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Abstract

Purpose—To examine the extent to which commonly ordered laboratory values obtained from 

large health care databases are representative of the distribution of laboratory values from the 

general population as reflected in the National Health and Nutrition Examination Survey.

Methods—Means of test values from commercial insurance laboratory data and National Health 

and Nutrition Examination Survey data were compared. Inverse probability of selection weighting 

was used to account for possible selection bias and to create comparability between the two data 

sources. Results: The average values of most of the laboratory results from routine care were very 

close to their population means as estimated from NHANES. Tests that were more selectively 

ordered tended to differ. The inverse probability of selection weighting approach generally had a 

small effect on the estimated means but did improve estimation of some of the more selected tests.

Conclusions—Commonly ordered laboratory tests appear to be representative of values from 

the underlying population. This suggests that trends and other patterns in biomarker levels in the 

population may be reasonably studied using data collected during the routine delivery of medical 

care.
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Introduction

Laboratory test results are increasingly available in large health care databases and may be 

helpful for controlling confounding, identifying subgroups of interest, and characterizing 

populations. However, laboratory tests are often ordered to diagnose disease or monitor 
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disease progress; therefore, patients with laboratory tests ordered may be a highly selected 

sample of the overall population. For example, patients with chronic kidney disease may be 

more likely to have frequent measures of serum creatinine to track renal function decline [1]. 

Similarly, patients with hyperlipidemia may be more likely to have lipid panels ordered so 

that physicians can make decisions about statin treatment [2]. Furthermore, even if a 

physician orders a laboratory test, it is often necessary for a patient to return later to have 

blood drawn. This introduces an additional selection process as many patients may fail to 

return for follow-up appointments. Finally, in some settings, laboratory tests are only 

available through certain laboratory testing companies. All factors governing the availability 

of laboratory values in data from routine care suggest that patients with a specific test result 

available may not be representative of the general population.

The selection bias created by this problem could be addressed theoretically by inverse 

probability of selection weighting (IPSW) [3], a semiparametric approach for missing data 

problems. The approach would first require a model for estimating the probability that a 

patient would have a laboratory test result available. The fitted model would then be used to 

generate IPSW that would be applied to individual patients in an analysis restricted to 

patients with the test result available. The approach would downweight patients who are 

likely to have the test result available, as they are overrepresented in the data. Similarly, 

patients unlikely to have a test result available would be upweighted to account for the many 

patients like them who are not present in the sample. The validity of the method requires that 

the analyst have measurements of the variables that influence both selection and the 

laboratory value. It is unknown how well this approach would work using typical 

administrative health care databases.

Using nationally representative data from the National Health and Nutrition Examination 

Survey (NHANES) and routine care data from a large population of patients with 

commercial insurance, we examined the extent to which commonly ordered laboratory 

values were representative of the distribution of laboratory values from the general 

population as reflected in the NHANES data. We hypothesized that the values collected in 

routine care would be substantially biased, reflecting a population of patients with more 

disease and abnormal test results. We then examined the distribution of laboratory values 

within the IPSW sample. We hypothesized that the IPSW sample would result in 

distributions of laboratory results that were more comparable with those from NHANES.

Methods

Data and cohort identification

We created a cohort of patients receiving routine medical care using the Truven Health 

Analytics MarketScan Commercial Claims and Encounters and Laboratory databases. These 

databases contain individual-level information on outpatient services, procedures, diagnoses, 

and medication information from pharmacy records for a very large population of patients in 

the United States with employer-provided commercial insurance, and their dependents. This 

enables researchers to have longitudinal views of pharmacy and health care utilization [4]. 

Laboratory values are available on patients who have a test ordered and submitted to a 

specific national testing company. Truven links the laboratory testing data to the claims data. 
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Using these data, we identified a retrospective cohort of patients aged 40 to 64 years who 

had an office visit during the calendar years 2009 to 2010 using Current Procedural 

Terminology codes (99211-99215, 99201-99205) to identify office visits. Next, we 

examined a 2-week period after the office visit to see if a patient received various laboratory 

tests of interest. We dropped observations in which a patient had fewer than 6 months of 

eligibility before the index date (date of the office visit) and less than two weeks of 

eligibility after the index date. To ensure that patients with multiple visits were not over-

represented in the analysis data set, we selected one physician visit at random per year to 

include in the analysis data set. For the selected visits, we then looked in the 2-week period 

after the index date to see if a patient had a specific test performed and an available result. 

