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Abstract

For genetic association studies that involve an ordered categorical phenotype, we usually either
regroup multiple categories of the phenotype into two categories (“cases” and “controls”) and then
apply the standard logistic regression (LG), or apply ordered logistic (0LG) or ordered probit
(oPRB) regression which accounts for the ordinal nature of the phenotype. However, these
approaches may lose statistical power or may not control type | error rate due to their model
assumption and/or instable parameter estimation algorithm when the genetic variant is rare or
sample size is limited. Here to solve this problem, we propose a set-valued (SV) system model,
which assumes that an underlying continuous phenotype follows a normal distribution, to identify
genetic variants associated with an ordinal categorical phenotype. We couple this model with a
set-valued system identification algorithm to identify all the key system parameters. Simulations
and two real data analyses show that SV and LG accurately controlled the Type | error rate even
at a significance level of 1075 but not oLG and oPRB in some cases. LG had significantly smaller
power than the other three methods due to disregarding of the ordinal nature of the phenotype, and
SV had similar or greater power than oLG and oPRB. For instance, in a simulation with data
generated from an additive SV model with odds ratio of 7.4 for a phenotype with three categories,
a single nucleotide polymorphism with minor allele frequency of 0.75% and sample size of 999
(333 per category), the power of SV, oLG and LG models were 70%, 40% and <1%,
respectively, at a significance level of 1078. Thus, SV should be employed in genetic association
studies for ordered categorical phenotype.

Keywords

Ordered logistic model; set-valued system identification; multiple thresholds; genetic association
study; rare variants

Introduction

Genome-wide association studies (GWAS) have successfully identified many genetic
variants that are associated with complex diseases over the past decades (Sladek et al., 2007;
Welter et al., 2014). Many phenotypes studied in GWAS are either binary or continuous.
The logistic regression (LG) and linear regression models are widely used to analyze the
binary and continuous phenotype while adjusting for the effects of confounding covariates
such as ancestry, age and sex. In cancer GWAS, considerable portion of phenotypes are
survival (Innocentiet al., 2012) or relapse (Yang et al., 2012). The Cox proportional hazard
regression model(Cox, 1972) and the Fine and Gray hazard rate regression(Fine and Gray,
1999) are the standard methods to analyze survival and relapse outcomes with adjusting for
some confounding factors such as ancestry scores, treatment arms, clinical risk or prognostic
factors, respectively.

In cancer pharmacogenetics/pharmacogenomics, we are interested in detecting genetic
variations influencing drug toxicity or efficacy. The key phenotype referred to as the
outcome could be multiple ordinal categories such as dosing of drugs, adverse events scored
on scales using ordinal values (1-5) according to Common Terminology Criteria for Adverse
Events developed by the US National Cancer Institute (Ingle et al., 2010), and effect of
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treatment on disease such as tumor response in which the metrics of tumor size is
categorized as complete response, partial response, stable disease or progressive disease
(Wheeler et al., 2013). Furthermore, some ordered phenotype may be defined by splitting a
measured continuous variable such as four categories of underweight, normal weight,
overweight and obese, based on body index mass, but most of them may be generated due to
complicated unobservable or unobserved continuous variables such as the expression level
of RNASs or proteins involved in an unknown biological process or stimulated by external
environments.

For these ordered phenotypes, researchers often regroup multiple categories into two
categories of “cases” and “controls” and then apply the standard LG model (Trevifio et al.,
2009; Ingle et al., 2010). However, this method may lose substantial power in that re-
categorizing the phenotype does not take the ordinal nature of the phenotype into
consideration (see Simulation Results section below). The non-parametric method of
Spearman rank correlation (Yang et al., 2009) or the Jonckheere—Terpstra tests (Han et al.,
2013) which accounts for the ordinal nature of the phenotype can be an attractive method.
However, these methods cannot adjust for confounding factors. The parametric method of
ordered/ordinal logistic regression (0LG) model (Png et al., 2011) borrows the basic idea of
standard LG regression model to avoid these pitfalls. As the most popular model,
generalized linear models (GLM), logistic approaches adopt link function of logit form,
which brings many advantages. For example, the first derivative and the second derivative
of the corresponding log-likelihood function are easy to compute, and the estimated
parameter can explain the odds ratio directly. Nevertheless, we still think the logistic
approach sometimes is overused. Above all, fitting the response data with the logit link
function cannot be justified in many practical applications. The doubt has been confirmed in
the case of binary outcome for which probit method has better performance than LG method
under non-asymptotic situations (low MAF and small sample size) (Kang et al., 2014). All
these two methods will lose statistical power or cannot maintain the type | error rate if the
marker is rare and sample size is small due to their model assumptions and/or unstable
parameter estimation algorithm. Another parametric method of the ordered probit regression
method can also be used but likeoL G, its performance is problematic when the sample size
is small and the number of categories is large.

