(s)/ds2, f⃛ (s) = d3f(s)/ds3, and g(a,b)(s, t) = ∂a+bg(s, t)/
∂as∂bt, where a and b are any nonnegative integers. Let H = diag(h11, …, h1J), B(s) = [B1(s),
…, BJ (s)], B̂ (s) = [B̂1(s), …, B̂J (s)] and B̈(s) = [B̈1(s), …, B̈J (s)], where B̈j(s) = (b̈j1(s), …,
b̈jp(s))T is a p × 1 vector. Let S = {s1, …, sM}.
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4.1. Assumptions
Throughout the paper, the following assumptions are needed to facilitate the technical
details, although they may not be the weakest conditions. We need to introduce some
notation. Let N(μ, Σ) be a normal random vector with mean μ and covariance Σ. Let Ω1(h, s)
= ∫(1, h−1(u − s))⊗2 K(u − s, h)π(u)du. Moreover, we do not distinguish the differentiation
and continuation at the boundary points from those in the interior of [0, 1]. For instance, a
continuous function at the boundary of [0, 1] means that this function is left continuous at 0
and right continuous at 1.

Assumption (C1). For all j = 1, …, J, supsm E[|εij(sm)|q] < ∞ for some q > 4 and all grid
points sm.

Assumption (C2). Each component of {η (s) : s ∈ [0, 1]}, {η(s)η(t)T : (s, t) ∈ [0, 1]2}, and
{xηT (s) : s ∈ [0, 1]} are Donsker classes.

Assumption (C3). The covariate vectors xis are independently and identically distributed

with Exi = μx and ‖xi‖∞ < ∞. Assume that  is positive definite.

Assumption (C4). The grid points = {sm, m = 1, …, M} are randomly generated from a
density function π(s). Moreover, π(s) > 0 for all s ∈ [0, 1] and π(s) has continuous second-
order derivative with the bounded support [0, 1].

Assumption (C4b). The grid points = {sm, m = 1, …, M} are prefixed according to π(s)

such that  for M ≥ m ≥ 1. Moreover, π(s) > 0 for all s ∈ [0, 1] and π(s) has
continuous second-order derivative with the bounded support [0, 1].

Assumption (C5). The kernel function K (t) is a symmetric density function with a compact
support [−1, 1], and is Lipschitz continuous. Moreover, 0 < infh∈(0,h0],s∈[0, 1] det(Ω1(h, s)),
where h0 > 0 is a small scalar and det(Ω1(h, s)) denotes the determinant of Ω1(h, s).

Assumption (C6). All components of B(s) have continuous second derivatives on [0, 1].

Assumption (C7). Both n and M converge to ∞, maxj h1j = o(1), Mh1j → ∞, and

 for j = 1, …, J, where q1 ∈ (2, 4).

Assumption (C7b). Both n and M converge to ∞, maxj h1j = o(1), Mh1j → ∞, and log(M) =

o(Mh1j). There exists a sequence of γn > 0 such that γn → ∞,  and
n−1/2γn log(M) = o(1).

Assumption (C8). For all j, maxj(h2j)−4(log n/n)1−2/q2 = o(1) for q2 ∈ (2, ∞), maxj h2j =
o(1), and Mh2j → ∞ for j = 1, …, J.

Assumption (C9a). The sample path of ηij(s) has continuous second-order derivative on [0,

1] and  and E{sups∈[0,1][‖η̇ (s)‖2+‖η̈(s)‖2]r2} < ∞ for some r1, r2 ∈
(2,∞), where ‖·‖2 is the Euclidean norm.

Assumption (C9b).  for some r1 ∈ (2, ∞) and all components of
Ση(s, t) have continuous second-order partial derivatives with respect to (s, t) ∈ [0, 1]2 and
infs∈[0,1] Ση(s, s) > 0.

