
Optogenetic Apoptosis: Light-Triggered Cell Death

Robert M. Hughes, David J. Freeman, Kelsey N. Lamb, Rebecca M. Pollet, Weston J. Smith, 
and David S. Lawrence
Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, and Department 
of Pharmacology, University of North Carolina, Chapel Hill, NC 27599 (USA)

Robert M. Hughes: rhughes@email.unc.edu; David S. Lawrence: lawrencd@email.unc.edu

Abstract

An optogenetic Bax has been designed that facilitates light-induced apoptosis. We demonstrate 

that mitochondrial recruitment of a genetically encoded light-responsive Bax results in the release 

of mitochondrial proteins, downstream caspase 3 cleavage, changes in cellular morphology, and 

ultimately cell death. Mutagenesis of a key phosphorylatable residue or modification of the C-

terminus mitigates background levels (dark) of apoptosis due to Bax overexpression. The 

mechanism of optogenetic Bax-mediated apoptosis was explored using a series of small molecules 

known to interfere with various steps in programmed cell death. Optogenetic Bax appears to form 

a mitochondrial apoptosis-induced channel analogous to that of endogenous Bax.
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Light has been used to control the biochemistry of cells, manipulate the behavior of 

organisms, and treat diseases such as cancer.[1] Recently, the application of genetically-

encoded light responsive proteins for controlling the biochemistry, and therefore the 

behavior, of cells and organisms has elicited widespread attention.[2] Indeed, a database 

search revealed that the term “optogenetics” is found in well over 800 funded NIH grants 

(NIH RePorter) and in more than 200 reviews (PubMed). However, the majority of studies to 

date have employed light-responsive proteins appropriated from microorganisms (e.g. ion 

channels) that have been applied to the arena of neuroscience.[3] By contrast, relatively few 

light-activatable analogs of endogenous mammalian proteins have been successfully 

engineered.[4] Indeed, strategies for the design of optogenetic proteins have been described 

as “still in the development stage”.[5] With this challenge in mind, we report the design, 

construction, and application of a genetically encoded inducer of programmed cell death 

(apoptosis).

Apoptosis is a highly regulated self-contained response to stress-inducing environmental 

challenges. This dynamic process is modulated by a diverse array of proteins that, upon 

malfunction, contribute to diseases that range from cancer to neurological disorders. 
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Optogenetic analogs of apoptotic protein participants could potentially be used to 

exogenously modulate (and thereby interrogate) life/death decisions with exquisite 

biochemical, spatial, and temporal precision. For example pro- and anti-apoptotic members 

of the Bcl-2 family of proteins work in concert to control outer mitochondrial membrane 

(OMM) permeabilization, a critical event during apoptosis.[6] In addition, a large number of 

non-Bcl-2 proteins are recruited to the OMM, and assist the Bcl-2 proteins in the decision 

making process that governs cell fate.[7] We describe herein the design and behavior of an 

optogenetic Bax. Bax, a key effector of apoptosis, translocates from the cytosol to the OMM 

in response to apoptotic-inducing insults.[8] Once OMM associated, Bax oligomerizes and 

subsequently participates in the formation of the mitochondrial apoptosis-induced channel 

(MAC) through which cytochrome c is released into the cytosol. Key elements of our 

optogenetic Bax design strategy include (a) the application of light to induce a Bax 

concentration jump at the OMM surface to promote Bax oligomerization and (b) the 

introduction of mutations to reduce background (i.e. dark) activity of Bax. “Dark activity” is 

a common problem that has bedeviled the acquisition of well-behaved optogenetic 

species.[5] We demonstrate herein the light-triggered recruitment of several Bax constructs to 

mitochondria, the permeabilization of the OMM via release of Smac1 and subsequent 

cleavage of caspase 3, and that the mechanism of optogenetic Bax-driven apoptosis appears 

to recapitulate that of the endogenous protein.