As for traditional system identification, the system input and continuous system output are
usually assumed accessible/known. But in some cases, we can only know which set the
system output lies in but not the exact continuous output information, which is called set-
valued information (Kang et al., 2014). To model the relationship between system input and
system output mathematically, a quantization process is adopted to generate the set-valued
system from the corresponding continuous latent or unknown variable. Set-valued system
identification (SVSI) was first investigated for sensor systems (Wang, et al., 2003). In
contrast to the traditional system identification method, SVSI can estimate the model
parameters by set-valued information rather than precise output information. It is technically
more challenging, but appears in a wide range of applications such as sensor networks and
telecommunications (Nair, et al., 2007). Many more motivating examples can be found in
Wang et al. (2010). Finite impulse response model is a class of typical linear system model
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and can be used to approximate many actual physical systems. As an important research
branch of SVSI, the identification of finite impulse response model with set-valued data
attracts the attention of many researchers and some related results have been obtained
(Godoy, et al., 2011; Chen, et al., 2012; Bi, et al., 2014).

In this study, we propose a specific set-valued (SV) system model, which can be considered
as a finite impulse response system with set-valued output. The model considers the
categorizing process of continuous phenotypes to model the relationship between the
ordered outcome and possible genetic or non-genetic explanatory factors in GWAS or next-
generation sequencing (NGS) studies. We estimate the parameter of interest by a SVSI
approach and use a Wald test statistic for testing the null hypothesis of no association
between genetic variant and ordinal phenotype. We perform extensive simulation studies to
compare the type | error rate, the power and the computational cost of SV with those of LG,
oL G and oPRB methods. Finally, we apply the SV method to the data about minimal
residual disease (MRD) in acute lymphoblastic leukemia (ALL) (Yang et al., 2009) and the
Genetic Analysis Workshop 17 (GAWL17) data.

Materials and Methods

Notations

Assume that we have a cohort of N individuals and that the genetic polymorphism of interest
is biallelic [e.g., single nucleotide polymorphism (SNP)]. The 2 alleles at a SNP are denoted
as A and a, where A is the minor allele and together they form three genotypes denoted as
AA, Aa, and aa. Suppose that observations (s;, X;, Gj), i =1, 2, ... N are available, where s; is
the ordinal disease outcome of individual i; Xj = [Xi1, Xi2, ..., Xim] " is @ vector of m covariates
that we need to adjust for (e.g., demographic or clinical variables); and G; = 0, 1, or 2 is the
numerical coding corresponding to the three genotypes aa, Aa or AA, respectively, for the ith
individual.

The set-valued (SV) model

We propose a novel set-valued (SV) model in which the phenotype information can be
regarded as the set-valued observation of a continuous latent variable:

yi=f (G, X;) +e,
T

si= k-1, (y), i=.2,..N @
k=0 k

where Gj and X; represent the genotype and covariates of subject i, y; is the latent continuous
variable, f is a deterministic function reflecting the influence of G and X on the latent
variable, €; is the random noise, I, (y) is the indicator function of subset Ay and (r+1) is the
total number of categories of the observed outcome. Observed phenotype s; is determined
based on which set (of sets {Ay, k=0,1,...,r}) the latent variable y; belongs to.

The most common simplified treatment of the set-valued process is to introduce thresholds
{c1,Cy,...,Cr} such that [cy, ck+1). To make the representation concise, we assume that ¢y = —
0, Cr+1 = +oo0. In this case, SV model is similar to the well-known threshold model.
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Furthermore, we adopt linear formulation for function f and assume normal distribution for
the random noise. The model degenerates to the following:

Yi= aO+9 G +7 - X; i€,
2
SZ—ZA Leperer W), =1,2,...N @)

where ej is the random noise which follows a normal distribution with a mean of 0 and a
variance of 2. The null hypothesis of Hy: 6= 0 corresponds to no genetic effect of SNP on
the phenotype. The parameter @is to be identified only based on observations (s;, Xj, Gj),
i=1,2,...,N to test for the null hypothesis using the expectation-maximization (EM) algorithm
below.

