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Abstract
The motor deficits in Parkinson’s disease (PD) have been primarily associated with internally guided
(IG), but not externally guided (EG), tasks. This study investigated the functional mechanisms
underlying this phenomenon using genetically-matched twins. Functional magnetic resonance
images were obtained from a monozygotic twin pair discordant for clinical PD. Single-photon
emission computed tomography neuroimaging using [123I](−)-2-β-carboxymethoxy-3-β-(4-
iodophenyl)tropane confirmed their disease-discordant status by demonstrating a severe loss of
transporter binding in the PD-twin, whereas the non-PD-twin was normal. Six runs of fMRI data
were acquired from each twin performing EG and IG right-hand finger sequential tasks. The
percentage of voxels activated in each of several regions of interest (ROI) was calculated. Multiple
analysis of variance was used to compare each twin’s activity in ROIs constituting the striato-
thalamo-cortical motor circuits [basal ganglia (BG)-cortical circuitry, but including the globus
pallidus/putamen, thalamus, supplementary motor area, and primary motor cortex] and cerebello-
thalamo-cortical circuits (referred to as the cerebellar–cortical circuitry, including the cerebellum,
thalamus, somatosensory cortex, and lateral premotor cortex). During the EG task, there were no
significant differences between the twins in bilateral BG-cortical pathways, either basally or after
levodopa, whereas the PD-twin had relatively increased activity in the cerebellar-cortical pathways
basally that was normalized by levodopa. During the IG task, the PD-twin had less activation than
the non-PD-twin in ROIs of the bilateral BG-cortical and cerebellar-cortical pathways. Levodopa
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normalized the hypoactivation in the contralateral BG-cortical pathway, but “over-corrected” the
activation in the ipsilateral BG-cortical and bilateral cerebellar-cortical pathways. In this first fMRI
study of twins discordant for PD, the data support the hypothesis that BG-cortical and cerebellar-
cortical pathways are task-specifically influenced by PD. The levodopa-induced “over-activation”
of BG-cortical and cerebellar-cortical pathways, and its relevance to both compensatory changes in
PD and the long-term effects of levodopa in PD, merit further exploration.

Keywords
fMRI; basal ganglia; cerebellum; twins; externally guided; internally guided

Parkinson’s disease (PD) presents primarily with motor dysfunction (resting tremor,
bradykinesia, rigidity, and postural instability), the principal pathophysiology of which is the
loss of dopaminergic neurons in the substantia nigra pars compacta of the basal ganglia (BG).
The classic model of BG function (DeLong et al., 1984;Alexander et al., 1986;Albin et al.,
1989;Alexander et al., 1990) suggests that the BG affects motor control by modulating cortical
function through striato-thalamo-cortical motor circuits (hereafter referred to as BG-cortical
circuitry). According to this model, dopamine deficiency in PD causes BG dysfunction via
excessive thalamic inhibition of cortical function, resulting in bradykinesia and rigidity.
Although this classic model provides an excellent starting point in understanding the
pathophysiology of PD, some aspects of PD (e.g., tremor genesis) are explained inadequately.

The motor deficits of PD are related primarily to volitional initiation of movement that has
been termed internally guided (IG), and thus it has been postulated that BG-cortical circuits
play an essential role in IG motor tasks. One of the fascinating clinical phenomena in PD is
that these IG motor deficits can be overcome by external visual or auditory cues (Jahanshahi
et al., 1995;Chuma et al., 2006;Nowak et al., 2006). A classic clinical scenario is that a PD
patient experiencing difficulty in initiating gait (i.e., freezing) will begin to walk if a clinician
places a foot in front of the patient, thus providing visual guidance. Although paradoxical, a
visual cue (going through a door way) may also initiate a freezing event, the exact cause of
which is unclear but might involve a patient’s emotional state (Bartels et al., 2003;Lieberman,
2006). Nevertheless, physical therapy using a strategy of either visual or auditory external cues
is known to be beneficial for the gait and balance of PD patients (Morris, 2000;Protas et al.,
2005). Although these effects of EG cues are well-known clinical phenomena, the underlying
neural mechanisms are unknown. The cerebellum is another important component in motor
control, and is known to influence cerebral cortical activity via the cerebello-thalamo-cortical
circuits (hereafter referred to as the cerebellar circuit; see p. 325 in Afifi and Bergman,
1998)]. This cerebellar-cortical circuit has been implicated in somatosensory integration
(Manzoni, 2007) and information updating (Bonnefoi-Kyriacou et al., 1998). Recent fMRI
studies also support the role of the cerebellar circuit in EG tasks (Debaere et al., 2003;Taniwaki
et al., 2003;Taniwaki et al., 2006).

Functional magnetic resonance imaging (fMRI) has been utilized to investigate the brain
activation patterns of PD patients using either an externally- (Haslinger et al., 2001;Buhmann
et al., 2003;Cerasa et al., 2006), or an internally- (Sabatini et al., 2000;Cerasa et al., 2006) cued
activation paradigm. An activation paradigm involving both EG and IG motor tasks, however,
is essential to test the hypothesis that the functional activity in the BG and cerebellar pathways
are task-specifically modulated by PD. A challenge in such fMRI studies has been the large
interindividual variability in activation patterns (Deiber et al., 1999), a major source of which
may be genetic (Styner et al., 2005;Toga and Thompson, 2005). For example, Meyer-
Lindenberg and colleagues have recently reported the significant impact of a complex genetic
variation on fMRI activation patterns in healthy subjects (Meyer-Lindenberg et al., 2006).
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None of the published case-controlled fMRI studies in PD are genetically matched (Sabatini
et al., 2000;Haslinger et al., 2001;Rowe et al., 2002;Mattay et al., 2002;Buhmann et al.,
2003). Indeed, comparing PD subjects to healthy controls failed to detect differential
neurocircuitry involvement between EG and IG rhythmic tasks (Cerasa et al., 2006). In this
report, we addressed these issues by studying a set of monozygotic twins discordant for PD,
using a finger-sequential paradigm to explore both IG- and EG-cued activation.