We built upon previous work from our lab, which employed a photo-heterodimerizer 

system,[9] to engineer Bax constructs that are recruited to mitochondria upon illumination 

(Scheme 1). In brief, Cry2 (derived from a flavin-containing cryptochrome photoreceptor) 

undergoes a rapid conformational change upon brief exposure to 488 nm.[10] In the light-

activated state, Cry2 binds to a protein partner (Cib) to form a transient Cry2-Cib 

complex.[10] For our initial studies, we prepared a Tom20-Cib-GFP construct, where Tom20 

is a fragment of a protein that is anchored to the surface of the OMM.[11] This places the Cib 

component at the intracellular site that endogenous Bax associates with in response to 

apoptotic-inducing environmental events.[11] We first examined the light-triggered migration 

of a Cry2-mCh (mCherry) construct from the cytoplasm to the OMM by simultaneously 

expressing it along with Tom20-Cib-GFP in multiple cell lines (Cos7, HeLa, MtLn3; Fig. 1; 

Supporting Fig. 1, Supporting Movies 1 & 2). A single 10 ms pulse proved to be sufficient to 

alter the spatial distribution of Cry2-mCh from diffuse cytoplasmic to mitochondrial within 

30 s. The dark half-life of the mitochondrial localized post-illuminated Cry2-Cib construct is 

140 s.

In order to address the issue of dark activity, which typically compromises the design and 

acquisition of optogenetic proteins, we prepared variants of Bax that preclude association 

with mitochondria. In particular, we focused our attention on the C-terminus of the protein 

as well as the S184 residue, both of which play key roles in regulating the cytosolic/

mitochondrial distribution of Bax. A free C-terminus is known to be essential for Bax 
mitochondrial migration in response to an apoptotic stimulus.[12] In addition, the 
phosphorylation status of S184 is known to control Bax localization, where phospho184 Bax 
is cytoplasmic and the dephospho-form is mitochondrial.[13] With these features in mind, we 

prepared the following: (1) Free C-terminus Bax constructs Cry2-mCh-BaxWT, the S184E 

phospho-mimetic Cry2-mCh-BaxS184E, and the nonphosphorylatable S184V Cry2-mCh-
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BaxS184V; (2) Substituted C-terminus constructs BaxWT-Cry2-mCh, BaxS184E-Cry2-mCh, 

and BaxS184V-Cry2-mCh (Table 1, Supporting Fig. 2). The phospho-mimetic mutant 

Ser184Glu is reported to generate a cytosolic Bax, whereas introduction of a hydrophobic 

residue (Ser184Val) induces constitutive mitochondrial localization of Bax.[13] The 

approximate predicted masses of all the constructs were confirmed via western blot analysis 

(Supporting Fig. 2).

We tested the free C-terminus constructs Cry2-mCh-BaxWT, Cry2-mCh-BaxS184E, Cry2-

mCh-BaxS184V in the dark. All behaved as predicted where the S184E is cytoplasmic and 

the S184V is mitochondrial, with numerous peri-mitochondrial speckles. The latter is 

consistent with the formation of pre-apoptotic, mitochondrially associated Bax clusters[1] 

(Supporting Fig. 3). The Cry2-mCh-BaxWT is both mitochondrial and cytoplasmic, 

consistent with the fact that WT Bax is known to exist in equilibrium between mitochondria 

and cytosol.[14] We also examined the C-substituted Bax constructs (Bax-Cry2-mCh) in the 

dark and found that all three are cytoplasmic. This demonstrates the profound effect of Bax 

C-substitution, which even overwhelms the S184V mutation that ordinarily would drive Bax 

to the mitochondria.[13] We subsequently analyzed the response of these Bax constructs to 

treatment with staurosporine (STS), a broad spectrum protein kinase inhibitor that induces 

apoptosis. Within 2 h, constructs with Bax at the C-terminus (Cry2-mCh-Bax) are recruited 

to the mitochondria, whereas the corresponding Bax-Cry2-mCh proteins remain cytoplasmic 

(Supporting Fig. 4). The inability of the Bax-Cry2-mCh constructs to undergo STS-induced 

recruitment to the mitochondria demonstrates that Bax, with an exposed free C-terminus, is 

absolutely essential for mitochondrial association. It further suggests that blocking the C-

terminal domain may be an effective way of limiting background cell death associated with 

Bax overexpression.