In equation (2), if ¢1=0, then the SV model is the usual ordered probit model. If the gj in
equation (2) follows a logistic distribution in equation (2), then the SV model becomes
ordered logistic regression (0LG) model (Greene and William, 2003). However, an
important deviation from the usual ordered probit regression modeling is that here we take a
novel algorithm SVSI to estimate all the key underlying system parameters 6, y, and c,
rather than the iteratively reweighted least squares (IRWLS)algorithm which is usually used
in the ordered probit regression. Thus, we call the proposed SV model coupled with the new
SVSI algorithm SV and call the usual ordered probit model with IRWLS oPRB throughout
the paper to differentiate these two methods due to its better performance below. Without
calculating the complicated weighting matrix per iteration, the new algorithm can achieve
efficient results with fast computing time. The detailed discussions and results can be seen in
results section.

Estimate of 6 and test statistic

The system parameters in equation (1) can be estimated by maximizing the likelihood
function through the EM algorithm. The estimation process is similar to (Chen, et al., 2012).

T
Denote (6, ¥, ag)T by an overall parameter ©, (Gi, x7, 1) by an overall input ¢;. The core
iteration process is as following:

O 1_g (Z‘Pz 991) {ZU i (ZI{SJ—J} F(z jig Q((Z;’jj)))} 7

.. Ak .. Ak
where f (i, 7) =f (Cj -9l -0 ) is the density function and ' (i, j) =@ (Cj ¢ -0 ) is
the cumulative distribution function for a normal distribution with mean 0 and variance o2

evaluated at c; — o7 - 6", For more details of MLE, see section 1 in the supplementary
material.

Suppose the iteration estimator converges to the MLE ¢, the observed Fisher information

matrix of & (denoted by I (é)) can be obtained according to the following formula (see
section 1 in the supplementary material for details)
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A o A o [Sn LS Gt D) = f (6 )P

= — log L = ’ ) ;oL

1(6)=—FE { 502109 L(®) ‘@] ; (Jz:jo FGIT —F(ij) | % @

where L(6) is the likelihood function given ©. Testing for no genetic effect of SNP on the

phenotype, that is, Hp: &= 0, can be constructed for the SV method from the Wald statistic
A2

W= o
e )

1(@)_1 [1,1]

where I<é) ' [1,1], the element at the first row and the first column of the inverse Fisher
information matrix, represents the estimated variance of 5. Asymptotically, W is distributed
approximately as a central 2 distribution with 1 degree of freedom under the null hypothesis
of no association.

Estimate of threshold C

The estimation of parameters needs the knowledge of threshold vector ¢=(c1,C5,...,C).In
some situations, the thresholds are available. For example, in leukemia, minimal residual
disease (an assessment of decreasing leukemic burden in response to therapy such as
chemotherapy for cancer treatment) can be categorized as negative (<0.01%), positive
(=0.01% but <1%) and high-positive (=1%) using two thresholds of 0.01% and 1% (Yang et
al., 2009). In other cases, the latent variable is unobserved and the thresholds are also
unknown to us. In the case of binary phenotype, it is very easy to estimate the threshold
along with other parameters by dealing with the threshold as a parameter (Kang et al., 2014).
But in case of ordered categorical phenotype, we have to estimate them with some
techniques. Fortunately, if we presume model parameters as fixed values and threshold as
variable, the Hessian matrix of likelihood function is positive definite, which means the
likelihood function has a unique maximum point. Here we adopt a switching operation for
estimating parameters and thresholds. As for one iteration step, we first estimate model
parameters (6, ', ag)T based on equation (3), and then estimate the threshold c. Through
extensive simulations, gradient descent method shows good performance on the computation
time, and is used to estimate the threshold.

g LIS f (i,) I CY) "
IOTUTN &Y R )~ F G 1) ST F )~ F ()|

The detailed algorithm implementation of the SVSI method is in Supplementary Section 2
and the proposed new SV method has been implemented in an R package which is available
for free download from http://www.stjuderesearch.org/site/depts/biostats/software. The
simulations adopting SV model and unbiased sampling show that the estimation of
parameters and thresholds can converge close to the true value within 10 iterations and
complete the convergence process within 100 iterations (see Table S1 and Figure S1).
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Simulations

Data generation

We performed extensive simulation studies to evaluate the performance of the proposed SV
method against the three competing alternatives including LG for the regrouped binary
phenotype (recoding as O or greater than 0), oLG, and oPRB. We only considered an
ordered phenotype with three categories (sj= 0, 1 and 2) in our simulations.

Genotype and covariates simulations—Given the minor allele frequency(MAF) pa,
the genotype frequencies p(G=g) were calculated according to Hardy-Weinberg
equilibrium(HWE) law, i.e., p(G=0)=(1-pa)?, p(G=1)=2pa(1-pa), P(G=2)=(pp)?. TWo
covariates were considered, x;as a binary variable that is 1 with a probability of 0.5 and 0
otherwise; and x» as a continuous variable that follows a standard normal distribution. The
genotypes and 2 covariates for a population of 2,000,000 individuals were independently
generated from their respective distributions.