Experimental Procedures
Identical twin pair discordant for PD

A 37-year-old identical twin pair was identified through a tertiary-care movement disorders
clinic. The life histories of the twins were remarkably similar in terms of upbringing, education,
and occupation. Neither had smoked, but both drank alcohol occasionally, and drank coffee
(regularly for non-PD-twin, occasionally for PD-twin).

Two years prior to this study, the PD-twin developed right-hand resting tremor and rigidity,
the latter attenuated by pramipexole. The PD-twin also had been treated with venlafaxine for
anxiety/depression for three years prior to the PD diagnosis. The non-PD-twin was perceived
as healthy, was not taking any medication, and showed no motor signs of PD. No other family
members had been diagnosed with PD. The PD-twin was strongly right handed, whereas the
non-PD-twin was ambidextrous according to the modified Edinburgh Handedness Inventory
(Oldfield, 1971).

Zygosity was confirmed by DNA profiles of 14 genetic markers (GeneTree DNA testing center,
Salt Lake City, UT). Both twins were negative for hypothyroidism, vitamin B12 or folate
deficiency, and were free of kidney or liver disease. The study protocol followed the Helsinki
principles, and was reviewed and approved by the University of North Carolina Institutional
Review Board. Written informed consent was obtained from the twins.

Both twins were scanned with single-photon emission computed tomography (SPECT)
neuroimaging using [123I](−)-2-β-carboxymethoxy-3-β-(4-iodophenyl)tropane (β-CIT) to
assess the integrity of the nigrostriatal dopamine system. The results of the SPECT imaging
of [123I]-β-CIT demonstrated a severe loss of transporter binding in the PD-twin, whereas the
non-PD-twin was normal (unpublished data, available upon request).

Functional MRI
Subject preparation—To eliminate the effect of drugs on the fMRI studies, the PD-twin
was tapered off venlafaxine and amantidine for three weeks, and pramipexole for one week,
prior to the fMRI studies. Carbidopa/levodopa 25/100 was used to keep the PD-twin
comfortable until it also was discontinued 24 hours prior to the fMRI studies. After the studies,
the PD-twin resumed prior PD medication under the guidance of a movement disorder
specialist (X.H.). Both twins were instructed not to drink alcohol or coffee 24 hours prior to
the study, and to eat a light breakfast (to avoid being overly full) in the morning prior to the
scan. All fMRI studies in this report were obtained on the same morning for both twins with
the following scan sequence: PD-twin pre-drug, non-PD-twin, and PD-twin post-drug. Fruit,
other snacks, and fluid were offered to the twins throughout the morning between their scans.

Functional MRI Acquisition
Images were acquired on a 3.0 Tesla Siemens scanner (Siemens, Erlangen, Germany) with a
birdcage-type standard quadrature head coil and an advanced nuclear magnetic resonance
echoplanar system. The head was positioned along the canthomeatal line. Foam padding was
used to limit head motion. High-resolution T1 weighted anatomical images (3D SPGR, TR=14
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ms, TE=7700 ms, flip angle=25°, voxel dimensions 1.0 × 1.0 × 1.0 mm, 176×256 voxels, 160
slices) were acquired for co-registration and normalization of functional images. A total of 49
co-planar functional images were acquired using a gradient echoplanar sequence (TR=3000
ms, TE=30 ms, flip angle=80°, NEX=1, voxel dimensions 3.0 × 3.0 × 3.0 mm, imaging matrix
64×64 voxels). Two radio frequency excitations were performed prior to image acquisition to
achieve steady-state transverse relaxation.

Activation paradigm—We used a modified activation paradigm based on one that has been
used previously to study PD patients (Sabatini et al., 2000) (see Figure 1). Our paradigm
consisted of three different finger-tapping movements (see Table 1) performed using the right
hand. For sequential task number 1, subjects tapped in the order of the index, middle, ring and
little finger; for sequence 2, the order was index, ring, middle and little fingers; and for sequence
3, the order was middle, little, index, and ring fingers. Each sequence was followed by an
opening and closing of the fist twice, and then the sequence was repeated in reverse, followed
by a second opening and closing of the fist twice. The sequences were presented with
instructions to follow the hands on the screen (EG task) or to continue the finger tapping
sequence (IG task, Figure 1). The two consecutive conditions were preceded and followed by
a rest (R) period. Each block was 30 s and tapping frequency was 1 Hz (Figure 1). Both twins
practiced the task for about 20 min prior to the scanning session, demonstrating greater than
95% accuracy. There were a total of six runs for each experiment, and each run consisted of
four blocks of rest, EG and IG task, respectively. Each twin was videotaped during each run,
which then was used to score accuracy and compliance with the task. There were no significant
differences between the twins’ abilities to perform the task, or in the PD twin following
levodopa.

fMRI Image Pre-processing
The fMRI data was preprocessed for time realignment, motion correction, and smoothing using
standard Statistical Parameter Map SPM-2 software. The time series of functional images was
aligned for each slice, and spatial filtering of functional time series was performed by
convolution of each EPI––image with a two-dimensional Gaussian smoothing kernel with full
width at half maximum (FWHM)=2.8 mm×2.8 mm. Temporal filtering of functional time
series included removal of the linear drifts of the signal with respect to time from the time-
course of each voxel, and low-pass filtering of the time-course of each voxel with a one-
dimensional Gaussian filter with FWHM=6s.

