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Abstract

For genetic association studies that involve an ordered categorical phenotype, we usually either 

regroup multiple categories of the phenotype into two categories (“cases” and “controls”) and then 

apply the standard logistic regression (LG), or apply ordered logistic (oLG) or ordered probit 

(oPRB) regression which accounts for the ordinal nature of the phenotype. However, these 

approaches may lose statistical power or may not control type I error rate due to their model 

assumption and/or instable parameter estimation algorithm when the genetic variant is rare or 

sample size is limited. Here to solve this problem, we propose a set-valued (SV) system model, 

which assumes that an underlying continuous phenotype follows a normal distribution, to identify 

genetic variants associated with an ordinal categorical phenotype. We couple this model with a 

set-valued system identification algorithm to identify all the key system parameters. Simulations 

and two real data analyses show that SV and LG accurately controlled the Type I error rate even 

at a significance level of 10−6 but not oLG and oPRB in some cases. LG had significantly smaller 

power than the other three methods due to disregarding of the ordinal nature of the phenotype, and 

SV had similar or greater power than oLG and oPRB. For instance, in a simulation with data 

generated from an additive SV model with odds ratio of 7.4 for a phenotype with three categories, 

a single nucleotide polymorphism with minor allele frequency of 0.75% and sample size of 999 

(333 per category), the power of SV, oLG and LG models were 70%, 40% and <1%, 

respectively, at a significance level of 10−6. Thus, SV should be employed in genetic association 

studies for ordered categorical phenotype.
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Introduction

Genome-wide association studies (GWAS) have successfully identified many genetic 

variants that are associated with complex diseases over the past decades (Sladek et al., 2007; 

Welter et al., 2014). Many phenotypes studied in GWAS are either binary or continuous. 

The logistic regression (LG) and linear regression models are widely used to analyze the 

binary and continuous phenotype while adjusting for the effects of confounding covariates 

such as ancestry, age and sex. In cancer GWAS, considerable portion of phenotypes are 

survival (Innocentiet al., 2012) or relapse (Yang et al., 2012). The Cox proportional hazard 

regression model(Cox, 1972) and the Fine and Gray hazard rate regression(Fine and Gray, 

1999) are the standard methods to analyze survival and relapse outcomes with adjusting for 

some confounding factors such as ancestry scores, treatment arms, clinical risk or prognostic 

factors, respectively.

In cancer pharmacogenetics/pharmacogenomics, we are interested in detecting genetic 

variations influencing drug toxicity or efficacy. The key phenotype referred to as the 

outcome could be multiple ordinal categories such as dosing of drugs, adverse events scored 

on scales using ordinal values (1-5) according to Common Terminology Criteria for Adverse 

Events developed by the US National Cancer Institute (Ingle et al., 2010), and effect of 
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treatment on disease such as tumor response in which the metrics of tumor size is 

categorized as complete response, partial response, stable disease or progressive disease 

(Wheeler et al., 2013). Furthermore, some ordered phenotype may be defined by splitting a 

measured continuous variable such as four categories of underweight, normal weight, 

overweight and obese, based on body index mass, but most of them may be generated due to 

complicated unobservable or unobserved continuous variables such as the expression level 

of RNAs or proteins involved in an unknown biological process or stimulated by external 

environments.

For these ordered phenotypes, researchers often regroup multiple categories into two 

categories of “cases” and “controls” and then apply the standard LG model (Treviño et al., 

2009; Ingle et al., 2010). However, this method may lose substantial power in that re-

categorizing the phenotype does not take the ordinal nature of the phenotype into 

consideration (see Simulation Results section below). The non-parametric method of 

Spearman rank correlation (Yang et al., 2009) or the Jonckheere–Terpstra tests (Han et al., 

2013) which accounts for the ordinal nature of the phenotype can be an attractive method. 

However, these methods cannot adjust for confounding factors. The parametric method of 

ordered/ordinal logistic regression (oLG) model (Png et al., 2011) borrows the basic idea of 

standard LG regression model to avoid these pitfalls. As the most popular model, 

generalized linear models (GLM), logistic approaches adopt link function of logit form, 

which brings many advantages. For example, the first derivative and the second derivative 

of the corresponding log-likelihood function are easy to compute, and the estimated 

parameter can explain the odds ratio directly. Nevertheless, we still think the logistic 

approach sometimes is overused. Above all, fitting the response data with the logit link 

function cannot be justified in many practical applications. The doubt has been confirmed in 

the case of binary outcome for which probit method has better performance than LG method 

under non-asymptotic situations (low MAF and small sample size) (Kang et al., 2014). All 

these two methods will lose statistical power or cannot maintain the type I error rate if the 

marker is rare and sample size is small due to their model assumptions and/or unstable 

parameter estimation algorithm. Another parametric method of the ordered probit regression 

method can also be used but likeoLG, its performance is problematic when the sample size 

is small and the number of categories is large.