Assumption (C10). There is a positive fixed integer Ej < ∞ such that λj,1 > … > λj,Ej >
λj,Ej+1 ≥ … ≥ 0 for j = 1, …, J.
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Remark. Assumption (C1) requires the uniform bound on the high-order moment of εij(sm)
for all grid points sm. Assumption (C2) avoids smoothness conditions on the sample path
η(s), which are commonly assumed in the literature [9, 51, 22]. Assumption (C3) is a
relatively weak condition on the covariate vector and the boundedness of ‖xi‖2 is not
essential. Assumption (C4) is a weak condition on the random grid points. In many
neuroimaging applications, M is often much larger than n and for such large M, a regular
grid of voxels is fairly well approximated by voxels generated by a uniform distribution in a
compact subset of Euclidean space. For notational simplicity, we only state the theoretical
results for the random grid points throughout the paper. Assumption (C4b) is a weak
condition on the fixed grid points. We will prove several key results for the fixed grid point
case in Lemma 8 of the supplementary document. The bounded support restriction on K(·) in
Assumption (C5) is not essential and can be removed if we put a restriction on the tail of
K(·). Assumption (C6) is the standard smoothness condition on B(s) in the literature [13, 48,
12, 15, 44, 26, 38, 28, 27, 51, 23]. Assumptions (C7)–(C8) on bandwidths are similar to the
conditions used in [32, 10]. Assumptions (C7b) is a weak condition on n, M, h1j, and γn for
the fixed grid point case. For instance, if we set γn = n1/2 log(M)−1−c0 for a positive scalar c0

> 0, then we have  and n−1/2γn log(M) =
log(M)−c0 = o(1). As shown in Theorem 1 below, if h1j = O((nM)−1/5) and γn = n1/2

log(M)−1−c0,  reduces to n6/5−q/2 log(M)(1+c0)(q−1)M1/5. For relatively large q in
Assumption (C1), n6/5−q/2 log(M)(1+c0)(q−1)M1/5 can converge to zero. Assumptions (C9a)
and (C3) are sufficient conditions of assumption (C2). Assumption (C9b) on the sample path
is the same as Condition C6 used in [32]. Particularly, if we use the method for estimating
Ση(s, s′) considered in Li and Hsing [32], then the differentiability of η(s) in Assumption
(C9a) can be dropped. Assumption (C10) on simple multiplicity of the first Ej eigenvalues is
only needed to investigate the asymptotic properties of eigenfunctions.

4.2. Asymptotic properties of B̂(s)
The following theorem establishes the weak convergence of {B̂(s), s ∈ [0, 1]}, which is
essential for constructing global test statistics and SCB for B(s).

Theorem 1. Suppose that Assumptions (C1)–(C7) hold. The following results hold:

i.  converges weakly

to a centered Gaussian process G(·) with covariance matrix  , where
ΩX = E[x⊗2] and U2(K; s, H) is a J × J diagonal matrix, whose diagonal elements
will be defined in Lemma 5 in Appendix.

ii. The asymptotic bias and conditional variance of B̂j(s) given for s ∈ (0, 1) are

given by  , respectively.

Remarks. 1. The major challenge in proving Theorem 1 (i) is dealing with within-subject
dependence. This is because the dependence between η(s) and η(s′) in the newly proposed
multivariate varying coefficient model does not converge to zero due to the within-curve
dependence. It is worth noting that for any given s, the corresponding asymptotic normality
of B̂(s) may be established by using related techniques in Zhang and Chen [51]. However,
the marginal asymptotic normality does not imply the weak convergence of B̂(s) as a
stochastic process in [0, 1], since we need to verify the asymptotic continuity of {B̂(s) : s ∈
[0, 1]} to establish its weak convergence. In addition, Zhang and Chen [51] considered
“smoothing first, then estimation”, which requires a stringent assumption such that n =
O(M4/5). Readers are referred to Condition A.4 and Theorem 4 in Zhang and Chen [51] for
more details. In contrast, directly estimating B(s) using local kernel smoothing avoids such
stringent assumption on the numbers of grid points and subjects.
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2. Theorem 1 (ii) only provides us the asymptotic bias and conditional variance of B̂j(s)
given for the interior points of (0, 1). The asymptotic bias and conditional variance at the
boundary points 0 and 1 are given in Lemma 5. The asymptotic bias of B̂j(s) is of the order

, as the one in nonparametric regression setting. Moreover, the asymptotic conditional
variance of B̂j(s) has a complicated form due to the within-curve dependence. The leading
term in the asymptotic conditional variance is of order n−1, which is slower than the standard
nonparametric rate (nMh1j)−1 with the assumption h1j → 0 and Mh1j → ∞.