To minimize the size of the data set, we sampled 1% of the visits with no available 

laboratory value.

We created a large number of covariates based on claims occurring in the 6-month period 

before the index date. To ensure broad capture of potentially relevant covariates, we 

identified all generic medications and three-digit International Classification of Diseases, 

Ninth Revision diagnostic codes that occurred with a prevalence of greater than 0.5% and 

procedure codes that occurred with a prevalence of greater than 1%. We created indicator 

variables to represent the presence of these codes. This approach is similar to other data-

driven approaches to variable creation [5]. We also identified various demographic 

variables, such as age, sex, and region of residence.

To obtain estimates of the distribution of laboratory values from the underlying population, 

we used data from the 2009 to 2010 NHANES. NHANES uses probability sampling to 

characterize the health and nutritional status of the United States civilian population. The 

survey examines a sample of approximately 5000 persons each year. These persons are 

located in counties across the country, 15 of which are visited each year. The NHANES 

interview includes demographic, socioeconomic, dietary, and health-related questions. The 

examination component consists of medical, dental, and physiological measurements, and 

laboratory tests administered by trained medical personnel. To make the NHANES 

population directly comparable with our routine care population, we restricted the NHANES 

cohort to people aged 40 to 64 years with private insurance. People with private insurance 

were identified from those with a positive response to the question, “Are you/Is SP (survey 

participant) covered by private insurance?” as part of the household questionnaire. 

Appropriate examination sample weights from the mobile examination center data were 

used for national summary statistics of laboratory test value distributions.

Laboratory tests

The laboratory tests selected for study were those commonly ordered and available in 

NHANES. To account for data entry errors, we worked with a clinician (A.K.) to create 

trimming rules for the laboratory values (Appendix Table 1). In the instance of laboratory 

results reported in different units, when possible, we converted those units. We examined 

most of the laboratories that make up the comprehensive metabolic panel including the 

following: electrolytes (potassium, sodium, and chloride); proteins (total protein and 

albumin); measures of kidney function (blood urea nitrogen and creatinine); measures of 
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liver function (alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, 

and bilirubin); glucose, and calcium. We also examined components of the standard lipid 

panel (low-density lipoprotein, high-density lipo-protein, triglycerides, and total 

cholesterol), and hemoglobin concentration, white blood cell count, glycohemoglobin, C-

reactive protein, and gamma-glutamyl transferase. Laboratories were identified in the 

routine care data using Logical Observation Identifiers Names and Codes (LOINC) codes.

Statistical analysis

Using the supplied survey sampling weights, we computed summary statistics (means, 

standard deviations, and medians) for all selected laboratories from the NHANES cohort. 

These statistics were also computed for the trimmed laboratory values from routine care 

cohort. These statistics were then computed within strata of sex and age group. We 

attempted to reduce possible selection bias in the routine care cohort through IPSW. For 

each patient, we used a logistic model to determine the probability of having each particular 

laboratory value available in the 2-week period after the index visit. These models included 

all available covariates. Using the estimated probability of selection from the logistic 

regression model, we then created for each patient an inverse probability weight that was the 

inverse of a patient’s predicted probability of having a laboratory result available given his 

or her observed covariate vector. Using these weights, we then computed the summary 

statistics of the laboratory value distribution in the reweighted sample. To diagnose possible 

problems with the estimated weights, we also computed the C-statistic from the fitted 

logistic regression model and summary statistics for the distribution of the IPSW. This 

process was repeated for each laboratory value.

We considered a laboratory result from routine care to be meaningfully different from the 

underlying population distribution if its mean was more than half a standard deviation from 

the NHANES mean (using the standard deviation of the laboratory result from NHANES).

All statistical analyses were performed using SAS version 9.2 software (SAS Institute, Cary, 

NC). The University of North Carolina Institutional Review Board approved this research.

Results

Patient characteristics

From the source population, we identified more than 23 million eligible office visits. Of 

these, 544,912 had a laboratory value of interest that was available in the following 2 weeks. 