Phenotype simulations—The phenotype status was determined from the generated
genotype and covariates data according to two models below similar to that for the binary
phenotype simulation method by Kang et al., (2014) and Wu et al., (2011):

1. LG-based simulation method (LGsimu):

o . . Y — E:L'p(oq +9GL+05le+05-LL2) .
P (51—2|Gm Ti1, I’LZ) T 1+4ezp(a1+0G;+0.5z;1+0.5x,0)

_ oo N_1 _ _ exp(aa+0G;40.52;1+0.5;2)
P (51—0|Gm Zi1, 1‘12) =1 1+exp(as+0G;+0.5z;1+0.5z,2)

We controlled the proportions of individuals with the ordinal disease outcome s =
2,1,0by aj and ay and set it to1:3:6, that is, 10% of individuals have s, 30% of
those have sy and 60% of those have sy, in the case that all three regression
coefficients for SNP, xq, and Xj, are 0.

2. SV-based simulation method (SVsimu): First a continuous variable was generated
from y;j=0G;+0.5x;1+0.5x;,+ej, where e;j follows a standard normal distribution.
Given thresholds (cq,¢y), the individuals with a value of y; higher than ¢, have
phenotype of 2 and ones with a value of y; lower than ¢, have phenotype of 0, the
remaining have phenotype of 1. We controlled the proportions of individuals with
the ordinal disease outcome s = 2, 1, 0 and set it to 1:3:6, that is, 10% of individuals
have sy, 30% of those have s; and 60% of those have s, in the case that all three
regression coefficients for SNP, xq, and Xxjo are 0.

Sample a cohort of N individuals—We select a cohort of N individuals to conduct
further association analysis based on the following 2 sampling strategies to mimic two
different designs for retrospective and prospective studies:

1. Randomly sample N/3 individuals per each category (Same): we sample a fixed
sample size of N/3 individuals from each category in the population of 2,000,000
individuals to mimic a retrospective design to maximize the power of association
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testing. Note that this strategy ensures that the sample size must be a multiple of 3,
so that for example we may compare results obtained by sampling 999 subjects
with the Same strategy to those obtained by sampling 1000 subjects with the Rand
strategy described below.

2. Randomly sample N individuals (Rand): we randomly choose N individuals from
the population of 2,000,000 individuals simulated above to mimic a prospective
design.

Once the data is generated, for LG, we used glm function in R and fit the glm on the
regrouped binary phenotype (new s;= 0 if the original sj= 0 or new s;= 1 if the original s; = 1
or 2), genotype and two covariates. For oLG and oPRB, we used polr function in MASS R
package and fit polr on the original three-categorical phenotype, genotype and two
covariates. Then the Wald test statistic was used for inference for all these three methods to
be consistent with the SV method.

Type | error rate simulations

Eight values for MAFs of SNPs were considered: 0.0025, 0.0075, 0.01, 0.05, 0.1, 0.2, 0.3,
0.4 and 0.5. The ordered phenotype was determined from the generated genotype and
covariate data by using the two models mentioned above, with &= 0. To estimate the type |
error rate of the SV method, 10,000,000 replicated datasets were simulated for each study,
with a small sample size of 1000 (2500) and a large sample size of 2000 (5000) for the
Rand sampling method for variants with MAF=0.0075 (MAF=0.0025) and the
corresponding numbers of 999 (2499) and 1998 (5001) for the Same sampling method,
respectively. We considered larger significance levels @ = 0.05 or 0.01 and stringent
genome-wide levels @ = 107> or 1075 under the null hypothesis of Hp: 6= 0.

Power simulations

Results

Three genetic disease models were considered: additive, dominant, and recessive with their
respective genotype coding G (0, 1, 2), (0, 1, 1) and (0, 0, 1) when we simulated the
phenotype. The ordered phenotype was determined from the generated genotype and
covariate data according to the simulation methods given above, with &varying from 0.3 to
2 at an increment of 0.1. Datasets were generated 10,000 times for each configuration. The
three methods used for the type | error simulations were applied to each data-set, and power
was estimated as the proportions of p-values less than a = 1075,

To mimic a phase 1 clinical trial, a small sample size of 150 was also used for common
variants with MAFs of 0.2 and 0.05 to estimate the power of SV at a significance level of
1x1074,

