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Abstract

Objective—To assess the relationship between abnormally increased P-wave terminal force in 

lead V1 (PTFV1), an electrocardiographic (ECG) marker of left atrial abnormality, and incident 

ischemic stroke subtypes. We hypothesized that associations would be stronger with non-lacunar 

stroke, since we expected left atrial abnormality to reflect the risk of thromboembolism rather than 

in-situ cerebral small-vessel occlusion.

Methods—Our cohort comprised 14,542 participants 45-64 years of age prospectively enrolled 

in the Atherosclerosis Risk in Communities (ARIC) study and free of clinically apparent atrial 

fibrillation (AF) at baseline. Left atrial abnormality was defined as PTFV1 >4,000 μV*ms. 

Outcomes were adjudicated ischemic stroke, non-lacunar (including cardioembolic) ischemic 

stroke, and lacunar stroke.

Results—During a median follow-up period of 22 years (interquartile range, 19-23 years), 904 

participants (6.2%) experienced a definite or probable ischemic stroke. A higher incidence of 

stroke occurred in those with baseline left atrial abnormality (incidence rate per 1,000 person-
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years, 6.3; 95% CI, 5.4-7.4) than in those without (incidence rate per 1,000 person-years, 2.9; 95% 

CI, 2.7-3.1; P < 0.001). In Cox regression models adjusted for potential confounders and incident 

AF, left atrial abnormality was associated with incident ischemic stroke (HR, 1.33; 95% CI, 

1.11-1.59). This association was limited to non-lacunar stroke (HR, 1.49; 95% CI, 1.07-2.07) as 

opposed to lacunar stroke (HR, 0.89; 95% CI, 0.57-1.40).

Interpretation—We found an association between ECG-defined left atrial abnormality and 

subsequent non-lacunar ischemic stroke. Our findings suggest that an underlying atrial 

cardiopathy may cause left atrial thromboembolism in the absence of recognized AF.

Atrial fibrillation (AF) is associated with a 3- to 5-fold heightened risk of ischemic stroke.1 

This risk has long been ascribed to stasis of blood and thrombus formation resulting from 

the loss of an organized atrial rhythm.2 However, the heart-rhythm disturbance that 

characterizes AF is associated with other atrial derangements such as endothelial 

dysfunction,3 fibrosis,4 impaired myocyte function,5 and chamber dilatation.6 Recent 

evidence suggests that these other atrial derangements play an independent role in causing 

stroke, and that the dysrhythmia that defines AF is not always necessary for left atrial 

thrombus formation and embolization to occur.7-13 In a prospective study of patients with 

pacemakers or defibrillators, 31% of those with both AF and stroke had no evidence of AF 

during 8 months of heart-rhythm monitoring prior to their stroke, and manifested the 

dysrhythmia for the first time after the stroke.13 Therefore, the heart-rhythm disturbance 

may not fully account for the association between AF and stroke.

We recently found that abnormally increased P-wave terminal force in lead V1 (PTFV1)—

the most commonly used electrocardiographic (ECG) marker of left atrial abnormality14—is 

associated with ischemic stroke11 and radiographic evidence of vascular brain injury12 in 

patients with apparent normal sinus rhythm. These findings were unchanged regardless of 

adjustment for incident diagnoses of AF during follow-up, suggesting that ECG-defined left 

atrial abnormality reflects atrial dysfunction that can cause stroke even in the absence of AF.

This hypothesis would be further strengthened by demonstrating associations between left 

atrial abnormality and specific ischemic stroke subtypes. We hypothesize that ECG-defined 

left atrial abnormality is a marker of an atrial cardiopathy that may result in thrombus 

formation and embolization to the brain, rather than a marker of generally increased vascular 

risk from systemic factors such as hypertension and atherosclerosis. Since cardiac embolism 

typically results in large or cortical strokes rather than small subcortical strokes (lacunar 

strokes),15 we expect a stronger association between left atrial abnormality and non-lacunar 

stroke than with lacunar stroke. Such a specific association would be consistent with our 

hypothesis that left atrial abnormality can cause thromboembolism in the absence of AF. We 

previously found an association between left atrial abnormality and incident ischemic stroke 