The mean age of patients with a laboratory value was 52 years, and 58% of these patients 

were female. These patients came from the southern (56.2%), northeastern (11.1%), north 

central (15.9%), and western (16.7%) regions of the United States. For our analysis 

population, we selected all of the visits that were followed by an available laboratory result 

and a 1% sample of the remaining visits. This resulted in a final analysis data set of 770,148 

patients. We depict the cohort construction process in Figure 1.
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Summary statistics

In Table 1 and Figure 2, we report and depict the basic summary statistics of the laboratory 

values in NHANES, the routine care population, and the inverse probabilityeweighted 

sample. This table reveals that the means and medians of most of the laboratory values in the 

routine care population were similar to the corresponding statistics from NHANES. 

However, several tests differed meaningfully. For example, the means for C-reactive protein 

and potassium in routine care were each nearly a standard deviation above the means from 

NHANES. Blood urea nitrogen, glycohemoglobin, alkaline phosphatase, uric acid, and 

gamma-glutamyl transferase levels were slightly higher (around 0.5 standard deviation) in 

routine care. We observed similar patterns when we looked within subgroups defined by age 

and sex (data not presented).

Our empirical approach to covariate identification created 218 indicators for diagnosis 

codes, 79 indicators for generic medication names, and 207 indicators for procedures. 

Therefore, the models of laboratory availability that we constructed included slightly more 

than 500 variables. All models converged. The C-statistics are provided in Table 2. Most of 

the models were moderately discriminating, with C-statistics around 0.7. The models of 

urine creatinine and glycohemoglobin availability resulted in C-statistics more than 0.8. For 

glycohemoglobin, the model was driven by diabetes-related diagnoses and medications.

Inverse probability of selection weighting

In Table 3, we report summary statistics of the IPSW. Note the weights were multiplied by 

the marginal probability that a given test would be ordered for a patient in our sample. The 

means of these weights were mostly close to 1, as expected, indicating no obvious 

pathologies in the models. The lipid panels resulted in the largest weights, with maximum 

weights around 250. In most cases, the weights had little effect on the estimated means. In 

some instances, the weighting moved the estimates substantially closer to the mean from 

NHANES (e.g., glycohemoglobin and uric acid).

Discussion

We examined the extent to which commonly ordered laboratory values collected in routine 

care were representative of those in the underlying population. We further explored whether 

the use of an inverse probability weighting approach would improve the comparability of the 

routine care laboratory results with their corresponding distribution in the general 

population.

Contrary to our expectation, we found that the average values of most of the laboratory 

results from routine care were very close to their population means as estimated from 

NHANES. Only a few of the many tests that we considered differed meaningfully. The most 

extreme divergences were seen with C-reactive protein, potassium, gamma-glutamyl 

transferase, and glycohemoglobin. Except for potassium, these tests tend to be ordered more 

selectively for patients with known or strongly suspected disease. C-reactive protein is an 

inflammatory biomarker used to monitor the progress of autoimmune conditions and detect 

systemic inflammation or infection. Glycohemoglobin can be used to diagnose diabetes and 
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measure long-term blood glucose control in people with diabetes. Gamma-glutamyl 

transferase is usually ordered in conjunction with other liver tests, such as alkaline 

phosphatase, and used to detect liver disease and bile duct obstructions. With some of the 

other tests, we did observe slightly increased (or decreased) levels in routine care, but we 

had expected to observe more divergence between the two samples. In some cases, the 

means appeared to be moderately skewed by a small number of outliers. In these cases, the 

median values were more comparable. Previous research has found reasonably good 

comparability between various lipid measures collected in routine care and their 

corresponding population levels in NHANES [6,7].

The relative comparability between the laboratory results from routine care and those from 

NHANES could partly be attributed to our study design that restricted the sample to one 

laboratory result per patient during the 2-year period. This design reduced the influence of 

patients receiving frequent testing. Furthermore, because many of these laboratory values 

are commonly ordered in relatively healthy adults, it may be that our sample of patients 

receiving a given laboratory value is not too different from a random sample of the 

underlying population. For example, the National Cholesterol Education Program’s Adult 

Treatment Panel III, sponsored by the National Institutes of Health and endorsed by the 

American Heart Association, recommends that all adults aged older than 20 years receive a 

fasting lipoprotein profile every 5 years [8]. Metabolic panels are often ordered on relatively 

healthy patients taking prescription medications to monitor for renal or hepatic side effects 

of medications or underlying conditions being treated. For example, patients receiving 

antihypertensives are recommended to have serum creatinine and potassium levels checked 

one to two times per year [9].