As for traditional system identification, the system input and continuous system output are 

usually assumed accessible/known. But in some cases, we can only know which set the 

system output lies in but not the exact continuous output information, which is called set-

valued information (Kang et al., 2014). To model the relationship between system input and 

system output mathematically, a quantization process is adopted to generate the set-valued 

system from the corresponding continuous latent or unknown variable. Set-valued system 

identification (SVSI) was first investigated for sensor systems (Wang, et al., 2003). In 

contrast to the traditional system identification method, SVSI can estimate the model 

parameters by set-valued information rather than precise output information. It is technically 

more challenging, but appears in a wide range of applications such as sensor networks and 

telecommunications (Nair, et al., 2007). Many more motivating examples can be found in 

Wang et al. (2010). Finite impulse response model is a class of typical linear system model 
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and can be used to approximate many actual physical systems. As an important research 

branch of SVSI, the identification of finite impulse response model with set-valued data 

attracts the attention of many researchers and some related results have been obtained 

(Godoy, et al., 2011; Chen, et al., 2012; Bi, et al., 2014).

In this study, we propose a specific set-valued (SV) system model, which can be considered 

as a finite impulse response system with set-valued output. The model considers the 

categorizing process of continuous phenotypes to model the relationship between the 

ordered outcome and possible genetic or non-genetic explanatory factors in GWAS or next-

generation sequencing (NGS) studies. We estimate the parameter of interest by a SVSI 
approach and use a Wald test statistic for testing the null hypothesis of no association 

between genetic variant and ordinal phenotype. We perform extensive simulation studies to 

compare the type I error rate, the power and the computational cost of SV with those of LG, 

oLG and oPRB methods. Finally, we apply the SV method to the data about minimal 

residual disease (MRD) in acute lymphoblastic leukemia (ALL) (Yang et al., 2009) and the 

Genetic Analysis Workshop 17 (GAW17) data.

Materials and Methods

Notations

Assume that we have a cohort of N individuals and that the genetic polymorphism of interest 

is biallelic [e.g., single nucleotide polymorphism (SNP)]. The 2 alleles at a SNP are denoted 

as A and a, where A is the minor allele and together they form three genotypes denoted as 

AA, Aa, and aa. Suppose that observations (si, Xi, Gi), i = 1, 2, ... N are available, where si is 

the ordinal disease outcome of individual i; Xi = [xi1, xi2, ..., xim]T is a vector of m covariates 

that we need to adjust for (e.g., demographic or clinical variables); and Gi = 0, 1, or 2 is the 

numerical coding corresponding to the three genotypes aa, Aa or AA, respectively, for the ith 

individual.

The set-valued (SV) model

We propose a novel set-valued (SV) model in which the phenotype information can be 

regarded as the set-valued observation of a continuous latent variable:

(1)

where Gi and Xi represent the genotype and covariates of subject i, yi is the latent continuous 

variable, f is a deterministic function reflecting the influence of G and X on the latent 

variable, ei is the random noise, IAk(y) is the indicator function of subset Ak and (r+1) is the 

total number of categories of the observed outcome. Observed phenotype si is determined 

based on which set (of sets {Ak, k=0,1,...,r}) the latent variable yi belongs to.

The most common simplified treatment of the set-valued process is to introduce thresholds 

{c1,c2,…,cr} such that [ck, ck+1). To make the representation concise, we assume that c0 = − 

∞, cr+1 = +∞. In this case, SV model is similar to the well-known threshold model. 
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Furthermore, we adopt linear formulation for function f and assume normal distribution for 

the random noise. The model degenerates to the following:

(2)

where ei is the random noise which follows a normal distribution with a mean of 0 and a 

variance of σ2. The null hypothesis of H0: θ = 0 corresponds to no genetic effect of SNP on 

the phenotype. The parameter θ is to be identified only based on observations (si, Xi, Gi), 

i=1,2,...,N to test for the null hypothesis using the expectation-maximization (EM) algorithm 

below.