in the Atherosclerosis Risk in Communities (ARIC) cohort,16 but this analysis did not adjust 

for AF and did not compare ischemic stroke subtypes. Therefore, we examined the 

hypothesis that ECG-defined left atrial abnormality is more strongly associated with non-

lacunar rather than lacunar stroke in this cohort, and adjusted for diagnosis of AF during 

follow-up.
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Methods

Study Design and Population

The Atherosclerosis Risk in Communities (ARIC) study prospectively enrolled 15,792 

community-dwelling men and women 45-64 years of age. Four field centers across the 

country (Washington County, MD; Forsyth County, NC; Jackson, MS; Minneapolis 

suburbs, MN) recruited participants in 1987-1989. Participants returned for three follow-up 

examinations during the follow-up time period (1990-1992, 1993-1995, and 1996-1998), 

and continue to be followed via annual telephone calls to ascertain study end points. 

Endpoints are further ascertained from examination of lists of hospital discharges that 

include any cardiovascular diagnoses from hospitals in the study communities. For this 

analysis, we excluded participants with hemorrhagic stroke, AF at baseline, missing or 

unreliable baseline ECG data, or missing data on other baseline covariates.

Measurements

Digital 12-lead ECGs were obtained at baseline and at the three follow-up examinations 

using MAC PC ECG machines (Marquette Electronics, Milwaukee, WI). All ECGs were 

inspected for technical errors and adequate quality at the EPICORE Center at the University 

of Alberta (Edmonton, Alberta, Canada) during the initial phases of the study and at the 

EPICARE Center at Wake Forest University (Winston-Salem, North Carolina, USA) during 

later phases. Our primary predictor variable was left atrial abnormality, defined by the 

commonly used ECG criterion of PTFV1 >4,000 μV*ms.14, 17-20 PTFV1 was defined as the 

duration (ms) times the absolute value of the depth (μV) of the downward deflection 

(terminal portion) of the median P-wave in lead V1 (Figure 1). In our study, the waveforms 

required to calculate PTFV1 (P’dur and P’amp in V1) were automatically measured from the 

baseline ECG using the GE Marquette 12-SL program (GE Marquette, Milwaukee, WI). 

These digital waveform measurements have a time resolution of approximately 2 ms and an 

amplitude resolution of approximately 5 μV.21 To validate the accuracy of the automated 

ECG measurements used to derive PTFV1, the waveforms required to calculate PTFV1 

(P’dur and P’amp in V1) were manually measured from ECGs in a subset of 150 participants 

by a single investigator (H.K.) blinded to the automated measurements, and the calculated 

PTFV1 values were then compared. This analysis demonstrated an excellent inter-rater 

correlation coefficient (0.82; 95% CI, 0.76-0.87). Furthermore, the classification of PTFV1 

as normal (≤4,000 μV*ms) versus abnormal (>4,000 μV*ms) based on automated 

measurements had a 94% agreement rate when compared with the manual scoring of these 

150 ECGs. These findings are consistent with prior work demonstrating that the 

ascertainment of left atrial abnormality based on automated measurements by the 12-SL 

program has a positive predictive value of 100% and a negative predictive value of 99.8% 

when compared to the review of the ECG by two cardiologists.22

Our outcomes were definite or probable ischemic stroke, lacunar ischemic stroke, and non-

lacunar ischemic stroke. Details of methods used to ascertain and classify strokes in ARIC 

have been previously published.23 Cases of possible stroke were first identified during 

annual telephone calls or review of hospital discharge diagnoses. Medical records pertaining 

to these possible stroke events were then reviewed and abstracted by a single trained nurse at 
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a central site (University of Minnesota). Based on these abstracted records, the occurrence 

and type of stroke was classified by a software algorithm that applied validated criteria from 

the National Survey of Stroke by the National Institute of Neurological Disorders and 