3. Choosing an optimal bandwidth h1j is not a trivial task for model (1.1). Generally, any
bandwidth h1j satisfying the assumption h1j → 0 and Mh1j → ∞ can ensure the weak
convergence of {B̂(s) : s ∈ [0, 1]}. Based on the asymptotic bias and conditional variance of
B̂(s), we can calculate an optimal bandwidth for estimating B(s), h1j = Op((nM)−1/5). In this

case,  and (nM)−1h1j reduce to Op(n−7/5M−2/5) and (nM)−6/5, respectively, and their
contributions depend on the relative size of n over M.

4.3. Asymptotic properties of η ^ij(s)
We next study the asymptotic bias and covariance of η̂ij(s) as follows. We distinguish
between two cases. The first one is conditioning on the design points in  X, and η. The
other is conditioning on the design points in and X. We define K* ((s − t)/h) = ∫ K(u)K(u
+ (s − t)/h)du.

Theorem 2. Under Assumptions (C1) and (C3)–(C8), the following results hold for all s ∈
(0, L).

a. Conditioning on (  X, η), we have

b. The asymptotic bias and covariance of η̂ij(s) conditioning on and X are given by

c. The mean integrated squared error (MISE) of all η̂ij(s) is given by
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(4.1)

d. The optimal bandwidth for minimizing MISE (4.1) is given by

(4.2)

e. The first order LPK reconstructions η̂ij(s) using ĥ2j in (4.2) satisfy

(4.3)

for i = 1, …, n.

Remark. Theorem 2 characterizes the statistical properties of smoothing individual curves
ηij(s) after first estimating Bj(s). Conditioning on individual curves ηij(s), Theorem 2 (a)

shows that Bias[η̂ij(s)| X,η] is associated with , which is the bias term

of B̂j(s) introduced in the estimation step, and  is introduced in the
smoothing individual functions step. Without conditioning on ηij(s), Theorem 2 (b) shows
that the bias of η̂ij(s) is mainly controlled by the bias in the estimation step. The MISE of

η̂ij(s) in Theorem 2 (c) is the sum of  introduced by the estimation of Bj(s) and

 introduced by the reconstruction of ηij(s). The optimal bandwidth for
minimizing the MISE of η̂ij(s) is a standard bandwidth for LPK. If we use the optimal
bandwidth in Theorem 2 (d), then the MISE of η̂ij(s) can achieve the order of

.

4.4. Asymptotic properties of Σ̂η(s, t)
In this section, we study the asymptotic properties of Σ̂η(s, t) and its spectrum
decomposition.

Theorem 3. (i) Under Assumptions (C1) and (C3)–(C9a), it follows that

(ii) Under Assumptions (C1) and (C3)–(C10), if the optimal bandwidths hmj for m = 1, 2 are
used to reconstruct B̂j(s) and η̂ij(s) for all j, then for l = 1, …,Ej, we have the following
results:

a.
;

b. .

Remark. Theorem 3 characterizes the uniform weak convergence rates of Σ̂η(s, t), ψ̂jl, and
λ̂jl for all j. It can be regarded as an extension of Theorems 3.3–3.6 in Li and Hsing [32],
which established the uniform strong convergence rates of these estimates with the sole
presence of intercept and J = 1 in model (1.1). Another difference is that Li and Hsing [32]
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employed all cross products yijyik for j ≠ k and then used the local polynomial kernel to
estimate Ση(s, t). As discussed in Li and Hsing [32], their approach can relax the assumption
on the differentiability of the individual curves. In contrast, following Hall, Müller and
Wang [22] and Zhang and Chen [51], we directly fit a smooth curve to ηij(s) for each i and
estimate Ση(s, t) by the sample covariance functions. Our approach is computationally
simple and can ensure that all Σ̂η,jj(s, t) are positive semi-definite, whereas the approach in
Li and Hsing [32] cannot. This is extremely important for high-dimensional neuroimaging
data, which usually contains a large number of locations (called voxels) on a two-
dimensional (2D) surface or in a 3D volume. For instance, the number of M can number in
the tens of thousands to millions, and thus it can be numerically infeasible to directly operate
on Σ̂η(s, s′).