In equation (2), if c1=0, then the SV model is the usual ordered probit model. If the ei in 

equation (2) follows a logistic distribution in equation (2), then the SV model becomes 

ordered logistic regression (oLG) model (Greene and William, 2003). However, an 

important deviation from the usual ordered probit regression modeling is that here we take a 

novel algorithm SVSI to estimate all the key underlying system parameters θ, γ, and c, 

rather than the iteratively reweighted least squares (IRWLS)algorithm which is usually used 

in the ordered probit regression. Thus, we call the proposed SV model coupled with the new 

SVSI algorithm SV and call the usual ordered probit model with IRWLS oPRB throughout 

the paper to differentiate these two methods due to its better performance below. Without 

calculating the complicated weighting matrix per iteration, the new algorithm can achieve 

efficient results with fast computing time. The detailed discussions and results can be seen in 

results section.

Estimate of θ and test statistic

The system parameters in equation (1) can be estimated by maximizing the likelihood 

function through the EM algorithm. The estimation process is similar to (Chen, et al., 2012). 

Denote (θ, γT, α0)T by an overall parameter Θ,  by an overall input φi. The core 

iteration process is as following:

(3)

where  is the density function and  is 

the cumulative distribution function for a normal distribution with mean 0 and variance σ2 

evaluated at . For more details of MLE, see section 1 in the supplementary 

material.

Suppose the iteration estimator converges to the MLE , the observed Fisher information 

matrix of  (denoted by ) can be obtained according to the following formula (see 

section 1 in the supplementary material for details)
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(4)

where L(Θ) is the likelihood function given Θ. Testing for no genetic effect of SNP on the 

phenotype, that is, H0: θ = 0, can be constructed for the SV method from the Wald statistic

(5)

where , the element at the first row and the first column of the inverse Fisher 

information matrix, represents the estimated variance of . Asymptotically, W is distributed 

approximately as a central χ2 distribution with 1 degree of freedom under the null hypothesis 

of no association.

Estimate of threshold C

The estimation of parameters needs the knowledge of threshold vector c=(c1,c2,...,cr).In 

some situations, the thresholds are available. For example, in leukemia, minimal residual 

disease (an assessment of decreasing leukemic burden in response to therapy such as 

chemotherapy for cancer treatment) can be categorized as negative (<0.01%), positive 

(≥0.01% but <1%) and high-positive (≥1%) using two thresholds of 0.01% and 1% (Yang et 

al., 2009). In other cases, the latent variable is unobserved and the thresholds are also 

unknown to us. In the case of binary phenotype, it is very easy to estimate the threshold 

along with other parameters by dealing with the threshold as a parameter (Kang et al., 2014). 

But in case of ordered categorical phenotype, we have to estimate them with some 

techniques. Fortunately, if we presume model parameters as fixed values and threshold as 

variable, the Hessian matrix of likelihood function is positive definite, which means the 

likelihood function has a unique maximum point. Here we adopt a switching operation for 

estimating parameters and thresholds. As for one iteration step, we first estimate model 

parameters (θ, γT, α0)T based on equation (3), and then estimate the threshold c. Through 

extensive simulations, gradient descent method shows good performance on the computation 

time, and is used to estimate the threshold.

(6)

The detailed algorithm implementation of the SVSI method is in Supplementary Section 2 

and the proposed new SV method has been implemented in an R package which is available 

for free download from http://www.stjuderesearch.org/site/depts/biostats/software. The 

simulations adopting SV model and unbiased sampling show that the estimation of 

parameters and thresholds can converge close to the true value within 10 iterations and 

complete the convergence process within 100 iterations (see Table S1 and Figure S1).
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Simulations

Data generation

We performed extensive simulation studies to evaluate the performance of the proposed SV 
method against the three competing alternatives including LG for the regrouped binary 

phenotype (recoding as 0 or greater than 0), oLG, and oPRB. We only considered an 

ordered phenotype with three categories (si= 0, 1 and 2) in our simulations.

Genotype and covariates simulations—Given the minor allele frequency(MAF) pA, 

the genotype frequencies p(G=g) were calculated according to Hardy-Weinberg 

equilibrium(HWE) law, i.e., p(G=0)=(1-pA)2, p(G=1)=2pA(1-pA), p(G=2)=(pA)2. Two 

covariates were considered, x1as a binary variable that is 1 with a probability of 0.5 and 0 

otherwise; and x2 as a continuous variable that follows a standard normal distribution. The 

genotypes and 2 covariates for a population of 2,000,000 individuals were independently 

generated from their respective distributions.