We subsequently examined the light initiated recruitment of both Cry2-mCh-BaxS184E and 

BaxS184E-Cry2-mCh constructs to mitochondria in HeLa cells. We observed rapid cell 

collapse upon mitochondrial recruitment of Cry2-mCh-BaxS184E over a 1 h time course of 

illumination (10 ms every 2 min) and imaging (Fig. 2). In an analogous fashion, cells 

harboring BaxS184E-Cry2-mCh collapse and die upon illumination. However, this occurs 

over a significantly longer time period (2 – 3 h) than that required for Cry2-mCh-BaxS184E 

(Supporting Movie 2). We also performed the following control experiments: (1) 

Mitochondrial recruitment of the construct lacking Bax, namely Cry2-mCh, under identical 

conditions does not result in a loss in cell viability (Supporting Movie 2/Fig. 2). In addition 

(2), we tested the effect of recruiting Cry2-mCh-BaxS184E to the plasma membrane using 

Cib-GFP-CAAX, where CAAX serves as a plasma membrane localization motif. Sustained 

recruitment of Cry2-mCh-BaxS184E to the plasma membrane does not result in cell collapse, 

indicating that the activity of optogenetic Bax is specific to the OMM (Supporting Movie 3/

Supporting Fig. 5).

We also examined the effect of light-induced mitochondrial recruitment of Bax on long term 

cell viability (24, 48 h) using a trypan blue exclusion assay (Supporting Figs. 6 – 7).[15] 

Since this particular experiment required a relatively large cell population, we employed an 

in-house built LED array for illumination purposes (as opposed to illumination under the 

microscope). The photon flux produced by our LED array (6.9 ± 0.4 µmol m-2 s-1) is 
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significantly less than that received by cells under the microscope (296 ± 1 µmol m−2 s−1), 

and thus we employed a more aggressive illumination protocol (2 s every 2 min for 2 h). 48 

h after light exposure, >60% of the Cry2-mCh-BaxS184E cells had detached from the plate 

and nearly half of the remaining adherent cells incorporated trypan blue (and were therefore 

non-viable). By contrast, only 11% of the cells transfected with the Cry2-mCh control and 

illuminated were non-viable and only 8% of the cells in the non-transfected control were 

non-viable.

We also explored the minimum number of light pulses required to promote mitochondrial 

association. We found that, while a single 100 ms pulse is not sufficient to induce apoptosis, 

differences in behavior between the various constructs are nonetheless apparent even under 

these conditions (Supporting Fig. 8). Specifically, the mitochondrial residence time (half-

life) of the Cry2-mCh-Bax fusions is significantly longer (200 ± 10 s) than their Bax-Cry2-

mCh counterparts (130 ± 10 s) (Table 1, Supporting Fig. 8). Subsequent studies using a 

series of five 10 ms pulses, spaced 5 min apart, revealed that Cry2-mCh-BaxS184E remains 

associated with the mitochondria, even 30 min after the final 10 ms pulse (Supporting Fig. 

9). By contrast, the BaxS184E-Cry2-mCh construct, under analogous illumination conditions, 

fails to be retained by the mitochondria once illumination is halted. Given the fact that cells 

harboring Cry2-mCh-BaxS184E suffer brisk apoptosis (1 h) relative to cells containing 

BaxS184E-Cry2-mCh (2 – 3 h), it is tempting to speculate that the Cry2-mCh-BaxS184E 

construct undergoes more efficient mitochondrial oligomerization and/or OMM insertion 

than its BaxS184E-Cry2-mCh counterpart.