We use Σ̃η(s, s′) to denote the local linear estimator of Ση(s, s′) proposed in Li and Hsing
[32]. Following the arguments in Li and Hsing [32], we can easily obtain the following
result.

Corollary 1. Under Assumptions (C1)–(C8) and (C9b), it follows that

4.5. Asymptotic properties of the inference procedures
In this section, we discuss the asymptotic properties of the global statistic Sn and the critical
values of SCB. Theorem 1 allows us to construct SCB for coefficient functions bjl(s). It
follows from Theorem 1 that

(4.4)

where ⇒ denotes weak convergence of a sequence of stochastic processes and Gjl(s) is a
centered Gaussian process indexed by s ∈ [0, 1]. Therefore, let XC(s) be a centered Gaussian
process, we have

(4.5)

We define Cjl(α) such that P(sups∈[0,1] |Gjl(s)| ≥ Cjl(α)) = 1 − α. Thus, the confidence band
given in (3.5) is a 1 − α simultaneous confidence band for bjl(s).

Theorem 4. If Assumptions (C1)–(C9a) are true, then we have

(4.6)

Remark. Theorem 4 is similar to Theorem 7 of Zhang and Chen [51]. Both characterize the
asymptotic distribution of Sn. In particular, Zhang and Chen [51] delineate the distribution

of  as a χ2-type mixture. All discussions associated Theorem 7 with Zhang
and Chen [51] are valid here and therefore, we do not repeat them for the sake of space.
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We consider conditional convergence for bootstrapped stochastic processes. We focus on
the bootstrapped process {Gj(s)(g) : s ∈ [0, 1]} as the arguments for establishing the wild
bootstrap method for approximating the null distribution of Sn and the bootstrapped process
{Gj(s)(g) : s ∈ [0, 1]} are similar.

Theorem 5. If Assumptions (C1)–(C9a) are true, then Gj(s)(g)(s) converges weakly to Gj(s)
conditioning on the data, where Gj(s) is a centered Gaussian process indexed by s ∈ [0, 1].

Remark. Theorem 5 validates the bootstrapped process of Gj(s)(g). An interesting
observation is that the bias correction for B̂j(s) in constructing Gj(s)(g) is unnecessary. It
leads to substantial computational saving.

5. Simulation Studies
In this section, we present two simulation example to demonstrate the performance of the
proposed procedures.

Example 1. This example is designed to evaluate the Type I error rate and power of the
proposed global test Sn using Monte Carlo simulation. In this example, the data were
generated from a bivariate MVCM as follows:

(5.1)

where sm ~ U[0, 1], (εi1(sm), εi2(sm))T ~ N((0, 0)T, , and xi = (1, xi1,
xi2) for all i = 1, …, n and m = 1, …, M. Moreover, (xi1, xi2)T ~ N((0, 0)T, diag(1−2−0.5,
1−2−0.5)+2−0.5(1, 1)⊗2) and ηij(s) = ξij1 ψj1(s) + ξij2 ψj2(s), where ξijl ~ N(0, λjl) for j = 1,
2 and l = 1, 2. Furthermore, sm, (xi1, xi2), ξi11, ξi12, ξi21, ξi22, εi1(sm), and εi2(sm) are

independent random variables.We set  and
the functional coefficients and eigenfunctions as follows:

Then, except for (b13(s), b23(s)) for all s, we fixed all other parameters at the values
specified above, whereas we assumed (b13(s), b23(s)) = c(4s(1 − s) − 0.4, 4s(1 − s) − 0.4),
where c is a scalar specified below.

We want to test the hypotheses H0 : b13(s) = b23(s) = 0 for all s against H1 : b13(s) ≠ 0 or
b23(s) ≠ 0 for at least one s. We set c = 0 to assess the Type I error rates for Sn, and set c =
0.1, 0.2, 0.3, and 0.4 to examine the power of Sn. We set M = 50, n = 200 and 100. For each
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simulation, the significance levels were set at α = 0.05 and 0.01, and 100 replications were
used to estimate the rejection rates.