Type | error rate

Table 1 shows empirical type | error rates estimated for four methods. Regardless of
significance levels, SV correctly maintained type | error control at the given levels for both
common and rare variants. LG was conservative for stringent genome-wide levels if SNPs
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were rare because of large variance of parameter estimate (Table 2) (Kang et al., 2014).
oL.G and oPRB correctly controlled type | error rate at larger significance levels but did not
control type | error rate at stringent genome-wide levels for rare variants when sample size
was small because of instability of oLG and oPRB when there are some empty or small
cells. Since oPRB cannot control type | error rate at & = 1075 for rare SNP with MAF
0.0075 and the power of SV is almost identical to that of oPRB in most cases, the power of
oPRB was omitted and was not included in the section below.

Power of the SV method

Figures 1-2 show the power of the three methods as a function of effect size (6) for an
additive disease model. As expected, the power of SV and oL G increased with the increase
in effect size regardless of distributions of noise, the genetic disease model and sampling
methods. The power of three methods was generally higher for Same sampling method than
that for Rand sampling method for the same parameter setup. This suggests that for a
retrospective design, sampling all individuals with more extreme phenotype is preferred for
assessing genetic effect. In some settings, both SV and oL.G based on ranked sets performed
better than LG based on the regrouped sets. The power difference between them could be
more than 50% at a significance level of 1076 depending on the scale of the sample size. As
expected, for a SNP with MAF of 0.05, given a sample size of 1000 with Rand and 999
with Same, the power of LG for the regrouped binary outcome first increased to 100%, then
decreased with increase in effect size (Figure 2A-2B). The drop of the power of LG method
for the very large effect size given a small fixed sample size and a SNP with small MAF is
due to the high probability of absence of individuals with phenotype 0 and carrying minor
alleles (see population 3x3 tables in Supplementary matrix 1 for &= 1 and 2, respectively),
which leads to a very large estimated standard error of 5 by LG. For example, given N =
999, for =1, 0 out of 1000 simulated datasets had absence of individuals with phenotype 0
and carrying minor alleles so that the mean and the standard deviation of 5 were 2.024 and

0.258 which leaded to a standardized effect size of %:7.84. However, for 8 6= 2, 58 out
of 1000 simulated datasets had absence of individuals with phenotype 0 and carrying minor

alleles so that the mean and the standard deviation of ¢ were 4.50 and 3.288 which leaded to

a standardized effect size of #zlfﬁ which is much smaller than that for = 1. Below we
will focus on power comparison between SV and oLG. The power gain for the new SV
method was noticeable in detecting rare variants especially when the individuals was
sampled using Same sampling method from the population generated using SVsimu

(Figures 1-3).

For a common SNP with an MAF of 0.2 or 0.05, the power of SV appeared to be similar to
or higher than that of oLG depending on the scale of sample size, regardless of the genetic
disease models, sampling methods and distributions of noise (Figures 1-2, and 4).
Surprisingly, with a small sample size of N=150, for a SNP with a MAF of 0.2 and = 0.7,
the power difference between SV and oLG was 8% (Figure 4B and 4D). But for a SNP with
a MAF of 0.05 and #= 1.5, the power difference between SV and oLG was 15% (Figure 4B
and 4D).
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For a rare SNP with an MAF of 0.0075 or 0.0025, if the noise follows a logistic distribution,
with Rand sampling method, the power of oLLG was almost identical to or slightly higher
than that of SV, regardless of genetic disease models (Figure 1A-1C). However,
interestingly, with Same sampling method, the power of SV was slightly or much higher
than that of oL G, regardless of genetic disease models (Figure 1B-1D). For example, for a
SNP with MAF of 0.0075, #= 2 (equivalent to OR=e?=7.4), and N=999, the power
difference was 12% between oL.G and SV (Figure 1B). Similarly, for a SNP with MAF of
0.0025, #= 1.8 (equivalent to OR=e?=6), and N=5001, the power difference was 10%
between oL G and SV (Figure 1D). If the noise follows a normal distribution, regardless of
sampling methods, the power of SV was generally higher than that of oLG (Figure 2). The
power difference between oLG and SV became larger at larger effect size and smaller
sample sizes. For example, for a SNP with MAF of 0.0075, 0= 2, and N=999, the power
difference was 24%between oL G and SV (Figure 2A). Similarly, for a SNP with MAF of
0.0025, 9= 2, and N=1000, the power difference was 17% between oL G and SV (Figure
3B). These results indicate that for rare genetic variant association studies, we strongly
recommend SV be employed instead of LG and oL G if the phenotype was defined from a
continuous normal distribution.