Phenotype simulations—The phenotype status was determined from the generated 

genotype and covariates data according to two models below similar to that for the binary 

phenotype simulation method by Kang et al., (2014) and Wu et al., (2011):

1. LG-based simulation method (LGsimu):

We controlled the proportions of individuals with the ordinal disease outcome s = 

2, 1, 0 by α1 and α2 and set it to1:3:6, that is, 10% of individuals have s2, 30% of 

those have s1 and 60% of those have s0, in the case that all three regression 

coefficients for SNP, xi1, and xi2 are 0.

2. SV-based simulation method (SVsimu): First a continuous variable was generated 

from yi=θGi+0.5xi1+0.5xi2+ei, where ei follows a standard normal distribution. 

Given thresholds (c1,c2), the individuals with a value of yi higher than c2 have 

phenotype of 2 and ones with a value of yi lower than c1 have phenotype of 0, the 

remaining have phenotype of 1. We controlled the proportions of individuals with 

the ordinal disease outcome s = 2, 1, 0 and set it to 1:3:6, that is, 10% of individuals 

have s2, 30% of those have s1 and 60% of those have s0, in the case that all three 

regression coefficients for SNP, xi1, and xi2 are 0.

Sample a cohort of N individuals—We select a cohort of N individuals to conduct 

further association analysis based on the following 2 sampling strategies to mimic two 

different designs for retrospective and prospective studies:

1. Randomly sample N/3 individuals per each category (Same): we sample a fixed 

sample size of N/3 individuals from each category in the population of 2,000,000 

individuals to mimic a retrospective design to maximize the power of association 
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testing. Note that this strategy ensures that the sample size must be a multiple of 3, 

so that for example we may compare results obtained by sampling 999 subjects 

with the Same strategy to those obtained by sampling 1000 subjects with the Rand 
strategy described below.

2. Randomly sample N individuals (Rand): we randomly choose N individuals from 

the population of 2,000,000 individuals simulated above to mimic a prospective 

design.

Once the data is generated, for LG, we used glm function in R and fit the glm on the 

regrouped binary phenotype (new si= 0 if the original si= 0 or new si= 1 if the original si = 1 

or 2), genotype and two covariates. For oLG and oPRB, we used polr function in MASS R 

package and fit polr on the original three-categorical phenotype, genotype and two 

covariates. Then the Wald test statistic was used for inference for all these three methods to 

be consistent with the SV method.

Type I error rate simulations

Eight values for MAFs of SNPs were considered: 0.0025, 0.0075, 0.01, 0.05, 0.1, 0.2, 0.3, 

0.4 and 0.5. The ordered phenotype was determined from the generated genotype and 

covariate data by using the two models mentioned above, with θ= 0. To estimate the type I 

error rate of the SV method, 10,000,000 replicated datasets were simulated for each study, 

with a small sample size of 1000 (2500) and a large sample size of 2000 (5000) for the 

Rand sampling method for variants with MAF≥0.0075 (MAF=0.0025) and the 

corresponding numbers of 999 (2499) and 1998 (5001) for the Same sampling method, 

respectively. We considered larger significance levels α = 0.05 or 0.01 and stringent 

genome-wide levels α = 10−5 or 10−6 under the null hypothesis of H0: θ = 0.

Power simulations

Three genetic disease models were considered: additive, dominant, and recessive with their 

respective genotype coding G (0, 1, 2), (0, 1, 1) and (0, 0, 1) when we simulated the 

phenotype. The ordered phenotype was determined from the generated genotype and 

covariate data according to the simulation methods given above, with θ varying from 0.3 to 

2 at an increment of 0.1. Datasets were generated 10,000 times for each configuration. The 

three methods used for the type I error simulations were applied to each data-set, and power 

was estimated as the proportions of p-values less than α = 10−6.

To mimic a phase II clinical trial, a small sample size of 150 was also used for common 

variants with MAFs of 0.2 and 0.05 to estimate the power of SV at a significance level of 

1×10−4.

Results

Type I error rate

Table 1 shows empirical type I error rates estimated for four methods. Regardless of 

significance levels, SV correctly maintained type I error control at the given levels for both 

common and rare variants. LG was conservative for stringent genome-wide levels if SNPs 
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were rare because of large variance of parameter estimate (Table 2) (Kang et al., 2014). 

oLG and oPRB correctly controlled type I error rate at larger significance levels but did not 

control type I error rate at stringent genome-wide levels for rare variants when sample size 

was small because of instability of oLG and oPRB when there are some empty or small 

cells. Since oPRB cannot control type I error rate at α = 10−6 for rare SNP with MAF 

0.0075 and the power of SV is almost identical to that of oPRB in most cases, the power of 

oPRB was omitted and was not included in the section below.