Fig. 2 depicts the power curves. It can be seen from Fig. 2 that the rejection rates for Sn
based on the wild bootstrap method are accurate for moderate sample sizes, such as (n =
100, or 200) at both significance levels (α = 0.01 or 0.05). As expected, the power increases
with the sample size.

Example 2. This example is used to evaluate the coverage probabilities of SCB of the
functional coefficients B(s) based on the wild bootstrap method. The data were generated
from model (5.1) under the same parameter values. We set n = 500 and M = 25, 50, and 75
and generated 200 datasets for each combination. Based on the generated data, we calculated
SCB for each component of B1(s) and B2(s). Table 1 summarizes the empirical coverage
probabilities based on 200 simulations for α = 0.01 and α = 0.05. The coverage probabilities
improve with the number of grid points M. When M = 75, the differences between the
coverage probabilities and the claimed confidence levels p are fairly acceptable. The Monte

Carlo errors are of size  for α = 0.05. Fig. 3 depicts typical
simultaneous confidence bands, where n = 500 and M = 50. Additional simulation results
are given in the supplementary document.

6. Real Data Analysis
The data set consists of 128 healthy infants (75 males and 53 females) from the neonatal
project on early brain development. The gestational ages of these infants range from 262 to
433 days and their mean gestational age is 298 days with standard deviation 17.6 days. The
DTIs and T1-weighted images were acquired for each subject. For the DTIs, the imaging
parameters were as follows: the six non-collinear directions at the b-value of 1000 s/mm2

with a reference scan (b = 0), the isotropic voxel resolution=2 mm, and the in-plane field of
view=256 mm in both directions. A total of five repetitions were acquired to improve the
signal-to-noise ratio of the DTIs.

The DTI data were processed by two key steps including a weighted least squares estimation
method [2, 54] to construct the diffusion tensors and a DTI atlas building pipeline [20, 55] to
register DTIs from multiple subjects to create a study specific unbiased DTI atlas, to track
fiber tracts in the atlas space, and to propagate them back into each subject’s native space by
using registration information. Subsequently, diffusion tensors (DTs) and their scalar
diffusion properties were calculated at each location along each individual fiber tract by
using DTs in neighboring voxels close to the fiber tract. Fig. 1 (a) displays the fiber bundle
of the genu of the corpus callosum (GCC), which is an area of white matter in the brain. The
GCC is the anterior end of the corpus callosum, and is bent downward and backward in front
of the septum pellucidum; diminishing rapidly in thickness, it is prolonged backward under
the name of the rostrum, which is connected below with the lamina terminalis. It was found
that neonatal microstructural development of GCC positively correlates with age and
callosal thickness.

The two aims of this analysis are to compare diffusion properties including FA and MD
along the GCC between the male and female groups and to delineate the development of
fiber diffusion properties across time, which is addressed by including the gestational age at
MRI scanning as a covariate. FA and MD, respectively, measure the inhomogeneous extent
of local barriers to water diffusion and the averaged magnitude of local water diffusion. We
fitted model (1.1) to the FA and MD values from all 128 subjects, in which xi = (1, G,
Age)T, where G represents gender. We then applied the estimation and inference procedures
to estimate B(s) and calculate Sn for each hypothesis test. We approximated the p-value of

Zhu et al. Page 15

Ann Stat. Author manuscript; available in PMC 2013 May 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sn using the wild bootstrap method with G = 1, 000 replications. Finally, we constructed the
95% simultaneous confidence bands for the functional coefficients of Bj(s) for j = 1, 2.

Fig. 4 presents the estimated coefficient functions corresponding to 1, G, and Age associated
with FA and MD (blue solid lines in all panels of Fig. 4). The intercept functions (all panels
in the first column of Fig. 4) describe the overall trend of FA and MD. The gender
coefficients for FA and MD in the second column of Fig. 4 are negative at most of the grid
points, which may indicate that compared with female infants, male infants have relatively
smaller magnitudes of local water diffusivity along the genu of the corpus callosum. The
gestational age coefficients for FA (panel (c) of Fig. 4) are positive at most grid points,
indicating that FA measures increase with age in both male and female infants, whereas
those corresponding to MD (panel (f) of Fig. 4) are negative at most grid points. This may
indicate a negative correlation between the magnitudes of local water diffusivity and
gestational age along the genu of the corpus callosum.