Generation of statistical activation maps: first level analysis
Following preprocessing, each volume (time point) was coded as a particular type of task (such
as rest, EG-task, IG-task). A t-test was done on each voxel based on contrasting two different
tasks (i.e., EG-tasks vs. rest or IG-tasks vs. rest) to generate the first level statistical activation
map (t-map) for each run. The percent of voxels activated with a t value > 1.96 (corresponding
to a p = 0.05) were calculated for each region of interest (ROI) in the bilateral BG-cortical
[putamen/globus pallidus, thalamus, supplementary motor area (SMA), and primary motor
cortex (PMC)] and cerebellar-cortical [cerebellum, thalamus, lateral premotor cortex (PreMC),
and somatosensory cortex (SMC)] circuitries. Each ROI was drawn manually by the same
trained research associate with assistance from multiple publicly available on-line atlases. The
rater reliability of the ROI drawn was demonstrated by the high degree correlation on pre-and
post- ROIs on the PD-twin (r = 0.99). The functional t-map consisting of all six runs then was
overlaid onto each twin’s individual anatomical scans as demonstrated in Figures 2 and 4.
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Comparison between twins: second level analysis
A statistical method that compared multiple ROIs together, namely multiple analysis of
variance (MANOVA), was employed to compare the twins. ROIs that constitute the bilateral
BG and cerebellar pathways were treated as covariables. Percent of activation in ROIs of these
pathways was the dependent variable, whereas the independent variable was PD status (the
PD-twin vs. the non-PD-twin, or the PD-twin prior to and after levodopa). Task (EG or IG)
and Drug (on or off) were dummy coded as either 0 or 1. For ease, the non-PD-twin was
considered ‘on’ drug. An array of three comparisons was set up as follows: comparison of the
non-PD-twin to the PD-twin prior to levodopa administration; comparison of the non-PD-twin
to the PD-twin following levodopa administration; and comparison of the PD-twin prior to and
after levodopa administration. PD status was compared in the EG or IG task in the four different
pathways by conducting multiple MANOVAs using the PROC GLM command with option
MANOVA in SAS (System 9.1, SAS Inc., Cary, NC; see Table 2). Significance in a pathway
was probed by a simple t-test.

The validity of this method can be justified provided: (A) the runs are independent trials; (B)
the variability for runs between groups is approximately the same; and (C) ROI values are
multivariate normal. For (A), since the runs are separated by more than 30 sec, we assume that
they are independent although it is conceivable that they may not be. In principle, the effect of
dependence on the ANOVA results can be addressed either by extending the number of runs
(using Durbin-Watson for testing serial correlation), or recruiting more identical twins
discordant for PD (using one run for each twin pair). These approaches are impractical at the
moment. To address (B), we applied Levene’s test to compare the variance homogeneity
between the twins, and the results were not significant. This confirms that the variability of the
responses between the twins is approximately the same. Lastly, since we are taking the
percentage of voxels activated in each ROI, (C) can be relaxed by appealing to the central limit
theorem [(CLT), (see p. 273 in Johnson and Wichern, 2002). Based on the above, we felt
justified to carry out the MANOVA to obtain comparative results for the BG and cerebellar
pathways for these twins. If results from MANOVA indicated significant (i.e., p < 0.05)
differences in BG and cerebellar pathways for a specific task (i.e. EG or IG) between the twins,
we also carried out a t-test to yield preliminary results on the differences in each ROI in the
BG and cerebellar pathways for that specific task (i.e., EG or IG).

Results
Externally Guided Task

Representative functional t-maps for the twin subjects performing the EG task at three axial
levels are shown in Figure 2. The twins displayed similar neural activation patterns, except
that the PD-twin displayed relatively lower activation in subcortical structures and relatively
heightened activity in cerebellum and PreMC areas.

Multivariate analysis indicated that there were no significant differences in bilateral BG-
cortical pathways during the EG task between the twins prior to levodopa administration, nor
did levodopa have any influence on either pathway (see Table 2, columns A and B, and Figure
3). In addition, comparison of the PD-twin before and after levodopa revealed no significant
differences in the BG-cortical or cerebellar-cortical pathways during the EG task (Table 2,
column C). In contrast, multivariate analysis indicated a significant difference between the
twins in the activation of bilateral cerebellar-cortical pathways prior to levodopa
administration, with relatively increased activation in PreMC and cerebellum areas (Table 2,
column A, and Figure 4). After levodopa, there was no longer a significant difference between
the twins in the cerebellar-cortical pathways, although there was still a trend towards
significance in the contralateral cerebellar-cortical pathway (Table 2, column B).
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Internally Guided Task
The functional t-maps at three axial levels for the twin subjects performing the IG task are
shown in Figure 5. Compared to the EG task (Figure 2), the non-PD-twin displayed
considerably more fMRI activation at cortical and subcortical levels during the IG task.