Stroke.24 This software algorithm classified strokes as hemorrhagic, cardioembolic, or 

thrombotic. A physician investigator independently reviewed the medical record and 

separately determined the occurrence of stroke and whether it was hemorrhagic, 

cardioembolic, or thrombotic. Cases of disagreement between the software program and 

physician reviewer were adjudicated by a second physician. In cases of a definite thrombotic 

stroke, the physician reviewer further adjudicated these as lacunar or non-lacunar. Diagnoses 

of lacunar stroke were based predominantly on characteristic imaging findings while 

accounting for the available data on symptomatology. A definite lacunar infarction required 

anatomic locations typical of lacunar infarctions (basal ganglia, brain stem, thalamus, 

internal capsule, or cerebral white matter), and an estimated infarct size of ≤2 cm or an 

infarct of unstated size. All other definite thrombotic strokes, as well as all definite 

cardioembolic strokes, were classified as non-lacunar. All stroke adjudications were 

performed while blinded to PTFV1 classifications.

Since AF may explain the association between ECG-defined left atrial abnormality and 

stroke,16 we examined this association after adjusting for incident AF. Cases of AF were 

identified from study visit ECGs and by review of hospital discharge diagnoses.25 At each 

study exam, a standard supine 12-lead resting ECG was recorded with the MAC PC ECG 

software used for automatic coding. A cardiologist visually confirmed all AF cases 

automatically detected from the study ECG. Information on hospitalizations during follow-

up was obtained from annual follow-up calls and surveillance of local hospitals, with 

hospital discharge diagnosis codes collected by trained abstractors. AF during follow-up was 

defined by International Classification of Diseases, 9th Revision codes 427.31 or 427.32. AF 

cases detected in the same hospitalization as open cardiac surgery were not included since 

these are usually considered transient.26 Hospital diagnosis codes for AF ascertainment have 

been shown to have good positive predictive value.27

We used data from the baseline examination to adjust for the following potential 

confounders: age, sex, race, body mass index, smoking status, diabetes, systolic blood 

pressure, antihypertensive medication use, low-density lipoprotein level, coronary heart 

disease, and heart failure. Age, sex, and race were self-reported. Tobacco use was defined as 

current or former cigarette smoking. Diabetes was defined as a fasting glucose level ≥126 

mg/dL (or non-fasting glucose ≥200 mg/dL), a physician diagnosis of diabetes, or use of 

diabetes medications. Systolic blood pressure was obtained from each participant using 

sphygmomanometers to measure two readings in the sitting position after 5 minutes of rest, 

with the average of the 2 measurements used as the final reading. The use of 

antihypertensive medications was self-reported. Body mass index was defined as the weight 

in kilograms divided by the square of the height in meters. Low-density lipoprotein levels 

were assayed from serum samples obtained as part of the baseline study visit. Prevalent 

heart failure was defined as present if participants reported taking heart failure medications 

or if participants met all three of the Gothenburg criteria.28 Prevalent coronary heart disease 

(CHD) was defined by a history of physician-diagnosed myocardial infarction, 

electrocardiographic Q waves, coronary artery bypass surgery, or coronary angioplasty.
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Statistical Analysis

Categorical variables were reported as frequencies and percentages, and continuous 

variables as means and standard deviations. Differences between groups were tested using 

the chi-square test for categorical variables and the Wilcoxon rank-sum test for continuous 

variables. Based on prior work,11 PTFV1 values >99.9th percentile were considered extreme 

outliers and excluded from the analysis; in sensitivity analyses, these potentially outlying 

values were retained after visual inspection of these ECGs confirmed that all had abnormally 

increased PTFV1 (>4,000 μV*ms) that was not due to artifact. Kaplan-Meier estimates and 

the log-rank test were used to compare cumulative rates of stroke between participants with 

and without left atrial abnormality. Follow-up time was defined as the period from the initial 

ARIC study visit until any ischemic stroke, death, loss to follow-up, or December 31, 2010. 

Cox proportional hazards regression was used to compute hazard ratios (HR) and 95% 

confidence intervals (CI) for the association between left atrial abnormality and stroke.