The IPSW approach had a relatively small effect on the means of most routine laboratory 

tests. With uric acid and glycohemoglobin, two of the more selected laboratories, IPSW 

moved the estimated mean substantially closer to toward the NHANES mean. However, the 

bias was not fully eliminated. A look-back period longer than 6 months may be needed to 

more fully correct this bias. It is also possible that to fully control selection effects, variables 

not available in health care claims are required, such as better measures of co-morbidity. 

Alternative methods for handling missing data, such multiple imputation, that are based on 

models for the missing laboratory values rather than the selection mechanism may also more 

fully correct bias [10].

One important limitation of our research was that we considered only distributions of 

laboratory results in a population of privately insured patients between 35 and 64 who were 

receiving outpatient care. Our results may not generalize to younger populations, or patients 

with Medicaid or Medicare. Our results may also not generalize to selected subpopulations. 

This is particularly likely when membership in the subpopulation is partly determined by a 

laboratory value, such as users of a medication or a group of patients with a certain 

diagnosis. For example, initiation of statin therapy is due to either elevated lipid levels or the 

presence of other cardiovascular risk factors such as diabetes. Therefore, patients with lipid 

levels indicating hyperlipidemia may be more likely to be new users of statins and have 

higher lipid levels compared with the general population of new users. This may have 

implications for the use of laboratory values to characterize certain subgroups of patients. 
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There are other limitations of our study to consider. Our results will not necessarily 

generalize to the many other types of laboratory tests that we did not consider. Selection 

effects and availability of results may also be different in an integrated health care delivery 

system. Also, we have only considered single laboratory values. In many studies, 

researchers may want to control for multiple laboratory values. Patients with multiple 

laboratory values available may represent a more selected subgroup. Finally, we used an 

arbitrary criterion for determining whether laboratory values from the two databases were 

substantively different. The actual meaningfulness of any difference will depend on the 

specific research context.

Biomarkers levels from NHANES have been widely used to describe the health and 

nutritional status of the US population. Laboratory values from health care databases are not 

a replacement for rigorously collected samples from broadly representative studies such as 

NHANES. However, NHANES data are geographically and temporally sparse and may not 

contain certain laboratory values of interest. Our study has found that many of the most 

commonly ordered laboratory tests are fairly representative of the distribution of laboratories 

from NHANES. This is an important observation and suggests that trends and other patterns 

in biomarker levels in the population may be reasonably studied using data collected during 

the routine delivery of medical care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Cohort construction flow diagram illustrating inclusion criteria using the example of 

albumin laboratory results.
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Fig. 2. 
(A) and (B): Distribution of laboratory values: NHANES, MarketScan unweighted, and 

MarketScan weighted results.
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Table 1

Distribution of laboratory results from NHANES and weighted and unweighted samples