Power of the SV method

Figures 1–2 show the power of the three methods as a function of effect size (θ) for an 

additive disease model. As expected, the power of SV and oLG increased with the increase 

in effect size regardless of distributions of noise, the genetic disease model and sampling 

methods. The power of three methods was generally higher for Same sampling method than 

that for Rand sampling method for the same parameter setup. This suggests that for a 

retrospective design, sampling all individuals with more extreme phenotype is preferred for 

assessing genetic effect. In some settings, both SV and oLG based on ranked sets performed 

better than LG based on the regrouped sets. The power difference between them could be 

more than 50% at a significance level of 10−6 depending on the scale of the sample size. As 

expected, for a SNP with MAF of 0.05, given a sample size of 1000 with Rand and 999 

with Same, the power of LG for the regrouped binary outcome first increased to 100%, then 

decreased with increase in effect size (Figure 2A-2B). The drop of the power of LG method 

for the very large effect size given a small fixed sample size and a SNP with small MAF is 

due to the high probability of absence of individuals with phenotype 0 and carrying minor 

alleles (see population 3×3 tables in Supplementary matrix 1 for θ = 1 and 2, respectively), 

which leads to a very large estimated standard error of  by LG. For example, given N = 

999, for θ = 1, 0 out of 1000 simulated datasets had absence of individuals with phenotype 0 

and carrying minor alleles so that the mean and the standard deviation of  were 2.024 and 

0.258 which leaded to a standardized effect size of . However, for θ θ = 2, 58 out 

of 1000 simulated datasets had absence of individuals with phenotype 0 and carrying minor 

alleles so that the mean and the standard deviation of  were 4.50 and 3.288 which leaded to 

a standardized effect size of  which is much smaller than that for θ = 1. Below we 

will focus on power comparison between SV and oLG. The power gain for the new SV 
method was noticeable in detecting rare variants especially when the individuals was 

sampled using Same sampling method from the population generated using SVsimu 

(Figures 1-3).

For a common SNP with an MAF of 0.2 or 0.05, the power of SV appeared to be similar to 

or higher than that of oLG depending on the scale of sample size, regardless of the genetic 

disease models, sampling methods and distributions of noise (Figures 1-2, and 4). 

Surprisingly, with a small sample size of N=150, for a SNP with a MAF of 0.2 and θ = 0.7, 

the power difference between SV and oLG was 8% (Figure 4B and 4D). But for a SNP with 

a MAF of 0.05 and θ = 1.5, the power difference between SV and oLG was 15% (Figure 4B 

and 4D).
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For a rare SNP with an MAF of 0.0075 or 0.0025, if the noise follows a logistic distribution, 

with Rand sampling method, the power of oLG was almost identical to or slightly higher 

than that of SV, regardless of genetic disease models (Figure 1A-1C). However, 

interestingly, with Same sampling method, the power of SV was slightly or much higher 

than that of oLG, regardless of genetic disease models (Figure 1B-1D). For example, for a 

SNP with MAF of 0.0075, θ = 2 (equivalent to OR=eθ=7.4), and N=999, the power 

difference was 12% between oLG and SV (Figure 1B). Similarly, for a SNP with MAF of 

0.0025, θ = 1.8 (equivalent to OR=eθ=6), and N=5001, the power difference was 10% 

between oLG and SV (Figure 1D). If the noise follows a normal distribution, regardless of 

sampling methods, the power of SV was generally higher than that of oLG (Figure 2). The 

power difference between oLG and SV became larger at larger effect size and smaller 

sample sizes. For example, for a SNP with MAF of 0.0075, θ = 2, and N=999, the power 

difference was 24%between oLG and SV (Figure 2A). Similarly, for a SNP with MAF of 

0.0025, θ = 2, and N=1000, the power difference was 17% between oLG and SV (Figure 

3B). These results indicate that for rare genetic variant association studies, we strongly 

recommend SV be employed instead of LG and oLG if the phenotype was defined from a 

continuous normal distribution.

Figure 3 displays the power of the SV and oLG methods as a function of sample size for the 

additive disease model. As expected, the power of two methods increased with an increase 

in sample size. For a common SNP with an MAF of 0.2 or 0.05 and an effect size of 0.4 or 

0.8, respectively, the power of SV was almost identical to that of oLG, regardless of the 

distributions of noise, sample size, disease models and sampling methods (Figure 3). For a 

rare SNP with a MAF of 0.0075 or 0.0025 and an effect size of 2 or 2.4, if the noise follows 

a logistic distribution and a Rand sampling method is used, the power of SV appeared to be 

similar to that of oLG, regardless of the disease models (Figure 3A) but the power of SV 
was much larger than that of oLG for a Same sampling method (Figure 3B). The power 

difference became larger with moderate sample sizes. If the noise follows a normal 

distribution, regardless of sampling method, the power of SV was much greater than that of 

oLG but depending on the sample size (Figure 3C-3D).