Multivariate analysis (Table 2) indicated that there were significant differences between the
twins in the activation of both bilateral BG-cortical and ipsilateral cerebellar-cortical pathways
prior to levodopa administration, with lower activity in most ROIs in the PD-twin relative to
the non-PD-twin (Table 2, column A, and Figures 6 and 7). There was a trend towards
significance in the contralateral cerebellar-cortical pathway. Levodopa administration
significantly changed the contralateral BG-cortical and cerebellar-cortical pathways (Table 2,
column C), with a trend towards a significant change in the ipsilateral BG-cortical and
cerebellar-cortical pathways in the PD-twin (Table 2, column C). As a result, there was no
longer a significant difference between the twins in the contralateral BG-cortical pathway.
There remained, however, a significant difference in the ipsilateral BG-cortical and bilateral
cerebellar-cortical pathways (Table 2, column B). Interestingly, the differences in the
ipsilateral BG-cortical and cerebellar-cortical pathways were due to higher activity in most
ROIs in the PD-twin relative to the non-PD-twin (Figures 6 and 7).

Discussion
The results of this study support directly the hypothesis that, in PD, a deficit in the BG-cortical
pathway occurs in a task-specific manner (i.e., for the IG task only). This finding provides a
functional mechanism underlying the clinical phenomenon that motor deficits in PD have been
associated primarily with IG tasks that can be overcome by external visual or auditory cues
(Jahanshahi et al., 1995;Chuma et al., 2006;Nowak et al., 2006). In addition, this study
identified a potential alternative or compensatory pathway (the cerebellar-cortical pathway)
by which EG tasks may be processed in PD. Further understanding of the functional interactions
between BG-cortical and cerebellar-cortical pathways may provide invaluable guidance and
insight into their functional mechanism(s) and their relevance in the treatment of PD, such as
how externally cued motor activities (e.g., a treadmill) may influence PD.

Basal ganglia-cortical and cerebellar-cortical pathways in EG and IG tasks
Our results favor the preferential involvement of the BG-cortical pathway in the IG task,
consistent with studies done in normal subjects (Debaere et al., 2003;Taniwaki et al.,
2003;Taniwaki et al., 2006), but at odds with a recent study in PD patients (Cerasa et al.,
2006). The discrepancy between our results and those of Cerasa et al. (2006) may relate to
differences in data analysis (MANOVA vs. SPM), and/or the subjects used (genetically
matched subjects vs. 10 PD and 11 control subjects). In addition, finger sequencing tasks
similar to the current study may be encoded more in BG, whereas a timing task used by Cerasa
et al. (2006) may be encoded in both BG and cerebellum.

It is important to emphasize that our data demonstrate that the BG-cortical circuitry is involved
in both EG and IG tasks, as both tasks elicit BG-cortical functional activity. It appears, however,
that this pathway is essential only for IG tasks. Indeed, the fact that the activation in the BG-
cortical pathway (particularly at the cortical level) is nearly normal in the PD-twin during the
EG task (both before and after levodopa) supports the hypothesis that there may be an alternate
pathway through which EG tasks can be processed. It is very possible that this alternate pathway
contains structures in cerebellar-cortical pathways that are known to be involved in EG
movement, and which rely heavily on somatosensory integration, including structures such as
the cerebellum (Debaere et al., 2003), SMC (Taniwaki et al., 2003), and PreMC (Elsinger et
al., 2006). Interestingly, previous studies have observed increased activity in each of these
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regions in PD patients (Samuel et al., 1997;Sabatini et al., 2000;Haslinger et al., 2001). It is
possible that recruitment of these structures can compensate for decreases in BG structures.
Indeed, the near-normal SMC activity, and increased activity in the cerebellum and PreMC, in
the PD-twin during the EG task support this hypothesis.

Effect of levodopa on the basal ganglia-cortical and cerebellar-cortical pathways
Another novel observation of our study is related to the role of levodopa in the treatment of
PD. Namely, we found that levodopa “over-corrected” the deficits observed in some ROIs in
the BG-cortical and cerebellar-cortical pathways during the IG task. Levodopa has been the
gold standard for treating PD via its repletion of the dopamine that is lost due to degeneration
of nigral neurons (albeit with the clear risk that long-term use may cause dyskinesias). One
possible explanation for such over-activation is the down–regulation of dopamine transporters
(DATs), a finding that has been associated with treatment of PD (Lee et al., 2000). This
transporter down-regulation may lead to a lessening of the normally tight regulation in the
dopamine system, resulting in “over-flooding” of the system after levodopa administration.
This is consistent with a recently proposed hypothesis that the down-regulation of DATs may
be associated with dyskinesia (Sossi et al., 2006). This hypothesis must be addressed
cautiously, however, as it has been shown that chronic levodopa administration to the unilateral
6-OHDA dopamine-lesioned rat actually caused an up-regulation of DATs on the lesioned side
(Ferrario et al., 2004).

The role of MZ twin pair discordant for PD in FMRI studies
This first fMRI study on a pair of identical twins currently discordant for PD offered a unique
opportunity to examine, in vivo, the neurocircuity underlying the disease and its therapy. One
underlying hypothesis was that such a discordant twin pair would minimize much of the large
inter-individual differences that can confound such studies. The remarkable similarity can be
seen visually in the structural features of these sibling’s brains (Figures 2 and 5), as well as in
the patterns of brain activation between the non-PD-twin and PD-twin after levodopa (Figures
2 and 5). This provided an unusually stable baseline that permitted us to generate robust data
testing the hypothesis of a task-specific influence of PD and levodopa on the BG-cortical and
cerebellar-cortical circuitry in this one pair of twins. Moreover, we feel these data suggest that
intensive fMRI studies in other MZ twins discordant for PD is likely to be an extremely
important direction to pursue.