Variable Cohort N Mean SD Min Max Med

Albumin (g/dL) NHANES 4.3 0.3 3.1 5.2 4.3

Routine care 251,629 4.4 0.3 1.5 5.3 4.4

Routine care, weighted 251,629 4.4 0.3 1.5 5.3 4.4

Alkaline phosphatase (U/L) NHANES 66.5 19.8 22.0 194.0 62.0

Routine care 205,979 73.8 30.7 15.0 1917.0 69.0

Routine care, weighted 205,979 73.9 30.5 15.0 1917.0 69.0

Alanine aminotransferase (U/L) NHANES 27.3 15.1 8.0 218.0 23.0

Routine care 259,427 27.3 29.1 7.0 3650.0 22.0

Routine care, weighted 259,427 26.6 30.8 7.0 3650.0 21.0

Aspartate aminotransferase (U/L) NHANES 26.8 12.3 12.0 296.0 24.0

Routine care 258,407 24.0 21.2 8.0 2555.0 21.0

Routine care, weighted 258,407 23.8 23.3 8.0 2555.0 20.0

Total bilirubin (mg/dL) NHANES 0.8 0.3 0.2 2.8 0.7

Routine care 237,058 0.6 0.4 0.3 45.2 0.5

Routine care, weighted 237,058 0.6 0.4 0.3 45.2 0.5

Total protein (g/dL) NHANES 7.1 0.4 5.8 9.0 7.1

Routine care 252,016 7.2 0.5 3.9 10.5 7.2

Routine care, weighted 252,016 7.2 0.5 3.9 10.5 7.2

Gamma-glutamyl transferase (U/L) NHANES 27.2 31.9 4.0 1116.0 21.0

Routine care 13,824 44.1 94.7 5.0 3889.0 25.0

Routine care, weighted 13,824 47.9 117.1 5.0 3889.0 25.0

BUN (mg/dL) NHANES 13.6 4.0 3.0 33.0 13.0

Routine care 281,574 15.5 5.6 2.0 158.0 15.0

Routine care, weighted 281,574 15.3 5.4 2.0 158.0 15.0

Calcium (mg/dL) NHANES 9.5 0.4 7.5 11.0 9.4

Routine care 223,396 9.5 0.4 5.0 20.0 9.4

Routine care, weighted 223,396 9.5 0.4 5.0 20.0 9.4

Chloride (mmol/L) NHANES 104.0 2.6 90.0 114.0 104.0

Routine care 229,423 103.5 2.9 62.0 130.0 104.0

Routine care, weighted 229,423 103.6 2.9 62.0 130.0 104.0

Creatinine (mg/dL) NHANES 0.9 0.2 0.4 2.5 0.9

Routine care 286,811 0.9 0.3 0.3 19.3 0.9

Routine care, weighted 286,811 0.9 0.3 0.3 19.3 0.9

Serum Glucose (mg/dL) NHANES 99.7 33.1 52.0 777.0 92.0

Routine care 249,463 103.6 39.9 20.0 848.0 93.0

Routine care, weighted 249,463 101.3 36.9 20.0 848.0 92.0

Potassium (mmol/L) NHANES 4.0 0.3 2.8 5.6 4.0

Routine care 282,852 4.3 0.4 2.1 8.1 4.3

Routine care, weighted 282,852 4.3 0.4 2.1 8.1 4.3
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Variable Cohort N Mean SD Min Max Med

Sodium (mmol/L) NHANES 139.4 2.1 124.0 146.0 140.0

Routine care 269,218 139.8 2.4 111.0 162.0 140.0

Routine care, weighted 269,218 139.8 2.4 111.0 162.0 140.0

Total cholesterol (mg/dL) NHANES 205.6 41.1 93.0 528.0 203.0

Routine care 249,808 193.4 40.3 100.0 771.0 191.0

Routine Care, Weighted 249,808 192.9 40.7 100.0 771.0 190.0

Direct HDL (mg/dL) NHANES 55.0 17.6 21.0 133.0 52.0

Routine care 244,912 52.4 15.7 10.0 197.0 50.0

Routine care, weighted 244,912 53.8 16.7 10.0 197.0 51.0

LDL (mg/dL) NHANES 121.7 33.4 33.0 266.0 118.0

Routine care 238,061 111.2 34.7 1.0 441.0 109.0

Routine care, weighted 238,061 110.2 35.1 1.0 441.0 108.0

Triglycerides (mg/dL) NHANES 128.2 121.7 28.0 2742.0 99.0

Routine care 237,943 153.9 137.0 50.0 9523.0 125.0

Routine care, weighted 237,943 149.5 129.4 50.0 9523.0 122.0

Phosphorus (mg/dL) NHANES 3.7 0.6 2.0 5.7 3.7

Routine care 12,354 3.5 0.7 1.1 15.4 3.4

Routine care, weighted 12,354 3.5 0.6 1.1 15.4 3.5

Uric acid (mg/dL) NHANES 5.4 1.4 1.5 10.9 5.4

Routine care 22,091 6.0 1.8 1.0 16.3 5.8

Routine care, weighted 22,091 5.6 1.7 1.0 16.3 5.4

Glycohemoglobin (%) NHANES 5.6 0.8 4.1 14.2 5.5

Routine care 79,859 6.9 1.7 3.4 19.0 6.3

Routine care, weighted 79,859 6.2 1.2 3.4 19.0 5.9

Hemoglobin (g/dL) NHANES 14.3 1.4 7.5 19.5 14.3

Routine care 190,980 13.9 1.6 4.0 20.6 14.0

Routine care, weighted 190,980 13.9 1.5 4.0 20.6 13.9

WBC count (1000 cells/uL) NHANES 6.9 2.3 2.8 99.9 6.5

Routine care 189,223 6.8 2.3 0.5 91.0 6.5

Routine care, weighted 189,223 6.8 2.3 0.5 91.0 6.5

C-reactive protein (mg/dL) NHANES 0.3 0.7 0.0 18.0 0.2

Routine care 11,959 1.0 2.9 0.0 90.7 0.3

Routine care, weighted 11,959 0.9 2.8 0.0 90.7 0.3

BUN = blood urea nitrogen; HDL = high-density lipoprotein; LDL = low-density lipoprotein; WBC = white blood cell.
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Table 2