Variance of the genetic association parameter estimate

Table 2 and Supplementary Table 2S gives the mean of , mean of estimated standard errors 

of , and standard deviations of  across simulation repetitions for the LG, SV and oLG 
methods based on 1,000 simulation repetitions. Data were generated using the same 

parameter setup as given in Table 1 and Figures 1–4.

The mean of estimated standard error of  appeared to be close to its standard deviation for 

the SV method in all simulation setups but not for LG, oLG and oPRB (Table 2 and 

Supplementary Table 2S). Interestingly, when SNP is rare (pA=0.0075) and association 

parameter is large (θ=2), the means of estimated standard errors of  for the oLG and LG 
method were much larger than their standard deviations, especially when the sample size 

was small, which leads to their significant power loss compared with RV and oPRB. This is 

not surprising since in this setting, there is a high probability of absence of individuals with 
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phenotype 0 and carrying minor alleles, which leads to a very large estimated standard error 

of .

We also calculated the ratio of the mean of  over the mean of estimated standard error of , 

i.e, , and the ratio of the mean of  to the standard deviation of , i.e, , which were 

used to mimic the standardized effect sizes to make the estimates a comparable scale and 

was used to compare different models (Table 2 and supplementary Table 2S). Under the null 

hypothesis, no matter what the phenotype simulation model, sampling method, MAF and 

sample size, both standardized effect sizes with SV were very close and both were close 0 

which showed that SV could control type I error rate but not for oLG. Under some extreme 

situations such as small sample size and rare SNP,  was higher than  for oLG but 

both would be close to 0 as sample size increased. Under the alternative hypothesis, in most 

cases SV had the “standardized effect sizes” similar to oLG both were much larger than LG 
which further demonstrates that SV had the power similar to oLG both had larger power 

than LG in most cases. Under some extreme situations, rare SNP, small sample size or large 

effect size, SV had higher “standardized effect sizes” than oLG, which clearly demonstrated 

the power gain of SV compared with LG and oLG for these settings. All these simulation 

results obviously demonstrate that SV can give more efficient, more robust and much less 

variable  than oLG. In particular, it dominates others under small sample sizes and rare 

variants.

We also recorded the computing time for each of the four methods above as implemented in 

R and Matlab for the simulated data. In Matlab, SV was typically about twice as fast as 

oPRB and oLG but was similar to LG. In R, SV, oPRB, and oLG had similar run times 

with SV tending to be slightly slower than oLG but all was slower than LG (Supplementary 

materials section 3 and Table 3S). These are consistent with the results reported by Bi et al. 

(2014).

Application to the top 25 SNPs of MRD in ALL

ALL is the most common type of cancer in children and the cure rate is more than 80% but 

there exists considerable inter-individual variability in therapy response (Yang et al., 2009). 

Genetic variants of SNPs in the interleukin 15 (IL15) gene and other SNPs associated with 

risk of MRD at the end of induction therapy have been reported recently (Yang et al., 2009). 

We analyzed the top 25 SNPs identified by Spearman rank correlation test in childhood 

ALL in two independent populations: 318 patients in St Jude Total Therapy protocols XIIIB 

and XV (Pui et al., 2004, 2009), and 169 patients in Children's Oncology Group (COG) trial 

P9906 (Borowitz et al., 2003). For St Jude patients, MRD status was categorized as negative 

(<0.01%), positive (≥0.01% but <1%), and highpositive (≥1%). For COG patients, MRD 

status was similarly categorized as: negative (≤0.01%), positive (>0.01%, but ≤1%), and 

high-positive (>1%).

Table 3 shows association results for the top 25 SNPs in both and combined cohort of St 

Jude and COG. At a significance level of 0.05/25 = 0.002, in the combined cohorts, 24 SNPs 
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were found statistically significant by LG, oLG and oPRB but 23 of them were detected by 

SV; for St. Jude cohorts, LG, oLG, oPRB and SV found 10, 9, 9, and 8 SNPs statistically 

significant, respectively, where 5 were detected by all four methods; for COG cohorts, LG, 

oLG, oPRB and SV found 8, 8, 7 and 8 SNPs statistically significant, respectively, where 6 

were detected by all four methods. There were only one SNP (SNP_A-1794325) detected by 

all our methods in both SJ and COG cohorts. Overall, the p-values for all four methods were 

comparable. Based on these results it seems that all four methods perform similarly. 