We statistically tested the effects of gender and gestational age on FA and MD along the
GCC tract. To test the gender effect, we computed the global test statistic Sn = 144.63 and
its associated p-value (p = 0.078), indicating a weakly significant gender effect, which
agrees with the findings in panels (b) and (e) of Fig. 4. A moderately significant age effect
was found with Sn = 929.69 (p-value< 0.001). This agrees with the findings in panel (f) of
Fig. 4, indicating that MD along the GCC tract changes moderately with gestational age.
Furthermore, for FA and MD, we constructed the 95% simultaneous confidence bands of the
varying-coefficients for Gi and agei (Fig. 4).

Fig. 5 presents the first 10 eigenvalues and 3 eigenfunctions of Σ̂η,jj(s, t) for j = 1, 2. The
relative eigenvalues of Σ̂η,jj defined as the ratios of the eigenvalues of Σ̂η,jj(s, t) over their
sum have similar distributional patterns (panel (a) of Fig. 5). We observe that the first three
eigenvalues account for more than 90% of the total and the others quickly vanish to zero.
The eigenfunctions of FA corresponding to the largest three eigenvalues (Fig. 5 (b)) are
different from those of MD (Fig. 5 (c)).

In the supplementary document, we further illustrate the proposed methodology by an
empirical analysis of another real data set.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
We introduce some notation. We define
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(6.1)

where . Throughout the proofs, Cks stand for a generic
constant, and it may vary from line to line.

The proofs of Theorems 1–5 rely on the following lemmas whose proofs are given in the
supplementary document.

Lemma 1. Under Assumptions (C1), (C3)–(C5), and (C7), we have that for each j,

(6.2)

Lemma 2. Under Assumptions (C1), (C4), (C5), and (C7), we have that for any r ≥ 0 and j,

where ΠM(·) is the sampling distribution function based on = {s1,…, sM} and Π(·) is the
distribution function of sm.

Lemma 3. Under Assumptions (C2)–(C5), we have
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(6.3)

Lemma 4. If Assumptions (C1) and (C3)–(C6) hold, then we have

(6.4)

where en(s) = Op((Mh1j)−1/2) with E[en(s)] = 0.

Lemma 5. If Assumptions (C1) and (C3)–(C6) hold, then for s = 0 or 1, we have

(6.5)

Lemma 6. Under Assumptions (C1)–(C9a), we have

Lemma 7. Under Assumptions (C1)–(C9a), we have

We present only the key steps in the proof of Theorem 1 below.
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Proof of Theorem 1. Define

According to the definition of vec(Âj(s)), it is easy to see that

(6.6)

(6.7)

The proof of Theorem 1 (i) consists of two parts.

• Part 1 is to show that  holds uniformly for all s ∈ [0,
1] and j = 1, …, J.

• Part 2 is to show that  converges weakly to a Gaussian

process G(·) with mean zero and covariance matrix  for each j.

In part 1, we show that

(6.8)

It follows from Lemma 1 that

hold uniformly for all s ∈ [0, 1]. It follows from Lemma 2 that

(6.9)

hold uniformly for all s ∈ [0, 1]. Based on these results, we can finish the proof of (6.8).

In part 2, we show the weak convergence of  for j = 1, …,
J. The part 2 consists of two steps. In Step 1, it follows from the standard central limit
theorem that for each s ∈ [0, 1],

(6.10)

where →L denotes convergence in distribution.

Step 2 is to show the asymptotic tightness of . By using

(6.9) and (6.1),  can be approximated by the sum of three
terms (I), (II), and (III) as follows:
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(6.11)

We investigate the three terms on the right hand side of (6.11) as follows. It follows from
Lemma 3 that the first term on the right hand side of (6.11) converges to zero uniformly. We
prove the asymptotic tightness of (II) as follows. Define

Thus, we only need to prove the asymptotic tightness of X̂n,j(s). The asymptotic tightness of
X̂n,j(s) can be proved using the empirical process techniques [42]. It follows that

Thus, X̂n,j(s) can be simplified as

We consider a function class . Due to Assumption C2,
ℰη is a P−Donsker class.