C-statistics for weight models

Laboratory model C-statistic

Albumin (g/dL) 0.702

Alkaline phosphatase (U/L) 0.702

Alanine aminotransferase (U/L) 0.699

Aspartate aminotransferase (U/L) 0.699

Total bilirubin (mg/dL) 0.702

Total protein (g/dL) 0.702

Gamma-glutamyl transferase (U/L) 0.791

BUN (mg/dL) 0.703

Calcium (mg/dL) 0.700

Chloride (mmol/L) 0.701

Creatinine (mg/dL) 0.701

Serum glucose (mg/dL) 0.701

Potassium (mmol/L) 0.702

Sodium (mmol/L) 0.705

Total cholesterol (mg/dL) 0.756

Direct HDL (mg/dL) 0.756

LDL (mg/dL) 0.753

Triglycerides (mg/dL) 0.753

Phosphorus (mg/dL) 0.786

Uric acid (mg/dL) 0.781

Hemoglobin (g/dL) 0.684

Glycohemoglobin (%) 0.825

WBC count (1000 cells/uL) 0.682

C-reactive protein (mg/dL) 0.761

BUN = blood urea nitrogen; HDL = high-density lipoprotein; LDL = low-density lipoprotein; WBC = white blood cell.
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Table 3

Distribution of the Inverse-Probability of Selection Weights

Laboratory model Mean Min Max P25* Median P75*

Albumin (g/dL) 1.01 0.34 82.95 0.65 0.84 1.12

Alkaline phosphatase (U/L) 1.01 0.33 96.04 0.65 0.84 1.12

Alanine aminotransferase (U/L) 1.01 0.35 61.78 0.66 0.85 1.12

Aspartate aminotransferase (U/L) 1.01 0.35 58.38 0.66 0.85 1.12

Total bilirubin (mg/dL) 1.00 0.33 95.86 0.65 0.83 1.11

Total protein (g/dL) 1.01 0.34 89.85 0.65 0.84 1.12

Gamma-glutamyl transferase (U/L) 1.08 0.02 54.71 0.18 0.57 1.24

BUN (mg/dL) 1.01 0.37 46.62 0.67 0.85 1.12

Calcium (mg/dL) 1.00 0.30 54.76 0.64 0.83 1.13

Chloride (mmol/L) 1.00 0.31 47.84 0.64 0.83 1.13

Creatinine (mg/dL) 1.01 0.38 47.08 0.68 0.85 1.12

Serum glucose (mg/dL) 1.00 0.33 69.63 0.65 0.84 1.13

Potassium (mmol/L) 1.01 0.38 49.33 0.67 0.85 1.12

Sodium (mmol/L) 1.01 0.36 74.56 0.66 0.84 1.12

Total cholesterol (mg/dL) 1.05 0.34 247.24 0.55 0.75 1.10

Direct HDL (mg/dL) 1.04 0.33 257.82 0.54 0.74 1.11

LDL (mg/dL) 1.04 0.33 254.16 0.55 0.75 1.11

Triglycerides (mg/dL) 1.04 0.33 254.65 0.55 0.75 1.10

Phosphorus (mg/dL) 1.03 0.02 64.37 0.20 0.55 1.33

Uric acid (mg/dL) 1.03 0.03 143.51 0.25 0.63 1.20

Glycohemoglobin (%) 1.01 0.26 66.86 0.66 0.83 1.11

Hemoglobin (g/dL) 1.00 0.11 130.35 0.21 0.38 1.33

WBC count (1000 cells/uL) 1.01 0.26 52.64 0.67 0.83 1.11

C-reactive protein (mg/dL) 0.93 0.02 14.71 0.27 0.80 1.31

BUN = blood urea nitrogen; HDL = high-density lipoprotein; LDL = low-density lipoprotein; WBC = white blood cell.

*
P25, 25th Percentile; P75, 75th Percentile.
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