Multivariable models were constructed with incremental adjustments. Model 1 adjusted for 

basic demographic characteristics (age, sex, and race). Model 2 included covariates from 

Model 1 plus body mass index, smoking status, diabetes, systolic blood pressure, 

antihypertensive medication use, low-density lipoprotein level, coronary heart disease, and 

heart failure. Model 3 included Model 2 covariates plus incident AF as a time-dependent 

covariate. Additionally, since clinically apparent AF often follows a long period of 

subclinical AF,29 Model 4 adjusted for incident AF as a time-fixed covariate (i.e., we 

assumed that incident AF was present since baseline in a subclinical form). The proportional 

hazards assumption was not violated in our analyses. We also constructed a restricted cubic 

spline model to examine the graphical dose-response relationship between PTFV1 values 

and the multivariable HR for stroke, incorporating knots at the 5th, 50th, and 95th 

percentiles. We used interaction terms to compare associations across subgroups defined by 

age (above or below the median), sex, and race (white or black).16 We defined statistical 

significance for the main effect model and interaction terms as P < 0.05. SAS version 9.3 

(Cary, NC) was used for all analyses.

Results

Of the 15,792 participants from the original ARIC cohort, 202 lacked baseline ECG data, 

110 had hemorrhagic strokes, 31 had PTFV1 values that appeared to be extreme outliers, 36 

had AF at baseline, and 871 were missing data on baseline covariates. Among the 14,542 

participants eligible for our analysis, the mean age at baseline was 54 (±5.8) years; 26% of 

the participants were black, and 55% were female. The incidence rate of AF was 7.0 (95% 

CI, 6.7-7.4) per 1,000 person-years, and during a median follow-up of 22 years (interquartile 

range, 19-23 years), 1,906 participants (13.1%) were diagnosed with AF. The 1,473 

participants (10.1%) with ECG-defined left atrial abnormality (PTFV1 >4,000 μV*ms; 

Figure 2) were generally older, more often male, more often black, and more likely to have 

vascular risk factors at baseline (Table 1).

Nine hundred and four participants (6.2%) experienced a definite or probable ischemic 

stroke (incidence rate per 1,000 person-years, 3.2; 95% CI, 3.0-3.4). A higher incidence of 

stroke occurred in those with left atrial abnormality (incidence rate per 1,000 person-years, 
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6.3; 95% CI, 5.4-7.4) than in those without (incidence rate per 1,000 person-years, 2.9; 95% 

CI, 2.7-3.1; P < 0.001; Figure 3). The risk of ischemic stroke was observed to increase 

curvilinearly with increases in PTFV1 values, as shown graphically in a restricted cubic 

spline model adjusted for baseline covariates (Figures 4 and 5).

In multivariable Cox regression models adjusted for baseline confounders as well as incident 

AF, ECG-defined left atrial abnormality was associated with incident ischemic stroke of any 

type (HR, 1.33; 95% CI, 1.11-1.59; Table 2). After excluding 474 participants with 

unknown ischemic stroke subtype or probable but not definite stroke, 430 participants had a 

definite ischemic stroke with a known subtype, of which 256 (59.6%) were non-lacunar and 

174 (40.4%) lacunar. The association between left atrial abnormality and stroke was limited 

to non-lacunar stroke (HR, 1.49; 95% CI, 1.07-2.07) as opposed to lacunar stroke (HR, 0.89; 

95% CI, 0.57-1.40; Table 2). Associations with any ischemic stroke or non-lacunar stroke 

remained similar whether or not incident AF was included in our models (Table 2). Our 

results were essentially the same in sensitivity analyses retaining all PTFV1 values instead 

of excluding values >99.9th percentile. We found no significant evidence of variation in the 

association between left atrial abnormality and stroke across subgroups defined by age, sex, 

or race (Table 3).

Discussion

We found an association between abnormally increased baseline PTFV1—an ECG marker 

of left atrial abnormality17, 30-33—and incident ischemic stroke in a large, prospective, 

population-based study. This association was limited to cases of non-lacunar (as opposed to 

lacunar) stroke, which is consistent with the hypothesis that ECG-defined left atrial 

abnormality signals a specific risk of cardiac embolism as opposed to global vascular risk. 

The relationship between left atrial abnormality and stroke did not change with adjustment 

for incident AF, suggesting that ECG-detected left atrial abnormality is associated with 

stroke independently of AF.