Finally, we consider the third term (III) on the right hand side of (6.11). It is easy to see that
(III) can be written as
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Using the same argument of proving the second term (II), we can show the asymptotic

tightness of . Therefore, for any h1j → 0,

(6.12)

It follows from Assumptions (C5) and (C7) and (6.12) that (III) converges to zero
uniformly. Therefore, we can finish the proof of Theorem 1 (i). Since Theorem 1 (ii) is a
direct consequence of Theorem 1 (i) and Lemma 4, we finish the proof of Theorem 1.

Proof of Theorem 2. Proofs of Parts (a)—(d) are completed by some straightforward
calculations. Detailed derivation is given in the supplemental document. Here we prove Part
(e) only. Let K̃M,h(s) = K̃M(s/h)/h, where K̃M(s) is the empirical equivalent kernels for the
first-order local polynomial kernel [11]. Thus, we have

(6.13)

We define

It follows from (6.13) that

(6.14)

It follows from Lemma 2 and a Taylor’s expansion that
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Since  weakly converges to a Gaussian

process in ℓ∞([0, 1]) as n → ∞,  is
asymptotically tight. Thus, we have

Combining these results, we have

This completes the proof of Part (e).

Proof of Theorem 3. Recall that η̂ij(s) = ηij(s) + Δi,j(s), we have

(6.15)

This proof consists of two steps. The first step is to show that the first three terms on the
right hand side of (6.15) converge to zero uniformly for all (s, t) ∈ [0, 1]2 in probability. The

second step is to show the uniform convergence of  to Ση(s, t) over (s, t)
∈ [0, 1]2 in probability.

We first show that

(6.16)

Since

(6.17)

it is sufficient to focus on the three terms on the right-hand side of (6.17). Since
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we have

Similarly, we have

It follows from Lemma 6 that . Similarly, we

can show that .

We can show that

(6.18)

Note that

holds for any (s1, t1) and (s2, t2), the functional class {ηj(u)ηj(υ) : (u, υ) ∈ [0, 1]2} is a
Vapnik and Cervonenkis (VC) class [42, 31]. Thus, it yields that (6.18) is true.

Finally, we can show that

(6.19)

With some calculations, for a positive constant C1, we have

It follows from Lemma 7 that
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Since  we have

. Furthermore, since ,
we have

Note that the arguments for (6.16)–(6.19) hold for Σ̂η,jj′(·, ·) for any j ≠ j′. Thus, combining
(6.16)–(6.19) leads to Theorem 3 (i).

To prove Theorem 3 (ii), we follow the same arguments in Lemma 6 of Li and Hsing [32].
For completion, we highlight several key steps below. We define

(6.20)

Following Hall and Hosseini-Nasab [21] and the Cauchy-Schwarz inequality, we have

which yields Theorem 3 (ii.a).

Using (4.9) in Hall, Müller and Wang [22], we have

which yields Theorem 3 (ii.b). This completes the proof.

Proof of Theorem 5. The proof of Theorem 5 is given in the supplementary material of this
paper.
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Fig 1.
Representative functional neuroimaging data: (a) and (b) FA and MD along the genu tract of
the corpus callosum from 40 randomly selected infants; and (c) and (d) the estimated
hemodynamic response functions (HRF) corresponding to two stimulus categories from 14
subjects.
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Fig 2.
Plot of Power Curves. Rejection rates of Sn based on the wild bootstrap method are
calculated at five different values of c (0, 0.1, 0.2, 0.3, and 0.4) for two sample sizes of n
(100 and 200) subjects at 5% (green) and 1% (red) significance levels.
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Fig 3.
Typical simultaneous confidence bands with n = 500 and M = 50. The red solid curves are
the true coefficient functions, and the blue dashed curves are the confidence bands.
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Fig 4.
Plot of estimated effects of intercept, gender, and age (from left to right) and their 95%
confidence bands. The upper panels are for FA and the lower panels are for MD. The blue
solid curves are the estimated coefficient functions and the red dashed curves are the
confidence bands.
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Fig 5.
Plot of the first 10 eigenvalues (a) and the first 3 eigenfunctions for FA (b) and MD (c).
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