It has been reported that there is a high degree of concordance for PD in MZ twin pairs,
especially with those having young onset of PD (Tanner et al., 1999). Normal density of
dopamine transporters using SPECT imaging with [123I]-β-CIT in the non-PD-twin confirmed
that the twin had a completely intact nigrostriatal dopamine system, whereas the PD-twin had
the expected large deficit (unpublished data, available upon request).

A new model of functionally related basal ganglia-cortical and cerebellar-cortical pathways
We recognize that the current findings need to be explored in other discordant twin pairs, and
also that covariant ROI analysis using MANOVA may not fully reflect important neuronal
networks. Nonetheless, it is not premature to place these data in the context of a new model of
BG function in motor control (see Figure 8). This model integrates the two partially segregated
(see Hoshi et al., 2005, however), but functionally-related, loops of the BG-cortical and
cerebellar-cortical circuits. Whereas previous studies using fMRI have demonstrated decreased
activity in BG structures (Holden et al., 2006), or increased activity in cerebellar (Cerasa et al.,
2006;Eckert et al., 2006) or numerous cortical (Sabatini et al., 2000;Haslinger et al.,
2001;Eckert et al., 2006) areas in PD, we believe this is the first study to test these structures
combined into functional circuits. This model seems to be able to explain much of the
seemingly divergent basic and clinical results in PD (e.g., Sabatini et al., 2000;Haslinger et al.,
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2001;Mattay et al., 2002;Buhmann et al., 2003;Cerasa et al., 2006), with the following inherent
implications and hypotheses.

First, in the normal condition, EG tasks are primarily processed through cerebellar-cortical
circuitry, with the recruitment of the BG-cortical circuitry (Panel A), whereas IG tasks are
primarily encoded in the BG-cortical pathway, with the recruitment of cerebellar-cortical
circuitry (Panel B). Second, in PD, EG tasks also are processed primarily via the cerebellar-
cortical pathway, though with enhanced activity in this circuit, particularly in cerebellulm and
PreMC areas (Panel C). IG tasks in PD, however, neither adequately activate the BG-cortical
pathway (its primary processing center), nor cause adequate recruitment of the cerebellar-
cortical pathway. As a result, both pathways display decreased activity (Panel D). Third,
levodopa restores normal cerebellar-cortical activity during the EG task after adequate BG-
cortical activation (Panel E, compare to Panel A). In the IG task, levodopa administration
increases functional activity in both BG-cortical and cerebellar-cortical pathways, significantly
“over-correcting” both circuits (Panel F). The model emphasizes that the two pathways are
functionally related, despite the fact that there may be some degree of segregation. This last
assumption is important for the model because it provides a functional compensatory model
in PD.

In conclusion, the current results support the hypothesis that the BG-cortical and cerebellar-
cortical pathways are functionally-related circuits and task-specifically influenced by PD. The
results supported a new working model of motor control with integration of these two
functionally related circuitries, and the finding of levodopa “over-activation” of some
structures in the BG-cortical and cerebellar-cortical pathways in PD is clearly worthy of further
exploration. Above and beyond the current data, there appears to be great potential utility of
functional studies of discordant identical twin pairs in PD.

Acknowledgements

We want to thank the twin pair who participated in our studies. We want to recognize the assistance of Peter Chen,
Colleen A. Hanlon, Jennifer Woodward, Jennifer Simmons, and Anna Dow, support from the UNC fMRI Center and
General Clinical Research Center, and the computational consulting of Josh Bizzell of UNC-Duke Brain Imaging and
Analysis Center (BIAC). This work was supported in part by NIH grants AG21491

References
Afifi, AK.; Bergman, RA. Functional Neuroanatomy: Text and Altas. New York; McGraw-Hill: 1998.
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci

1989;12:366–375. [PubMed: 2479133]
Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for

motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990;85:119–146. [PubMed:
2094891]

Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking
basal ganglia and cortex. Annu Rev Neurosci 1986;9:357–381. [PubMed: 3085570]

Bartels AL, Balash Y, Gurevich T, Schaafsma JD, Hausdorff JM, Giladi N. Relationship between freezing
of gait (FOG) and other features of Parkinson’s: FOG is not correlated with bradykinesia. J Clin
Neurosci 2003;10:584–588. [PubMed: 12948464]

Bonnefoi-Kyriacou B, Legallet E, Lee RG, Trouche E. Spatio-temporal and kinematic analysis of pointing
movements performed by cerebellar patients with limb ataxia. Exp Brain Res 1998;119:460–466.
[PubMed: 9588780]

Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated
fMRI--cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain
2003;126:451–461. [PubMed: 12538411]

Cerasa A, Hagberg GE, Peppe A, Bianciardi M, Gioia MC, Costa A, Castriota-Scanderbeg A, Caltagirone
C, Sabatini U. Functional changes in the activity of cerebellum and frontostriatal regions during

Lewis et al. Page 8

Neuroscience. Author manuscript; available in PMC 2008 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



externally and internally timed movement in Parkinson’s disease. Brain Res Bull 2006;71:259–269.
[PubMed: 17113955]