These results build on other recent studies that call into question whether AF—the 

dysrhythmia itself—is always a necessary step in the pathogenesis of left atrial 

thromboembolism. In a recent study of patients with pacemakers or defibrillators, 31% of 

those with both subclinical AF and stroke did not manifest atrial dysrhythmia until after 

their stroke, despite undergoing continuous heart-rhythm monitoring for a median 8 months 

before the stroke.13 Some of these strokes may have been due to causes other than cardiac 

embolism (e.g., lacunar stroke or atherosclerotic artery-to-artery embolism), but recent 

studies suggest that some resulted from atrial derangements besides the dysrhythmia that 

defines AF. Serum NT-proBNP as well as left atrial size and function on echocardiography 

have been associated with ischemic stroke independently of AF.7-10 We recently found that 

ECG-defined left atrial abnormality was associated with ischemic stroke in the Multi-Ethnic 

Study of Atherosclerosis11 and with radiographic evidence of vascular brain injury in the 

Cardiovascular Health Study;12 in both studies, these associations were essentially the same 

whether or not we adjusted for incident AF in our models, and were essentially the same in 

participants without any documented AF throughout follow-up. The present findings from 

the ARIC cohort build on these findings by indicating a specific link between atrial 
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abnormality and stroke subtypes that are not due to in-situ cerebral arterial occlusion. Cases 

of occult left atrial thromboembolism that were unrecognized because of the absence of AF 

would be expected to be classified as one of the non-lacunar stroke subtypes, not as lacunar 

stroke, which has a distinct clinical and radiographic profile. Thus, although there may be 

unmeasured confounding from atherosclerosis, our findings reduce the likelihood that the 

link between left atrial abnormality and stroke is due simply to global vascular risk factors 

such as hypertension. These results further support the hypothesis that atrial cardiopathy can 

cause stroke in the absence of AF, and that the presence of AF is not always necessary for 

embolization to occur from the left atrium.

This study has several limitations. First, participants did not undergo continuous heart-

rhythm monitoring to rule out subclinical AF, and we therefore cannot entirely exclude 

subclinical AF as a mediator in the relationship between left atrial abnormality and stroke. 

However, if AF were a significant mediator, the addition of incident AF diagnoses to our 

models should change the strength of association between left atrial abnormality and stroke, 

whereas we found essentially the same associations regardless of whether or not we included 

incident AF as a covariate. Even if undetected subclinical AF does explain some of the 

association between markers of atrial cardiopathy and stroke, as a practical matter 

measurements such as PTFV1 are easier and less costly to obtain than prolonged heart-

rhythm monitoring, suggesting that atrial markers other than AF could be found to more 

reliably diagnose the presence of atrial cardiopathy and its associated thromboembolic risk. 

Nevertheless, studies of the association between left atrial abnormality and stroke in patients 

undergoing continuous heart-rhythm monitoring would be valuable. Second, the long 

duration between baseline ECG measurements and stroke outcomes may have attenuated 

associations between left atrial abnormality and our outcomes. Third, it is possible that some 

cases classified as left atrial abnormality in our study actually involved right atrial 

abnormality. However, due to the positions of the left and right atria in relation to the 

location of the ECG electrode recording V1, left atrial abnormality typically manifests as 

increased amplitude of the terminal portion of the P-wave while right atrial abnormality 

usually manifests as increased amplitude of the early portion of the P-wave.14 This makes it 

unlikely that cases classified as left atrial abnormality in our study actually represented right 

atrial abnormality. Furthermore, misclassification of right atrial abnormality as left atrial 

abnormality should serve to attenuate any relationships between apparent left atrial 

abnormality and stroke, given that right atrial abnormality would not be expected to cause 

stroke in the majority of patients without a patent foramen ovale. Therefore, any 

misclassification would likely have biased our findings towards the null hypothesis. Fourth, 

we lacked morphological data about the left atrium, and future analyses incorporating 

additional markers of atrial dysfunction may more thoroughly delineate the relationship 

between atrial cardiopathy and stroke. Fifth, we relied on automated ECG measurements 

that are not routinely reported by current ECG systems. However, PTFV1 can be reliably 

measured manually,34, 35 and accumulating evidence regarding the association between 