Figure 3 displays the power of the SV and oLG methods as a function of sample size for the
additive disease model. As expected, the power of two methods increased with an increase
in sample size. For a common SNP with an MAF of 0.2 or 0.05 and an effect size of 0.4 or
0.8, respectively, the power of SV was almost identical to that of oL G, regardless of the
distributions of noise, sample size, disease models and sampling methods (Figure 3). For a
rare SNP with a MAF of 0.0075 or 0.0025 and an effect size of 2 or 2.4, if the noise follows
a logistic distribution and a Rand sampling method is used, the power of SV appeared to be
similar to that of oL G, regardless of the disease models (Figure 3A) but the power of SV
was much larger than that of oLG for a Same sampling method (Figure 3B). The power
difference became larger with moderate sample sizes. If the noise follows a normal
distribution, regardless of sampling method, the power of SV was much greater than that of
oLG but depending on the sample size (Figure 3C-3D).

Variance of the genetic association parameter estimate

Table 2 and Supplementary Table 2S gives the mean of 5, mean of estimated standard errors
of 4, and standard deviations of ; across simulation repetitions for the LG, SV and oL G
methods based on 1,000 simulation repetitions. Data were generated using the same
parameter setup as given in Table 1 and Figures 1-4.

The mean of estimated standard error of ;5 appeared to be close to its standard deviation for
the SV method in all simulation setups but not for LG, oLG and oPRB (Table 2 and
Supplementary Table 2S). Interestingly, when SNP is rare (pp=0.0075) and association
parameter is large (¢=2), the means of estimated standard errors of ; for the oLG and LG
method were much larger than their standard deviations, especially when the sample size
was small, which leads to their significant power loss compared with RV and oPRB. This is
not surprising since in this setting, there is a high probability of absence of individuals with
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phenotype 0 and carrying minor alleles, which leads to a very large estimated standard error
of 5.
0

We also calculated the ratio of the mean of 5 over the mean of estimated standard error of 5,

ie, % and the ratio of the mean of ; to the standard deviation of 4, i.e, % which were
used to mimic the standardized effect sizes to make the estimates a comparable scale and
was used to compare different models (Table 2 and supplementary Table 2S). Under the null
hypothesis, no matter what the phenotype simulation model, sampling method, MAF and
sample size, both standardized effect sizes with SV were very close and both were close 0
which showed that SV could control type | error rate but not for oLG. Under some extreme

situations such as small sample size and rare SNP, =@ Was higher than % for oLG but
both would be close to 0 as sample size increased. Under the alternative hypothesis, in most
cases SV had the “standardized effect sizes” similar to oLG both were much larger than LG
which further demonstrates that SV had the power similar to oL G both had larger power
than LG in most cases. Under some extreme situations, rare SNP, small sample size or large
effect size, SV had higher “standardized effect sizes” than oL G, which clearly demonstrated
the power gain of SV compared with LG and oL G for these settings. All these simulation
results obviously demonstrate that SV can give more efficient, more robust and much less
variable 4 than oL.G. In particular, it dominates others under small sample sizes and rare

variants.

We also recorded the computing time for each of the four methods above as implemented in
R and Matlab for the simulated data. In Matlab, SV was typically about twice as fast as
oPRB and oL G but was similar to LG. In R, SV, o0PRB, and oLG had similar run times
with SV tending to be slightly slower than oL G but all was slower than LG (Supplementary
materials section 3 and Table 3S). These are consistent with the results reported by Bi et al.
(2014).

Application to the top 25 SNPs of MRD in ALL

ALL is the most common type of cancer in children and the cure rate is more than 80% but
there exists considerable inter-individual variability in therapy response (Yang et al., 2009).
Genetic variants of SNPs in the interleukin 15 (IL15) gene and other SNPs associated with
risk of MRD at the end of induction therapy have been reported recently (Yang et al., 2009).
We analyzed the top 25 SNPs identified by Spearman rank correlation test in childhood
ALL in two independent populations: 318 patients in St Jude Total Therapy protocols XI11B
and XV (Pui et al., 2004, 2009), and 169 patients in Children's Oncology Group (COG) trial
P9906 (Borowitz et al., 2003). For St Jude patients, MRD status was categorized as negative
(<0.01%), positive (=0.01% but <1%), and highpositive (=1%). For COG patients, MRD
status was similarly categorized as: negative (<0.01%), positive (>0.01%, but <1%), and
high-positive (>1%).