Chuma T, Faruque RM, Ikoma K, Mano Y. Motor learning of hands with auditory cue in patients with
Parkinson’s disease. J Neural Transm 2006;113:175–185. [PubMed: 15959849]

Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Internal vs external generation of
movements: differential neural pathways involved in bimanual coordination performed in the
presence or absence of augmented visual feedback. Neuroimage 2003;19:764–776. [PubMed:
12880805]

Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M. Mesial motor areas in self-initiated versus
externally triggered movements examined with fMRI: Effect of movement type and rate. Journal of
Neurophysiology 1999;81:3065–3077. [PubMed: 10368421]

DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT. Role of basal
ganglia in limb movements. Hum Neurobiol 1984;2:235–244. [PubMed: 6715208]

Eckert T, Peschel T, Heinze HJ, Rotte M. Increased pre-SMA activation in early PD patients during
simple self-initiated hand movements. J Neurol 2006;253:199–207. [PubMed: 16222427]

Elsinger CL, Harrington DL, Rao SM. From preparation to online control: reappraisal of neural circuitry
mediating internally generated and externally guided actions. Neuroimage 2006;31:1177–1187.
[PubMed: 16540347]

Ferrario JE, Taravini IR, Mourlevat S, Stefano A, Delfino MA, Raisman-Vozari R, Murer MG, Ruberg
M, Gershanik O. Differential gene expression induced by chronic levodopa treatment in the striatum
of rats with lesions of the nigrostriatal system. J Neurochem 2004;90:1348–1358. [PubMed:
15341519]

Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann
AO. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after
levodopa. Brain 2001;124:558–570. [PubMed: 11222456]

Holden A, Wilman A, Wieler M, Martin WR. Basal ganglia activation in Parkinson’s disease.
Parkinsonism Relat Disord 2006;12:73–77. [PubMed: 16458037]

Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia.
Nat Neurosci 2005;8:1491–1493. [PubMed: 16205719]

Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus
externally triggered movements. I. An investigation using measurement of regional cerebral blood
flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain
1995;118 ( Pt 4):913–933. [PubMed: 7655888]

Johnson, RA.; Wichern, DW. Applied Multivariate Statistical Analysis. Prentice Hall: 2002.
Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, del F-F, Calne DB, Stoessl

AJ. In vivo positron emission tomographic evidence for compensatory changes in presynaptic
dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000;47:493–503. [PubMed:
10762161]

Lieberman A. Are freezing of gait (FOG) and panic related? J Neurol Sci 2006;248:219–222. [PubMed:
16797596]

Manzoni D. The cerebellum and sensorimotor coupling: Looking at the problem from the perspective of
vestibular reflexes. Cerebellum 2007;6:24–37. [PubMed: 17366264]

Mattay VS, Tessitore A, Callicott JH, Bertolino A, Goldberg TE, Chase TN, Hyde TM, Weinberger DR.
Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol
2002;51:156–164. [PubMed: 11835371]

Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J, Mattay VS, Egan M,
Weinberger DR. Impact of complex genetic variation in COMT on human brain function. Mol
Psychiatry 2006;11:867–77. 797. [PubMed: 16786032]

Morris ME. Movement disorders in people with Parkinson disease: a model for physical therapy. Phys
Ther 2000;80:578–597. [PubMed: 10842411]

Nowak DA, Tisch S, Hariz M, Limousin P, Topka H, Rothwell JC. Sensory timing cues improve akinesia
of grasping movements in Parkinson’s disease: a comparison to the effects of subthalamic nucleus
stimulation. Mov Disord 2006;21:166–172. [PubMed: 16161152]

Oldfield RC. Ambidexterity in Surgeons. Lancet 1971;1:655. [PubMed: 4101266]

Lewis et al. Page 9

Neuroscience. Author manuscript; available in PMC 2008 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Protas EJ, Mitchell K, Williams A, Qureshy H, Caroline K, Lai EC. Gait and step training to reduce falls
in Parkinson’s disease. NeuroRehabilitation 2005;20:183–190. [PubMed: 16340099]

Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s
disease: impaired effective connectivity among frontal cortical regions. Brain 2002;125:276–289.
[PubMed: 11844728]

Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL,
Chollet F, Rascol O. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a
functional MRI study. Brain 2000;123 ( Pt 2):394–403. [PubMed: 10648446]

Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ. Evidence
for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual
movements. A PET study. Brain 1997;120 ( Pt 6):963–976. [PubMed: 9217681]

Sossi V, de la Fuente-Fernandez R, Schulzer M, Troiano A, Stoessl AJ, Ruth TJ. Role of DAT in synaptic
dopamine oscillations in Parkinson’s disease: a PET study. Mov Disord 2006;21:S587–S588.