However, we know that the distribution of the continuous MRD measure at the end of 

induction therapy was right-skewed and definitely not following a normal distribution 

especially for ALL (Moppett et al., 2003). More importantly, we do not know what are the 

true SNPs associated with MRD in ALL.

Application to the Mini-Exome Data of Genetic Analysis Workshop 17

To further evaluate the performance of the proposed SV method, we analyzed data from the 

Genetic Analysis Workshop 17 (GAW17) which contained “mini-exome” sequence 

genotype data of 24,487 SNPs in 3,205 genomic regions of 697 unrelated individuals 

provided by the 1000 Genome Project [27]. Three quantitative phenotypes (Q1, Q2, and Q4) 

were simulated from the normal distribution. Q1 was influenced not only by genetic variant, 

but also environmental variables, and gene-environmental interactions. Q2 was only 

influenced by genetic variants not environmental variables. Q4 was influenced only by the 

environments and not genetic variants. Here we only analyzed Q2 since there were no 

environments and gene-environments interactions associated with Q2. Q2 was influenced by 

72 SNPs in 13 genes. Furthermore, 200 replicate datasets were generated for each 

phenotype, using one fixed genotype data. To apply our methods to GAW17 data, we 

classified Q2 to the ordered categorical phenotype using Φ−1(0.9) and Φ−1(0.6) as two 

thresholds and then analyzed them by mimicking we do not know Q2 which is the same as 

our SV model. First, quality control analysis was performed on the SNPs and SNPs with 

MAFs less than 0.0086 or HWE test p-values less than 0.00001 were excluded. There were 

8387 SNPs remaining in the association analysis of Q2. The reclassified ordered categorical 

phenotype for the 1st, 10th, 100th and 200th replicate data was used as our outcomes 

(supplementary Table S3 for frequency table and Figure S2 for the histograms) and included 

age, gender, and smoking status as covariates in all four methods above.

Table 4 shows the association analyses results for Q2. At a significance level of 0.00001, for 

the 1st replicate data, there was no SNP found statistically significant by using SV and LG 
but there were 112 no-causal SNPs found statistically significant by using oLG and oPRB, 

which was similar to the 10th replicate data. For the 200th replicate data, at a level of 

0.00001, no SNP was found statistically significant by any of the four methods. For the 

100th replicate data, SV and LG only found one true causal SNP but did not detect no-causal 

SNPs. oLG and oPRB also found the same true causal SNP but simultaneously found 99 

no-causal SNPs whose p-values were 0. At a significance level of 0.0005, SV found more 

true causal SNPs than and similar no-causal SNPs to LG. SV found similar true causal SNPs 

to but much less no-causal SNPs than oPRB and oLG. GAW17 data analyses showed that 

SV had similar or higher power than oLG and oPRB but the latter cannot maintain the type 
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I error rate. They were consistent with and further supported our extensive simulation results 

above.

Discussion

With the availability of data from whole-genome sequencing and whole-exome sequencing 

studies in which small or moderate sample sizes are used due to the high cost of sequencing 

technology (Lanktree et al., 2010; Emond et al., 2012) and/or the rare diseases in cancer 

pharmacogenomics studies such as pediatric cancers of retinoblastoma and Ewing's (Gurney 

et al., 1995; Wheeler et al., 2013), there is an increasing demand for the development of 

powerful and robust association testing procedures for identifying genetic variations 

associated with an ordered multiple responses phenotype of interest. In this study, we 

propose a new SV system that models the relationship between an ordered phenotype and 

genetic variants and introduce an SVSI approach to testing the genotype-ordered categorical 

phenotype association. To be more detailed, the simplified SV model assumed the system 

noise following a normal distribution. The normal distribution assumption is considered 

reasonable because it is in accordance with the classical central limit theory. And after a 

simple transformation, we find the logistic approach is also a specified form of SV model, 

and the diversity is that the system noise is slightly different from the normal distribution. 

The diversity is so subtle that the corresponding results show tiny difference under 

asymptotic situations, i.e. common MAF and/or large sample size. Under non asymptotic 

situations, i.e. low MAF and/or small sample size, it is inevitable to suffer power loss for 

every statistical method. And the degree of power loss depends largely on the underlying 

assumptions. Through simulations, we found that both LG and oLG methods suffered 

obvious power loss because of high variance of estimated parameter and that oPRB and oLG 

could not control type I error at a stringent significance level. While the SV method 

sustained a better performance in these situations due to the normal distribution of the noise 

term compared to the logistic distribution with heavier tails as well as the updated 

computationally efficient and robust EM algorithm.