ECG-defined left atrial abnormality and stroke could feasibly spur the routine reporting of 

PTFV1 on ECGs, since it is a capability that available ECG systems already possess.36

In summary, we found an association between a marker of left atrial abnormality on ECG 

and the risk of non-lacunar ischemic stroke. This association appeared independent of AF 
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diagnoses, suggesting that an underlying atrial cardiopathy can cause left atrial 

thromboembolism without necessarily manifesting with AF. Such a condition may explain 

some proportion of the 30% of ischemic strokes that currently lack a known cause.37, 38 

Given the proven benefit of anticoagulant therapy in preventing left atrial thromboembolism 

in patients with AF, future studies may be worthwhile to determine optimal markers of atrial 

cardiopathy and the effect of anticoagulant therapy in patients with conclusive evidence of 

atrial cardiopathy but no clear evidence of AF.
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Figure 1. 
Schematic Illustration and Examples of Normal and Abnormal P-Wave Terminal Force in 

Electrocardiogram Lead V1 (PTFV1).

PTFV1 was defined as the absolute value of the amplitude (P’amp) multiplied by the duration 

(P’dur) of the terminal portion of the P-wave (P’; shaded area) in lead V1 of a standard 12-

lead electrocardiogram (Panel A). Panel B shows an example of a P-wave with normal 

PTFV1 (dashed arrow), while Panel C shows an example of a P-wave with abnormally 

increased PTFV1 (solid arrow). Note the wider and deeper downward deflection of the P-

wave in Panel C compared with Panel B.
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Figure 2. 
Distribution of Baseline Values of P-Wave Terminal Force in Electrocardiogram Lead V1 

(PTFV1).
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Figure 3. 
Cumulative Incidence of Ischemic Stroke, Stratified by Baseline Left Atrial Abnormality.

Left atrial abnormality was defined as P-wave terminal force in electrocardiogram lead V1 

>4,000 μV*ms. The dashed line represents study participants with left atrial abnormality, 

and the solid line those without left atrial abnormality. The difference in cumulative rates 

between groups was significant by the log-rank test (P < 0.001).
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Figure 4. 
Relationship Between P-Wave Terminal Force in Electrocardiogram Lead V1 (PTFV1) and 

the Risk of Incident Ischemic Stroke.

The plot displays the results of a restricted cubic spline model (see text for details). The 

dotted horizontal lines represent the 95% confidence interval, and the dotted vertical line 

represents the threshold of 4,000 μV*ms that was used to define left atrial abnormality.

Kamel et al. Page 14

Ann Neurol. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Relationship Between P-Wave Terminal Force in Electrocardiogram Lead V1 (PTFV1) and 

the Risk of Incident Non-Lacunar Stroke.

The plot displays the results of a restricted cubic spline model (see text for details). The 

dotted horizontal lines represent the 95% confidence interval, and the dotted vertical line 

represents the threshold of 4,000 μV*ms that was used to define left atrial abnormality.
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Table 1

Baseline Characteristics of ARIC Study Participants, Stratified by Abnormally Increased P-Wave Terminal 

Force in ECG Lead V1 (PTFV1)

Characteristic
a

PTFV1 >4,000

μV*ms
b

(N = 1,473)

PTFV1 ≤4,000
μV*ms

(N = 13,069) P value
c

Age, mean (SD), years 56 (5.5) 54 (5.7) <0.001

Male 763 (51.8) 5,747 (44.0) <0.001

White 889 (60.4) 9,846 (75.3) <0.001

Tobacco use 955 (64.8) 7,542 (57.7) <0.001

Diabetes 286 (19.4) 1,348 (10.3) <0.001

Low-density lipoprotein, mean (SD), mg/dl 141 (42.0) 137 (39.0) <0.001

Body mass index, mean (SD) mg/kg2 29 (5.7) 28 (5.3) <0.001

Systolic blood pressure, mean (SD), mm Hg 129 (23.0) 120 (18.0) <0.001

Antihypertensive medication use 701 (47.6) 3,646 (27.9) <0.001

Coronary heart disease 158 (10.7) 528 (4.0) <0.001

Heart failure 135 (9.2) 519 (4.0) <0.001

Abbreviations: ARIC, Atherosclerosis Risk in Communities; ECG, electrocardiogram; PTFV1, P-wave terminal force in lead V1; SD, 

standard deviation.