Styner M, Lieberman JA, McClure RK, Weinberger DR, Jones DW, Gerig G. Morphometric analysis of
lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific factors.
Proc Natl Acad Sci U S A 2005;102:4872–4877. [PubMed: 15772166]

Taniwaki T, Okayama A, Yoshiura T, Nakamura Y, Goto Y, Kira J, Tobimatsu S. Reappraisal of the
motor role of basal ganglia: a functional magnetic resonance image study. J Neurosci 2003;23:3432–
3438. [PubMed: 12716951]

Taniwaki T, Okayama A, Yoshiura T, Togao O, Nakamura Y, Yamasaki T, Ogata K, Shigeto H, Ohyagi
Y, Kira JI, Tobimatsu S. Functional network of the basal ganglia and cerebellar motor loops in vivo:
Different activation patterns between self-initiated and externally triggered movements. Neuroimage.
2006

Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW. Parkinson disease
in twins: an etiologic study. JAMA 1999;281:341–346. [PubMed: 9929087]

Toga AW, Thompson PM. Genetics of brain structure and intelligence. Annu Rev Neurosci 2005;28:1–
23. [PubMed: 15651931]

ABBREVIATIONS
6-OHDA  

6-hydroxydopamine

BG  
Basal ganglia

Cereb  
Cerebellum

CLT  
Central limit theorem

DAT  
Dopamine transporter

EG  
Externally guided

fMRI  
Functional magnetic resonance imaging

FWHM  
Full width at half maximum

GP/Put  
Globus pallidus/putamen
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IG  
Internally guided

MANOVA  
Multiple analysis of variance

MZ  
Monozygotic

NEX  
Number of excitations

PD  
Parkinson’s disease

PMC  
Primary motor cortex

PreMC  
Lateral premotor cortex

ROI  
Region of interest

SMA  
Supplementary motor area

SMC  
Somatosensory cortex

SPECT  
Single-photon emission computed tomography

SPM  
Statistical parametric mapping

TE  
Excitation time

Thal  
Thalamus

TR  
Relaxation time
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Figure 1.
Activation paradigm for fMRI motor task. A block design paradigm was used wherein subjects
held their right hand at rest, followed the sequence on the screen (EG task), or generated the
previous sequence internally (IG task). The specific sequence is listed in Table 1. Each block
was 30 seconds in duration and the rate was 1 Hz. paradigm. Open block represent Rest,
Hatched blocks represent EG periods, and Gray block represent IG.
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Figure 2.
T-maps of the non-PD and PD-twin during completion of an externally guided (EG) right
handed task. The images were created using t-map contrasts of right handed EG task vs. Rest
overlaid onto each subjects’ anatomical scan (see Methods for details) using a t-threshold of
1.96. The three sets of scans represent images at the cortical, basal ganglia, and cerebellar levels
(top to bottom, respectively).
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Figure 3.
Percent of activation values for ROIs in the BG-cortical pathways during the EG task in the
non-PD-twin (black bars) and PD-twin (gray bars) before (A and B) and after levodopa (C and
D). Data represent the mean ± standard error of a given ROI over the six runs each twin
completed. P values from multivariate analysis on the BG-cortical pathways between twins
are given in the upper right corner of each graph. GP/Put: globus pallidus/putamen; Thal:
thalamus; SMA: supplementary motor area; PMC: primary motor cortex.
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Figure 4.
Percent of activation values for ROIs in the cerebellar-cortical pathways during the EG task in
the non-PD-twin (black bars) and PD-twin (gray bars) before (A and B) and after levodopa (C
and D). Data represent the mean ± standard error of a given ROI over the six runs each twin
completed. P values from multivariate analysis on the cerebellar-cortical pathways between
twins are given in the upper right corner of each graph. *Indicates significant difference
between twins with p < 0.05 by simple t-test. Cereb: cerebellum; Thal: thalamus; SMC:
somatosensory cortex; PreMC: lateral premotor cortex.
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Figure 5.
T-maps of the non-PD- and PD-twin during completion of an internally guided (IG) right
handed task. The images were created using t-map contrasts of right handed IG task vs. Rest
overlaid onto each subjects’ anatomical scan (see Methods for details) using a t-threshold of
1.96. The three sets of scans represent images at the cortical, basal ganglia, and cerebellar levels
(top to bottom, respectively).
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Figure 6.
Percent of activation values for ROIs in the BG-cortical pathways during the IG task in the
non-PD-twin (black bars) and PD-twin (gray bars) before (A and B) and after levodopa (C and
D). Data represent the mean ± standard error of a given ROI over the six runs each twin
completed. P values from multivariate analysis on the BG-cortical pathways between twins
are given in the upper right corner of each graph. *Indicates significant difference between
twins with p < 0.05 by simple t-test. GP/Put: globus pallidus/putamen; Thal: thalamus; SMA:
supplementary motor area; PMC: primary motor cortex.
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Figure 7.
Percent of activation values for ROIs in the cerebellar-cortical pathways during the IG task in
the non-PD-twin (black bars) and PD-twin (gray bars) before (A and B) and after levodopa (C
and D). Data represent the mean ± standard error of a given ROI over the six runs each twin
completed. P values from multivariate analysis on the cerebellar pathways between twins are
given in the upper right corner of each graph. *Indicates significant difference between twins
with p < 0.05 by simple t-test. Cereb: cerebellum; Thal: thalamus; SMC: somatosensory cortex;
PreMC: lateral premotor cortex.
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Figure 8.
The proposed model for the segregated, but functionally related, basal ganglia-thalamo-cortical
and cerebello-thalamo-cortical circuits. Normally, EG tasks are primarily processed through
cerebellar-cortical circuitry, with the recruitment of the BG-cortical circuitry (Panel A),
whereas IG tasks are primarily encoded in the BG-cortical pathway, with the recruitment of
cerebellar-cortical circuitry (Panel B). In PD, EG tasks also are processed primarily via the
cerebellar-cortical pathway, though with enhanced activity in this circuit, particularly in
cerebellulm and PreMC areas (Panel C). IG tasks in PD, however, neither adequately activate
the BG-cortical pathway (its primary processing center), nor cause adequate recruitment of the
cerebellar-cortical pathway. As a result, both pathways display decreased activity (Panel D).
Levodopa restores normal cerebellar-cortical activity during the EG task after adequate BG-
cortical activation (Panel E, compare to Panel A). In the IG task, levodopa administration
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increases functional activity in both BG-cortical and cerebellar-cortical pathways, significantly
“over-correcting” both circuits (Panel F). The thickness of the lines in each pathway reflects
the level of activity within that circuit. Abbreviations are as follows: PMC: primary motor
cortex; PreMC: lateral premotor area; SMA: Supplemental Motor Area; SMC; Sensorimotor
Cortex; STN; Vla; Ventralis lateralis anterior thalamus; VLp: Ventralis lateralis posterior
thalamus, also know as ventralis intermedius (Vim).
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Table 1
Three different finger sequences used in the fMRI paradigm.