We also assessed whether anticipated apoptotic events, downstream of Bax recruitment to 

the mitochondria, are triggered following illumination. Proteolytic conversion of the inactive 

caspase-3 zymogen to the active caspase-3 fragment (17 kDa) serves as a barometer of the 

cell’s commitment to the execution phase of apoptosis.[16] Since the 17 kDa fragment was 

assayed via western blot analysis (as opposed to microscopy), we once again resorted to 

bench-top illumination using the in-house built LED array. Transfected Cos7 cells were 

illuminated for 2 s, every 2 min, over the course of 1, 2, or 3 h. As anticipated, both BaxWT 

and BaxS184E, positioned at either the N- or the C-terminus (Bax-Cry2-mCh and Cry2-mCh-

Bax, respectively), mediate the light triggered formation of the 17 kDa caspase fragment 

(Supporting Fig. 10). By contrast, an increase in 17 kDa fragment formation was not 

observed with light alone or upon light-triggered migration of Cry2-mCh to the 

mitochondria. We also note that the BaxWT constructs induce a 50% higher caspase-3 
fragment background in the dark than the corresponding BaxS184E mutants. This undesired 
dark activity is a common problem with optogenetic proteins and highlights the importance 
of employing mutant constructs whose endogenous activities are biochemically 
compromised. The observed dark activity for the BaxWT construct may be due to the 

equilibrium between the cytosol and the mitochondria for the WT protein that exists even in 

the absence of an apoptotic insult.[14] Of the four Bax constructs, BaxS184E-Cry2-mCh is the 

most effective, producing a 3.5-fold increase in caspase-3 fragment generation upon 

illumination, while maintaining a modest caspase-3 fragment background in the dark 

(Supporting Fig. 10).
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To further assess whether the Bax constructs are acting in a manner consistent with Bax-

dependent apoptosis, we examined the mitochondrial release of Smac1, using a Smac11–60-

GFP fusion. Smac1 resides in the mitochondria intermembrane space, and is known to co-

disperse with cytochrome C during Bax-induced apoptosis.[17] As expected, we observed the 

light-triggered loss of Smac1 from mitochondria during Bax-induced cellular collapse (Fig. 

3, Supporting Movie 4). This release is not gradual, but occurs rapidly as cells transition 

from adherent to non-adherent, an observation consistent with the fact that specific critical 

apoptotic biochemical events can occur within minutes.[18]

Finally, we tested the effects of several inhibitors on cells containing the optogenetic Bax 

constructs. V5 (1) is a cell permeable peptide that inhibits the mitochondrial translocation of 

Bax (endogenous or overexpressed) by disrupting the interaction between Bax and Ku70.[19] 

At a concentration (200 µM) sufficient to block the cytosol-to-mitochondrial migration of 

overexpressed wild type Bax,[19] optogenetic Bax still induces rapid cell collapse 

(Supporting Movie 5/Supporting Table 1). V5’s ineffectiveness is expected since light-

induced migration of optogenetic Bax to the mitochondria occurs independently of the Ku70 

mechanism employed by its’ endogenous counterpart. We also tested a cocktail of 

cyclosporin A and aristolochic acid (5 µM CyA/50 µM ArA; 2), which disrupts the Ca2+ 

MPT, but not the Bax/Mg2+ MPT.[20] Once again, as anticipated, this cocktail fails to inhibit 

the light-mediated pro-apoptotic action of optogenetic Bax (Supporting Movie 5/Supporting 

Table 1). Finally, we examined the action of an inhibitor (3)[21] that blocks the mitochondrial 

apoptosis-induced channel (MAC), which is formed by Bax and is the conduit through 

which cytochrome C is released. We found that not only is the MAC channel inhibitor 

effective at blocking light-induced apoptosis (Supporting Movie 5/Supporting Table 1), but 

that the inhibitory action is also titratable over a 1 – 10 µM concentration range of inhibitor 

3 (Supporting Movie 6/Supporting Table 2).[21] These results are consistent with the 

reported near complete inhibition of mitochondrial permeability by 3 (10 µM)[21] and 

strongly suggests that optogenetic Bax forms a MAC analogous to that of the endogenous 

protein.