The statistical methods based on model are the most effective when the model is in 

accordance with actual data. Invalid model assumption will bias the results more or less. 

Hence, we think it is very important to compare two methods under their own model 

assumptions. Simulations and real data applications show that the proposed SV method has 

a robust performance for testing association between ordered phenotypes and genetic 

variations regardless of the logistic or normal distributions of noise and genetic disease 

models, and that generally outperforms the commonly used LG model, and oLG especially 

when the SNP is rare and when the sample size is limited. Thus, we recommend the use of 

the SV approach instead of the LG or oLG model, to identify genetic variants in genetic 

association studies for ordered phenotypes. Although not reported here, simulation studies 

showed similar results for the dominant and recessive disease models and for a common 

SNP with MAFs such as 0.1, 0.3, 0.4 or 0.5.

When we estimate the parameters using the system identification method, we suppose that 

the variance of noise is known as 1 because we are interested in testing genotypephenotype 

associations not estimating the effect size of association. In real data analysis, the true 
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variance of noise is usually unknown and also may not be equal to 1 which will definitely 

affect the power of the LG, oLG and SV. By simulations, not surprisingly, as the true 

variance is bigger (smaller) than 1, the power of all three methods will decrease (increase). 

However, as expected, the power of the SV method is still identical to or higher than that of 

oLG and both are much higher than that of LG (data not shown). If the distribution of 

underlying noise is neither normal distribution nor logistic distribution, for example, t-

distribution, simulation results show the same conclusion. Thus, conclusions about the 

power gain of the SV compared to LG and oLG is robust to the logistic, normal and t 

distribution of the underlying noise. In addition, if we are interested in estimating the 

association effect size of SNP on the phenotype, the noise variance parameter can also be 

estimated along with other parameters using generalized expectation maximization 

algorithm (Godoy et al., 2011). We have implemented the proposed new SV method in an R 

package which is available for free download from http://www.stjuderesearch.org/site/depts/

biostats/software. The method can be easily applied to candidate gene association analysis, 

GWAS or NGS studies with hundreds or thousands of individuals for ordered categorical 

phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Power of SV method for the additive model using LGsimu simulation method
Panels A and B show sample sizes of N=1000 (999) and 2500 (2499) for common and rare 

variants, respectively. Panels C and D show sample sizes of N=2000 (1998) and 5000 (5001) 

for common and rare variants, respectively. The solid, dotted and dash lines correspond to 

the SV, LG and oLG methods, respectively. The numbers of 1-4 correspond to the tested 

SNPs with MAFs of 0.2, 0.05, 0.0075 and 0.0025, respectively. The significance level of the 

test was 1×10−6.
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Figure 2. Power of SV method for the additive model using SVsimu simulation method
Panels A and B show sample sizes of N=1000 (999) and 2500 (2499) for common and rare 

variants, respectively. Panels C and D show sample sizes of N=2000 (1998) and 5000 (5001) 

for common and rare variants, respectively. The solid, dotted and dash lines correspond to 

the SV, LG and oLG methods, respectively. The numbers of 1-4 correspond to the tested 

SNPs with MAFs of 0.2, 0.05, 0.0075 and 0.0025, respectively. The significance level of the 

test was 1×10−6.
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Figure 3. Power of SV method as a function of sample size
The left and right panels show LGsimu and SVsimu, respectively. The x-axis is the sample 

size divided by 100. The solid and dash lines correspond to the SV and oLG methods, 

respectively. The numbers of 1-4 correspond to the tested SNPs with MAFs of 0.2, 0.05, 

0.0075 and 0.0025, respectively. The significance level of the test was 1×10−6. θ values 

were 0.4, 0.8, 2 and 2.4 for SNPs with MAFs of 0.2, 0.05, 0.0075 and 0.0025, respectively.
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Figure 4. Power of SV method for detecting common variants using 150 individuals under the 
additive model
The left and right panels show phenotype simulation methods of LGsimu and SVsimu, 

respectively. The solid and dash lines correspond to the SV and oLG methods, respectively. 

The numbers of 1-2 correspond to the tested SNPs with MAFs of 0.2 and 0.05, respectively. 

The significance level of the test was 1×10−4. The legends of panels BD are the same as that 

of panel A.
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