Table 3 shows association results for the top 25 SNPs in both and combined cohort of St
Jude and COG. At a significance level of 0.05/25 = 0.002, in the combined cohorts, 24 SNPs
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were found statistically significant by LG, oLG and oPRB but 23 of them were detected by
SV; for St. Jude cohorts, LG, oLG, oPRB and SV found 10, 9, 9, and 8 SNPs statistically
significant, respectively, where 5 were detected by all four methods; for COG cohorts, LG,
oL G, oPRB and SV found 8, 8, 7 and 8 SNPs statistically significant, respectively, where 6
were detected by all four methods. There were only one SNP (SNP_A-1794325) detected by
all our methods in both SJ and COG cohorts. Overall, the p-values for all four methods were
comparable. Based on these results it seems that all four methods perform similarly.
However, we know that the distribution of the continuous MRD measure at the end of
induction therapy was right-skewed and definitely not following a normal distribution
especially for ALL (Moppett et al., 2003). More importantly, we do not know what are the
true SNPs associated with MRD in ALL.

Application to the Mini-Exome Data of Genetic Analysis Workshop 17

To further evaluate the performance of the proposed SV method, we analyzed data from the
Genetic Analysis Workshop 17 (GAW17) which contained “mini-exome” sequence
genotype data of 24,487 SNPs in 3,205 genomic regions of 697 unrelated individuals
provided by the 1000 Genome Project [27]. Three quantitative phenotypes (Q1, Q2, and Q)
were simulated from the normal distribution. Q1 was influenced not only by genetic variant,
but also environmental variables, and gene-environmental interactions. Q, was only
influenced by genetic variants not environmental variables. Q4 was influenced only by the
environments and not genetic variants. Here we only analyzed Q, since there were no
environments and gene-environments interactions associated with Q,. Q, was influenced by
72 SNPs in 13 genes. Furthermore, 200 replicate datasets were generated for each
phenotype, using one fixed genotype data. To apply our methods to GAW17 data, we
classified Qs to the ordered categorical phenotype using ®~1(0.9) and ®1(0.6) as two
thresholds and then analyzed them by mimicking we do not know Q, which is the same as
our SV model. First, quality control analysis was performed on the SNPs and SNPs with
MAFs less than 0.0086 or HWE test p-values less than 0.00001 were excluded. There were
8387 SNPs remaining in the association analysis of Q,. The reclassified ordered categorical
phenotype for the 15t, 10t 100t and 200" replicate data was used as our outcomes
(supplementary Table S3 for frequency table and Figure S2 for the histograms) and included
age, gender, and smoking status as covariates in all four methods above.

Table 4 shows the association analyses results for Q,. At a significance level of 0.00001, for
the 15! replicate data, there was no SNP found statistically significant by using SV and LG
but there were 112 no-causal SNPs found statistically significant by using oLG and oPRB,
which was similar to the 10t replicate data. For the 200t replicate data, at a level of
0.00001, no SNP was found statistically significant by any of the four methods. For the
100t replicate data, SV and LG only found one true causal SNP but did not detect no-causal
SNPs. oL.G and oPRB also found the same true causal SNP but simultaneously found 99
no-causal SNPs whose p-values were 0. At a significance level of 0.0005, SV found more
true causal SNPs than and similar no-causal SNPs to LG. SV found similar true causal SNPs
to but much less no-causal SNPs than oPRB and oLG. GAW17 data analyses showed that
SV had similar or higher power than oLG and oPRB but the latter cannot maintain the type
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| error rate. They were consistent with and further supported our extensive simulation results
above.

Discussion

With the availability of data from whole-genome sequencing and whole-exome sequencing
studies in which small or moderate sample sizes are used due to the high cost of sequencing
technology (Lanktree et al., 2010; Emond et al., 2012) and/or the rare diseases in cancer
pharmacogenomics studies such as pediatric cancers of retinoblastoma and Ewing's (Gurney
et al., 1995; Wheeler et al., 2013), there is an increasing demand for the development of
powerful and robust association testing procedures for identifying genetic variations
associated with an ordered multiple responses phenotype of interest. In this study, we
propose a new SV system that models the relationship between an ordered phenotype and
genetic variants and introduce an SVSI approach to testing the genotype-ordered categorical
phenotype association. To be more detailed, the simplified SV model assumed the system
noise following a normal distribution. The normal distribution assumption is considered
reasonable because it is in accordance with the classical central limit theory. And after a
simple transformation, we find the logistic approach is also a specified form of SV model,
and the diversity is that the system noise is slightly different from the normal distribution.
The diversity is so subtle that the corresponding results show tiny difference under
asymptotic situations, i.e. common MAF and/or large sample size. Under non asymptotic
situations, i.e. low MAF and/or small sample size, it is inevitable to suffer power loss for
every statistical method. And the degree of power loss depends largely on the underlying
assumptions. Through simulations, we found that both LG and oL G methods suffered
obvious power loss because of high variance of estimated parameter and that oPRB and oLG
could not control type I error at a stringent significance level. While the SV method
sustained a better performance in these situations due to the normal distribution of the noise
term compared to the logistic distribution with heavier tails as well as the updated
computationally efficient and robust EM algorithm.