a
Data are presented as number (%) unless otherwise specified.

b
PTFV1 was defined as the absolute value of the amplitude of the terminal portion of the P-wave in ECG lead V1 multiplied by its 

duration. Abnormal PTFV1 was defined as >4,000 μV*ms.

c
Differences between groups were compared using the chi-square test for categorical variables and the Wilcoxon-rank sum test for 

continuous variables.
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Table 2

Associations between Abnormally Increased P-Wave Terminal Force in ECG Lead V1 (PTFV1) and Incident 

Ischemic Stroke Subtypes

Outcome
a

Model 1
b

Model 2
c

Model 3
d

Model 4
e

Any ischemic strokef 1.69 (1.42-2.01) 1.31 (1.10-1.57) 1.33 (1.11-1.59) 1.29 (1.08-1.54)

Ischemic stroke
subtypesg

 Non-lacunar stroke 1.83 (1.33-2.52) 1.44 (1.04-1.99) 1.49 (1.07-2.07) 1.44 (1.04-1.99)

 Lacunar stroke 1.22 (0.79-1.89) 0.88 (0.57-1.38) 0.89 (0.57-1.40) 0.91 (0.58-1.42)

a
Results are reported as the hazard ratio (95% confidence interval) for values of PTFV1 >4,000 μV*ms compared to ≤4,000 μV*ms. 

PTFV1 was defined as the absolute value of the amplitude of the terminal portion of the P-wave in ECG lead V1 multiplied by its 

duration.

b
Adjusted for baseline age, sex, and race.

c
Adjusted for Model 1 covariates plus baseline body mass index, smoking status, diabetes, systolic blood pressure, antihypertensive 

medication use, low-density lipoprotein level, coronary heart disease, and heart failure.

d
Adjusted for Model 2 covariates plus atrial fibrillation as a time-dependent covariate.

e
Adjusted for Model 2 covariates plus atrial fibrillation as a time-fixed covariate.
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Table 3

Associations between Abnormally Increased P-Wave Terminal Force in ECG Lead V1 (PTFV1) and Incident 

Ischemic Stroke Across Subgroups Defined by Age, Sex, and Race

Subgroup
a

Model 1
b

Model 2
c

Model 3
d

Model 4
e

P Value for

Interaction
f

Age
g 0.29

 <54 y 2.03 (1.46-2.84) 1.29 (0.91-1.81) 1.29 (0.91-1.82) 1.23 (0.87-1.74)

 ≥54 y 1.68 (1.37-2.05) 1.35 (1.10-1.66) 1.38 (1.12-1.70) 1.32 (1.08-1.63)

Sex 0.36

 Male 1.87 (1.48-2.35) 1.46 (1.15-1.85) 1.50 (1.19-1.91) 1.44 (1.13-1.82)

 Female 1.50 (1.14-1.96) 1.19 (0.91-1.56) 1.19 (0.91-1.57) 1.18 (0.90-1.55)

Race 0.84

 White 1.56 (1.22-1.99) 1.25 (0.97-1.61) 1.29 (1.00-1.66) 1.17 (0.91-1.51)

 Black 1.85 (1.45-2.37) 1.38 (1.07-1.78) 1.38 (1.07-1.77) 1.42 (1.10-1.83)

a
Results are reported as the hazard ratio (95% confidence interval) for values of PTFV1 >4,000 μV*ms compared to ≤4,000 μV*ms.

b
Adjusted for age, sex, and race.

c
Adjusted for Model 1 covariates plus baseline body mass index, smoking status, diabetes, systolic blood pressure, antihypertensive 

medication use, low-density lipoprotein level, coronary heart disease, and heart failure.

d
Adjusted for Model 2 covariates plus atrial fibrillation as a time-dependent covariate.

e
Adjusted for Model 2 covariates plus atrial fibrillation as a time-fixed covariate.

f
Interactions tested using Model 2.

g
Dichotomized at the median age for study participants.
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