The therapeutic interest in Bax-mediated apoptosis encompasses a wide array of diseases, 

from cancer to neuropathologies. As a consequence, a variety of tools have been developed 
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to explore and/or perturb apoptotic pathways, including small molecule inhibitors and 

activators.[22] Light has been used, in conjunction with photosensitizers[23] or genetically 

expressed proteins[24], to induce reactive oxygen species and cell death. In addition, a 

variety of light-responsive small molecules have been described that trigger cell death via an 

array of miscellaneous mechanisms.[25] Optogenetics offers the ability to use light to initiate 

an action, with exquisite temporal, spatial and biochemical precision, which provides the 

ability to correlate an investigator-defined biochemical event with cellular behavior. With 

this in mind, there is intense interest in exploring the aberrant Bax-mediated activity 

associated with Alzheimer’s Disease (AD) and developing appropriate animals models that 

can be used to assess therapeutic efficacy.[26} Furthermore, the geographical course of AD, 

from the hippocampus out to the cortex, is a spatially well-defined phenomenon; one that 

optogenetics may prove to be uniquely capable of addressing.

In summary, we’ve developed an optogenetic design strategy that is based on the aberrant 

mitochondrial migration behavior of Bax mutants in response to pro-apoptotic insults. This 

strategy furnishes constructs that display minimal dark activity, an otherwise common 

problem associated with optogenetic engineering. Finally, we’ve identified two constructs 

that exhibit distinct properties: both Cry2-mCh-BaxS184E and BaxS184E-Cry2-mCh elicit 

light-mediated cell death, however the former also migrates to the mitochondria in response 

to conventional pro-apoptotic signals (exposure to STS) whereas the latter remains 

cytoplasmic under these conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visualization of recruitment of Cry2-mCh to the mitochondria in MtLn3 cells via confocal 

microscopy. Cells are shown (a) prior to and (b) following 488 nm illumination. The 

localization construct (Tom20-Cib-GFP) is shown in (c). See Supporting Fig. 1 for results 

with HeLa and Cos7 cell lines.
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Figure 2. 
Visualization of Cry2-mCh-BaxS184E (a – c) and Cry2-mCh (d – f) light-triggered 

recruitment to mitochondria in HeLa cells and the attendant cell morphology. Cells are 

shown prior to illumination (a, d), 2 min (b, e), and 18 min after first light pulse (10 ms 

pulse every 2 min). Cry2-BaxS184E cells undergo rapid shrinkage (b) and eventual 

detachment (c; see middle cell), while Cry2-mCh cells maintain an adherent morphology 

throughout the light course.
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Figure 3. 
Visualization of Smac1-GFP release from mitochondria of Cry2-mCh-BaxS184E/Tom20-Cib/

Smac1-GFP transfected HeLa cells. (a) Initial localization of Smac1 is mitochondrial. A 10 

ms pulse was then applied every 2 min. At the (b) 12 and (c) 14 min time points Smac1 

localization is distinctly less mitochondrial during cellular collapse.

Hughes et al. Page 10

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1. 
Design of a genetically encoded optogenetic Bax. A Bax mutant (black) is appended to the 

light-responsive Cry2 (light blue). In the absence of light, the Bax construct remains 

cytoplasmic. Upon illumination at 488 nm, Cry2 associates with mitochondria-bound Cib 

(blue), furnishing a high effective Bax concentration, promoting Bax oligomerization, 

mitochondrial pore transition, Smac1 release, caspase 3 fragment formation, and eventual 

cell death.
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Table 1

Optogenetic Bax constructs and their subcellular location.

Construct Dark Dark + STS[a] Mitochondrial
Half-Life[b]

Cry2-mCh-BaxWT Mitochondrial + Cytoplasmic Mitochondrial 200 ± 10 s

Cry2-mCh-BaxS184E Cytoplasmic Mitochondrial 210 ± 10 s

Cry2-mCh-BaxS184V Mitochondrial Mitochondrial N.D. [c]

BaxWT-Cry2-mCh Cytoplasmic Cytoplasmic 130 ± 10 s

BaxS184E-Cry2-mCh Cytoplasmic Cytoplasmic 130 ± 10 s

BaxS184V-Cry2-mCh Cytoplasmic Cytoplasmic N.D.

[a]
STS = staurosporine.

[b]
Mitochondrial residence time following a single 100 ms 488 nm light pulse,

[c]
N.D. = Not determined.
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