Paradigm Description of sequences

Sequence Number 1 Thumb to digit 2 →3→4→5→ open and close fist twice →
Thumb to digit 5→4→3→2→ open and close fist twice →
Return to beginning of sequence

Sequence Number 2 Thumb to digit 2 →4→3→5→ open and close fist twice →
Thumb to digit 5→3→4→2→ open and close fist twice →
Return to beginning of sequence

Sequence Number 3 Thumb to digit 3 →5→2→4→ open and close fists twice →
Thumb to digit 4→2→5→3→ open and close fists twice →
Return to beginning of sequence

Digit 1: thumb; digit 2: index finger; digit 3; middle finger; digit 4: ring finger; digit 5: little finger.

Neuroscience. Author manuscript; available in PMC 2008 June 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lewis et al. Page 22
Ta

bl
e 

2
M

ul
tiv

ar
ia

te
 a

na
ly

si
s r

es
ul

ts
 o

f p
er

ce
nt

ag
e 

of
 a

ct
iv

at
io

n 
of

 R
O

Is
 in

 b
ila

te
ra

l B
G

-c
or

tic
al

 a
nd

 c
er

eb
el

la
r-

co
rti

ca
l p

at
hw

ay
s.

C
ol

um
n 

A
N

on
-P

D
 v

s. 
PD

-T
w

in
 P

re
dr

ug
 (p

 v
al

ue
)

C
ol

um
n 

B
N

on
-P

D
 v

s. 
PD

-T
w

in
 P

os
td

ru
g 

(p
 v

al
ue

)
C

ol
um

n 
C

PD
-tw

in
: P

re
dr

ug
 v

s. 
Po

st
dr

ug
 (p

 v
al

ue
)

Pa
th

w
ay

E
G

IG
E

G
IG

E
G

IG
C

on
tr

al
at

er
al

 B
G

-C
or

tic
al

 P
at

hw
ay

0.
48

37
0.

02
88

0.
45

87
0.

51
55

0.
11

87
0.

00
76

Ip
si

la
te

ra
l B

G
-C

or
tic

al
 P

at
hw

ay
0.

39
35

0.
02

07
0.

50
52

0.
04

53
0.

63
98

0.
06

54
C

on
tr

al
at

er
al

 C
er

eb
el

la
r-

C
or

tic
al

 P
at

hw
ay

*
0.

04
17

0.
06

85
0.

11
21

0.
00

54
0.

10
85

0.
00

84
Ip

si
la

te
ra

l C
er

eb
el

la
r-

C
or

tic
al

 P
at

hw
ay

**
0.

00
92

0.
00

36
0.

15
67

0.
00

39
0.

53
60

0.
05

91

EG
 =

 E
xt

er
na

lly
 G

ui
de

d;
 IG

 =
 In

te
rn

al
ly

 G
ui

de
d

Th
e 

B
G

-c
or

tic
al

 p
at

hw
ay

s i
nc

lu
de

 th
e 

G
P/

Pu
t, 

th
al

am
us

, S
M

A
, a

nd
 P

M
C

.

* In
 th

e 
co

nt
ra

la
te

ra
l c

er
eb

el
la

r-
co

rti
ca

l p
at

hw
ay

, ‘
co

nt
ra

la
te

ra
l’ 

re
fe

rs
 to

 c
or

tic
al

 a
nd

 su
bc

or
tic

al
 a

re
as

 a
nd

 in
cl

ud
es

 th
e 

ip
si

la
te

ra
l c

er
eb

el
lu

m
 w

ith
 th

e 
co

nt
ra

lte
ra

l t
ha

la
m

us
, S

M
C

, a
nd

 P
re

M
C

.

**
In

 th
e 

ip
si

la
te

ra
l c

er
eb

el
la

r-
co

rti
ca

l p
at

hw
ay

, ‘
ip

si
la

te
ra

l’ 
re

fe
rs

 to
 c

or
tic

al
 a

nd
 a

nd
 su

bc
or

tic
al

 a
re

as
 a

nd
 in

cl
ud

es
 th

e 
co

nt
ra

la
te

ra
l c

er
eb

el
lu

m
 w

ith
 th

e 
ip

si
la

te
ra

l t
ha

la
m

us
, S

M
C

, a
nd

 P
re

M
C

.

V
al

ue
s i

n 
th

e 
ta

bl
e 

re
pr

es
en

t t
he

 p
 v

al
ue

 fo
r a

 p
ar

tic
ul

ar
 a

na
ly

si
s.

Neuroscience. Author manuscript; available in PMC 2008 June 15.