The statistical methods based on model are the most effective when the model is in
accordance with actual data. Invalid model assumption will bias the results more or less.
Hence, we think it is very important to compare two methods under their own model
assumptions. Simulations and real data applications show that the proposed SV method has
a robust performance for testing association between ordered phenotypes and genetic
variations regardless of the logistic or normal distributions of noise and genetic disease
models, and that generally outperforms the commonly used LG model, and oL G especially
when the SNP is rare and when the sample size is limited. Thus, we recommend the use of
the SV approach instead of the LG or oLG model, to identify genetic variants in genetic
association studies for ordered phenotypes. Although not reported here, simulation studies
showed similar results for the dominant and recessive disease models and for a common
SNP with MAFs such as 0.1, 0.3, 0.4 or 0.5.

When we estimate the parameters using the system identification method, we suppose that
the variance of noise is known as 1 because we are interested in testing genotypephenotype
associations not estimating the effect size of association. In real data analysis, the true
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variance of noise is usually unknown and also may not be equal to 1 which will definitely
affect the power of the LG, oLG and SV. By simulations, not surprisingly, as the true
variance is bigger (smaller) than 1, the power of all three methods will decrease (increase).
However, as expected, the power of the SV method is still identical to or higher than that of
oL.G and both are much higher than that of LG (data not shown). If the distribution of
underlying noise is neither normal distribution nor logistic distribution, for example, t-
distribution, simulation results show the same conclusion. Thus, conclusions about the
power gain of the SV compared to LG and oLG is robust to the logistic, normal and t
distribution of the underlying noise. In addition, if we are interested in estimating the
association effect size of SNP on the phenotype, the noise variance parameter can also be
estimated along with other parameters using generalized expectation maximization
algorithm (Godoy et al., 2011). We have implemented the proposed new SV method in an R
package which is available for free download from http://www.stjuderesearch.org/site/depts/
biostats/software. The method can be easily applied to candidate gene association analysis,
GWAS or NGS studies with hundreds or thousands of individuals for ordered categorical
phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Power of SV method for the additive model using LGsimu simulation method
Panels A and B show sample sizes of N=1000 (999) and 2500 (2499) for common and rare

variants, respectively. Panels C and D show sample sizes of N=2000 (1998) and 5000 (5001)
for common and rare variants, respectively. The solid, dotted and dash lines correspond to
the SV, LG and oL.G methods, respectively. The numbers of 1-4 correspond to the tested
SNPs with MAFs of 0.2, 0.05, 0.0075 and 0.0025, respectively. The significance level of the
test was 1x1075.
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Figure 2. Power of SV method for the additive model using SVsimu simulation method
Panels A and B show sample sizes of N=1000 (999) and 2500 (2499) for common and rare

variants, respectively. Panels C and D show sample sizes of N=2000 (1998) and 5000 (5001)
for common and rare variants, respectively. The solid, dotted and dash lines correspond to
the SV, LG and oL G methods, respectively. The numbers of 1-4 correspond to the tested
SNPs with MAFs of 0.2, 0.05, 0.0075 and 0.0025, respectively. The significance level of the
test was 1x1076,
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Figure 3. Power of SV method as a function of sample size

The left and right panels show LGsimu and SVsimu, respectively. The x-axis is the sample

size divided by 100. The solid and dash lines correspond to the SV and oLG methods,
respectively. The numbers of 1-4 correspond to the tested SNPs with MAFs of 0.2, 0.05,
0.0075 and 0.0025, respectively. The significance level of the test was 1x1075. @values

were 0.4, 0.8, 2 and 2.4 for SNPs with MAFs of 0.2, 0.05, 0.0075 and 0.0025, respectively.
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Figure 4. Power of SV method for detecting common variants using 150 individuals under the

additive model

The left and right panels show phenotype simulation methods of LGsimu and SVsimu,

respectively. The solid and dash lines correspond to the SV and oLLG methods, respectively.
The numbers of 1-2 correspond to the tested SNPs with MAFs of 0.2 and 0.05, respectively.
The significance level of the test was 1x1074. The legends of panels BD are the same as that

of panel A.
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